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PROBABTLISTIC LOGICS AND THE SYNTHESIS OF RELIAELE
ORGANISMS FROM UNRELIABLE COMPONENTS

J. von Neumsnn

1. INTRODUCTION

The paper that follows 1s vased on notes taken by Dr. R. S. Plerce
on five lectures given by the author at the California Institute of
Technology in January 1952. They have been revised by the author but they
reflect, apert from minor changes, the lectures as they were delivered.

The subject-matter, as the title suggests, 1s the role of error
in logics, or in the physical implementation of logics - in automata-
synthesls. Error 1is viewed, therefore, not as an extraneous and misdirected
or misdirecting accident, but as an essential part of the process under con-
sideration — its importance in the synthesis of sutomata being fully com-
parable to that of the factor which is normally considered, the intended and
correct loglical structure. . -

Our present treatment of error is unsatisfactory and ad hoc. It
is the author's conviction, volced over many yeers, that error should be
treated by thermodynamical methods, and be the subject of a thermodynamical
theory, as information has been, by the work of L. Szilard and C. E. Shannon
[Cf. 5.2]. The present treatment falls far short of achieving this, but 1t
assembles, 1t 1s hoped, some of the building materials, which will have to
enter into the final structure. ‘ E

The author wants to express his thanks to K. A. Brueckner and
M. Gell-Mann, then at the University of Illinols, to whose discussions in
1951 he owes some important stimili on this subject; to Dr. R. S. Plerce at
the Californis Institute of Technology, on whose excellent notes this ex-
position is based; and to the Californias Institute of Technology, whose
invitation to deliver these lectures combined with the very warm reception
by the sudience, caused bim to write this paper in its present form, and
whose cooperation in connection with the present publication is much

appreclated.
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by VON NEUMANN

2. A SCHEMATIC VIEW OF AUTOMATA
2.1 Loglcs and Automata

It has been pointed out by A. M. Turing [5] in 1937 and by W. 3.
McCulloch and W. Pitts [2] in 1943 that effectively constructive logics,
that 1s, intuitionistic logics, can be best studled in terms of automata.
Thus logical propositions can be represented as electrical networks or
(1dealized) nervous systems. Whereas loglcal propositions are built up by
combining certain primitive symbols, networks are formed by connecting
basic components, such as relays in electrical circuits and neurons in the
nervous system. A logical proposition is then represented as a "black box"
which has a finite number of inputs (wires or nerve bundles) and a finite
number of outputs. The operation performed by the box 1s determined by
the rules defining which inputs, when stimulated, cause responses in which
outputs, just as a propositional function 1s determined by its values for
all possible assignments of values to its variables.

There is one important difference between ordinary logilc and the
automata which represent it. Time never occurs in logle, but every network
or nervous system has a definite time lag between the input signal and the
output response. ‘A definite temporal sequence 1s always lnherent in the
operation of such a real system. This 1s not entirely a disadvantage. For
example, 1t prevents the occurence of various kinds of more or less overt
vicious circles (related to "non-constructivity", "impredicativity", and
the like) which represent a major class of dangers in modern logical sys-
tems. It should be emphasized again, however, that the representative
automaton contains more than the content of the logical proposition which
it symbolizes — to be precise, it embodies a definite time lag.

Before proceeding to a detailed study of a specific model of logic,
1t is necessary to add a word about notation. The terminology used in the
following 1s taken from several flelds of sclence; neurology, electrical

engineering, and mathematics furnish most of the words. No attempt is made
to be systematic in the appllication of terms, but it 1s hoped that the mean-
ing will be clear in every case. It must be kept in mind that few of the
terms are being used in the technical sense which is given to them in their
own scilentific field. Thus, in speaking of a neuron, we don't mean the ani-
mal organ, but rather one of the basic components of our network which re-
sembles an animal neuron only superficially, and which might equally well
have been called an electrical relay. '

2.2 Definitions of the Fundamental Concepts

Externally an automaton is a "black box" with a finite number of
inputs and a finite number of outputs. Each input and each output is



y W. 3.
gics,
omata .
or
t up by
ing
in the
ack box"
finite
d by
n which
es for

and the
- network
and the
n the
.ge. For
3 overt
', and

.1 Sys~-
zive

1 which

. of logic,
1 in the
trical

t 1s made
the mean-
of the

in their
n the ani-
hich re-
ly well

+

umber of
- 1s

|

PROBABILISTIC LOGICS k5
capable of exactly two states, to be designated as the "stimulated" state
and the "unstimulated" state, respectively. The internal functioning of
such a "black box" is equivalent to a prescription that specifies which
outputs will be stimulated in response to the stimulation of any given com-
binstion of the inputs, and also the time of stimulation of these outputs.
As stated above, 1t 1s definitely assumed that the response occurs only
after a time lag, but in the general case the complete response may consist
of a succession of responses occurring at different times. This description
1s somewhat vague. To make 1t more precise it will be convenient to con-
sider first automata of a somewhat prestricted type and to discuss the syn-
thesis of the general automaton later.

DEFINITION 1: A single output automaton with time delay & (8 1is posi-
tive) 1s a finlte set of inputs, exactly one output, and an enumeration of
certain. "preferred"” subsets of the set of all inputs. The automaton stimu-
lates 1ts output at time t + & 1f and only if at time t the stimulated
inputs constitute a subset which appears in the list of "preferred" subsets,
describing the automaton.

In the above definition the expression "enumeration of certain
subsets" 1s taken in 1ts widest sense and does not exclude the extreme
cases "all" and "none". If. n 1s the number of inputs, then there exist 2(2
such automata for any glven 5.

Frequently several automata of this type will have to be consid-
ered simultaneously. They need not all have the same time delay, but 1t
will be assumed that all their time lags =re integral multiples of a common
value B,. This assumptlon may not be correct for an actual nervous system;
the model considered may apply only to an idealized nervous system. In
partial justification, 1t can be remarked that as long as only a finite
number of automata are considered, the assumption of & common value 8y
can be realized within any degree of approximation. Whatever its justifi-
catlon and whatever its meaning in relation to actual machines or nervous
systems, this assumption will be_made in our present discussions. The com-
mon value 8, 1s chosen for convenlence as the time unit; The time vari-
able can now be made discrete, i.e., 1t need assume only integral numbers
as values, and correspondingly the time delays of the automata considered
are positive integers.

Single output automata with glven time delays can be combined
into a new automaton. The outputs of certalin automata are connected by
lines or wires or nerve fibers to some of the 1nputs of the same or other
autometa. The connecting lines are used only to indicate the desired con-
nections; their function 1s to transmit the stimulation of an output in- -
stantaneously to all the inputs connected with that output. The network
is subjected to one condition, howsver. Although the same output may be
connected to several inputs, any one input is assumed to be connected to

oy
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at most one output. It may be clearer to impose this restriction on the
connecting lines, by requiring that each input and each output be attached
to exactly one line, to allow lines to be split into several lines, but pro
hibit the merging of two or more lines. This convention makes it advisable
to mentlon again that the actlvity of an output or an input, and hence of a
line, is an all or nothing process. If a line is split, the stimulation is
carried to all the branches in full. No energy conservation laws enter
into the problem. In actual machines or neurons, the energy 1s supplied by
the neurons themselves from some external source of energy. The stimula-
tion acts only as a trigger device.

The most general automaton is defined to be any such network. In
general 1t will have several inputs and several outputs and its response
activity will be much more complex than that of a single output automaton
with a given time delay. An intrinsic definition of the general automaton,
independent of its construction as a network, can be supplied. It will not
be discussed here, however.

Of equal importance to the problem of combining automata into new
ones 1is the converse problem of representing a glven automaton by & network
of simpler automata, and of determining eventually a minimum number of basic
types for these simpler automata. As will be shown, very few types are
necessary.

2.3 Some Basic Organs

The automata to be selected as a basls for the synthesis of all
automata will be called basic organs. Throughout what follows, these will
be single output automata.

One type of basic organ is described by Figure 1. It has one

:q(;)l

FIGURE A

output, and may have any finite number of inputs. These are grouped into
two types: Excitatory and inhibitory inputs. The excitatory inputs are
distinguished from the inhibitory inputs by the addition of an arrowhead to
the former and of a small circle to the latter. This distinction of inputs
into two types does actually not relate to the concept of inputs, it is
introduced as a means to describe the internal mechanism of the neuron.

This mechanism is fully described by the so-called threshoid function

?(x) written inside the large circle symbollzing the neuron in Figure 1, ac
cording to the following convention: The output of the neuron i1s excited at
time t + 1 1f and only if at time t the number of stimulated excitatory
inputs k and the number of stimulated inhlbitory inputs £ satisfy the
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PROBABILISTIC LOGICS LN

> (It is reasonsble to require that the function o(x)
be monotone non-decreasing.) For the purposes of our discussion of this
subject it suffices to use only certain special classes of threshold func-
tions o¢(x). E. g.

relation k > ¢(£).

=0 X <h
(1) o(x) = ¥,(x) for
= o x>h

(i.e., < h inhibitions are absolutely ineffective, 2> h inhibitions are

absolutely effective), or
(2) o(x) = ¥ (x) =x +h

(1.e., the excess of stimulations over inhibitlons must be > h). We will
use %y, and write the inhibition number h (instead of Xh) inside the
large circle symbolizing the neuron. Specilal cases of this type are the
three basic organs shown in Figure 2. These are, respectively, a threshold
two neuron with two excitatory inputs,‘a threshold one neuron with two ex-
citatory inputs, and finally a threshold one neuron with one excitatory in-

put and one inhibitory input. v
—— O—
q
The sutomatas with one output and one input described by the net-

FIGURE 2
works shown in Figure 3 have simple properties: The first one's output 1is
never stimulated, the second one's output is stimulated at all times if its
input has been ever (previously) stimulated. Rather than add these automata
to a network, we shall permit lines leading to an input to be elther always
non-stimulated, or always stimulated. We call the latter "grounded" and
designate it by the symbol "F—— and we call the former "live" and des-
ignate it by.the symbol 1!!&—— S R

‘ FIGURE 3

3. AUTOMATA AND THE PROPOSITIONAL CALCULUS
3.1 The Propositional Calculus s

The propositional calculus deals with propositions Irrespective
of their truth. The set of prdpositions i1s closed under the operations of
If a 1s a proposition, then "not
(we prefer this designatlon to the more conventional
If a,b are two propositions,
are also

negation, conjunctlion and disjunctlon.
a", denoted by a”!
ones -a and ~a), 1s also a proposition.
denoted respectively by ab, a + b,

then "a and b", "a or b",
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propositions. Propositions fall into two sets, T and F, depending
vhether they are true or false. The proposition a”! 1s in T 1if and only
if a is in PF. The proposition ab is in T 1if and only if a and b
are both in T, and a+b 1sin T if and only if either a or b is
in T. Mathematically speaking the set of propositions, closed under the
three fundamental operations, is mapped by & homomorphism onto the Boolean

algebra of the two elements 1l eand 0. A proposition 1s true if and only
if 1t 1s mepped onto the element 1. For convenlence, denote by 1 the
proposition & + a! » by O the proposition &3~', where & 1is a fixed
but otherwise arbitrary proposition. Of course, 9 1s false and 1 1s
true.

A polynomial P in n variables, n > 1, 1s any formal ex-
pression obtained from Xys woey X by applying the fUndamental operations
to them a finite number of times, for example [(x1 + X ) X3 17" 1is &
polynomial. In the propositional calculus two polynomials in the same
variables are consldered equal if and only if for any cholce of the propo-
sitions X35 +++, X, the resulting two propositions are always elther both
true or both false. A fundasmental theorem of the propositional calculus
states that every polynomial P 1is equal to
. Z f ---i X-;LT ...xin,

n

i1=t1 n=H

where each of the fi - in 1s equal to 0 or 1. Two polynomials are
equal if and only if their f's are equal. In particular, for each n,
there exist exactly 2(2 ) polynomials.

3.2 Propositions, Automata and Delays

These remarks ensble us to describe the relationship between auto-
mata and the propositional calculus. Given a time delay s, there exists
a une-to-one correspondence betweeh §1nglé Gutput automata with time delay
8 and the polynomials of the proﬁosit’ion’a.l'calculus.”"l‘heh.ljinber”i’i”'of~
inputs (to be designated v = 1, ..., n) 1is equal to the number of vari-
ables. For every combination 1] =+ 1, <., in =+ 1, the coefficient
f11 .. in =1, 1f end only if a stimulation at time t of exactly those

inputs v for which 1v = 1, produces a stimilation of the output at
time t + s. ‘

DEFINITION 2: Given a polynomial P = P(x;, «++, xn) and a time delay s,
we mean by a P,s-network a network built from the three basic organs of
Figure 2, which as an automaton represents P with time delay s.

THEOREM 1: Glven any P, there exists a (unique) s* = s*(P), such that
a P,s-network exists if and only if s > 8%,

PROOF: Consider a given P. Let S(P) be the set of those s for which
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PROBABILISTIC LOGIC3

a P,s -network exlsts. If s' >s, then tying s8'-s unit-delays, as
shown in Figure 4, in serles to the output of a P,s _network produces
a P,s' -network. Hence 3(P) contains with an 3 all s' > 8. Hence if

3(P) 1is not empty, then 1t is precisely the set of all s > s*, where
a* = s*(P) 1s its smallest element. Thus the theorem holds for P 1if

8(P) 1is not empty, i.e., if the existence of at least one P,s -network
(for some st) 1s established.

FIGURE %

y inductlon over the number

Now the proof can be effected b
(counting

p = p(P) of symbols used in the definitory expression for P
each occurrence of each symbol separately).

1If p(P) =1, then P(xl, e xn) =X, (for one of the
The "trivial"™ network whilch obtains by breaking off all
input lines other then v, and taking the input line v directly to the
output, solves the problem with 8 = O. Hence s8*(P) = O.

If p(P) > 1, then P =Q ' or P =QR or P=Q+R,
p(Q), P(R) < p(P). For P = Q,'1 let the box represent a Q, 8'
work, with s' = s*(Q). Then the network shown in Figure 5 is clearly a
P,s -network, with s = st + 1. Hence s*(P) < g*(Q) + 1. For P = QR
or Q + R let the boxes ,@ represent a Q,s" -network and an R,s"
_petwork, respectively, with s" - Max(s*(Q),s*(R)). Then the network
shown in Figure 6 1is clearly & P,s -network, with P = QR or Q+ R for
h=2 or 1, respectively, and with s = 8" + 1. Hence

s*(P) < Max(s*(Q),s*(R)) + 1.

Y o=1, «.0, 1)

where
-net-

/
: H‘Jﬂ : / w-\‘ e 3

FIGURE 6

FIGURE 5

Combine the above theorem with the fact that every single output

automaton can be equivalently described — apart from its time delay 8 -—

by a polynomial P, and that the basic operations ab, & + b, a of
the propositional calculus are represented (with unit delay) by the basic
organs of Flgure 2. (For the last one, which represents ab'1, ‘cf. the

remark at the beginning of 4.1.1.) This gives:
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DEFINITION 3: Two single output automata are equivalent in the wider sense,
if they differ only in their time delays — but otherwlse the same input
stimull produce the same output stimulus (or non-stimulus) in both.

THEOREM 2 (Reduction Theorem): Any single output automaton r 1s equiva-
lent in the wider sense to a network of basic organs of Figure 2. There
exists a (unique) s* = s*(r), such that the latter network exists if and
only if its prescribed time delay s satisfles s > s*.

3.3 Universallty. General Loglcal Considerations

Now networks of arbitrary single output automata can be replaced
by networks.of basic organs of Figure 2: It suffices %o replace the unit
delay in the former system by 8 unlt delays in the latter, where 8 1is
the maximum of the s*(r) of all the single output automata that occur in
the former system. Then all deleys that will have to be matched will be
miltiples of 8, hence > 8, hence 2 s*(r) for all r that can occur
in this situation, and so the Reduction Theorem will be applicable through-
out.

Thus thls system of basic organs 1is universal: It permits the
" construction of essentially equlvalent networks to any network that can be
constructed from any system of single output automata. I.e., no redefini-
tion of the system of basic organs can extend the logical domain covered
by the derived networks.

The general asutomaton is any network of single output automata in
the above sense. It must be emphasized, that, in particular, feedbacks,
i.e., arrangements of lines which may allow cyclical stimulation sequences,
are allowed. (I.e., configurations like those shown in Figure 7. There
will be various, non-trivial, examples of this later.) The above arguments
have shown, that a limitation of the underlying single output automata to

our original baslc organs causes no essential loss of generality. The
.wdhéétion, as to which 1ogical opéf@ﬂions'd;n be eduibgiéhtl§ﬂ;;§;éégﬁgéd
(with suitable, but not a priori spécified, delays) iémhévértheiéééwhéfk“
without difficulties.

These general automata are, in particular, not immediately equiv-
alent to all of effectively constructive (intuitionistic) logles. TI.e.,
given a problem involving (a finite number of) variables, which can be
solved (identically in these variables) by effective construction, it is
not always possible to constrﬁct a general sutomaton that will produce this
solution identically (i.e., under all conditions). The reason for this is
essentially, that the memory requirements of such a problem may depend on
(actual values assumed by) the variables (i.e., they must be finite for any
specific system of values of the variables, but they may be unbounded for
the totality of all possible systems of values), while a general automaton
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cessarily has a flxed memory capaclity. I.e., a fixed

in the above sense ne
i.e., generally) a problem

general automaton can only handle (identically,

with fixed (bounded ) memory requirements.
We need not go here into the details of this question. Very

simple addenda can be introduced to provide for & (finite but) unlimited
memory capaclty. How this can be done has peen shown by A. M. Turing [(51.

Turing's anslysis loc. cit. also shows, that with such addenda general

automata become strictly equivalent to effectively constructive (intultion-
t form (i.e., general automata with

istic) loglcs. Our system in its presen
1imited memory capacity) is st11l adequate for the treatment of all prob-

lems with neurological analogles, as our gsubsequent examples will show.
(cf. also W. 3. McCulloch and W. Pitts {2].) The exact logical domain that
they cover has been recently characterized by Kleene {1]. We will return

to some of these questions in 5.1.
4. BASIC ORGANS

N
4.1 Reduction of the Basic Components

THE SIMPLEST REDUCTIONS. The previous section mekes clear the way
ons should be interpreted logically. Thus the
nt the logical functions ab,
it suffices to make the

This will be

FIGURE 7

b.1.1
in which the elementary neur
ones shown in Figure 2 respectively represe
a + b, and ab~!. In order to get b",
a-terminal of the third orgsn, as shown in Figure 8, live.
abbreviated in the following, as shown in Figure 8.

FIGURE. 8 . .
Now since ab = ((a") + (b"))—1 and a +b = ((a")(b'1))’1,
it 1s clear that the first organ among the three basic organs shown in
Figure 2 1is equivalent to a system bullt of the remaining two orgens there,
and that the same is true for the second organ there. Thus the first and

second organs shown in Figure 2 are respectively equivalent (in the wider
sense) to the two networks shown in Figure 9. This tempts one to consider

FIGURE 9




52 VON NEUMANN

a new system, in which —00— (viewed as a basic entity in its own right, anc
not an abbreviation for a composite, as Iin Figire 8), and elther the first or
the second basic organ in Figure 2, are the basic organs. They permit forming
the second or the first basic organ in Figure 2, respectively, as shown above,
as (composite) networks. The third basic organ in Figure 2 1s easlly seen to
also equivalent (in the wider sense) to a composite of the above, but, as was
served at the beginning of L.1.1 the necessary organ is in any case not this,
—00—— (cf. also the remarks concerning Figure 8), respectively. Thus either
- gystem of new basic organs permits reconstructing (as composite networks) all
(basic) organs of the original system. It is true, that these constructs have
delays varying from 1 to 3, but since unit delays, as shown 1ln Figure L, are
avalleble in either new system, all these delays can be brought up to the valu
3. Then & trebling of the unit delay time obliterates all differences.
To restate: Instead of the three original basic organs, shown again
in Figure 10, we can also (essentially equivalently) use the two basic orgens
Nos. one and three or Nos. two and three in Figure 10.

:@——::@—@

FIGURE 10

4.1.2 THE DOUBLE LINE TRICK. This result suggests strongly that one con-
alder the one remaining combination, too: The two basic organs Nos. one
and two in Figure 10, as the basls of an essentially equivalent system.

One would be inclined to infer that the answer must be negatlve:
No network built out of the two first basic orgéns of Figure 10 can be
equivalent (in the wider sense) to the last one. Indeed, let us attribute
to T and F, 1.e., to the stimulated or non-stimulated state of a line,
respectively, the "truth values" 1 or O, respectively. Keeping the
ordering 0 < 1 1n mind, the state of the output is a monotone non-decreas-

ing function of the states of the inputs for both basic organs Nos. one and

two in Figure 10, and hence for all networks built from these organs eX-
clusively as well. This, however, 1s not the case for the last organ of
“Figure 10 (nor for the 1ast“organ‘of“Figmré“?);“Irrespectively‘of delays.

Nevertheless a slight change of the underliying definitions per-
mits one to circumvent this difficulty, and to get rid of the negation (the
last organ of Figure 10) entirely. The device which effects this is of
additional methodologlcal interest, because it may be regarded as the pro-
totype of one that we will use later on in a more complicated situation.
The trick in question is to represent propositions on a double line instead
of a single one. One assumes that of the two lines, at all times preclsely
one is stimulated. Thus there will always be two possible spates of the
1line pair: The first line stimulated, the second non-stimulated; and the
second line stimulated, the first non-stimulated. We let one of these
states correspond to the stimulated single line of the original system —
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that 18, to a true proposition — and the other state to the unstimulated

gsingle line — that 1s, to a false proposition. Then the three fundamental

Boolean operations can be represented by the three first schemes shown in

(The last scheme shown in Figure 11 relates to the origilnal

Figure 11.
gystem of Figure 2.)
ab — ORGAN NO 1 OF FIGURE 2 OR 10: . P
i [aEY' = a4 F
¢« 5 2 1
ab
: 2
b i
2
a+b — ORGAN NO. 2 OF FIGURE 2 OR 10
a ! 1 ) Ced
2 fa*_g7' =l
' a+b S
b} » 2
> 2
a~'— ORGAN NO.3 OF FIGURE 10
a i a
2 2
ab~'— ORGAN NO.3 OF FIGURE 2:
a ! 2
2 1 -1
ab
. 1
b 2____/
FIGURE 11
 In these dlpgrams, a true proposition corresponds to I stim-
sponds to 1 un-

lated, 2 unstimulated, while a false proposition corre
stimilated, 2 stimulated. The networks of Figure 11, W
of the third one, have also the correct delays: Unit delay.
has zero delay, but whenever this is not wanted, it can be replaced by unit
delay, by replacing the third network by the fourth one, making 1ts al
-line live, its a2 -line grounded, and then writing a for its D.
Summing up: Any two of the three (single delay) organs of
Figure 10 — which may simply be designated ab, & + b, a~ — can be stlpu-
lated to be the basic organs, and yleld a system thet is essentially equlv-

alent to the original one.

jth the exception
The third one
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4.2 Single Baslic Organs

4.,2.1 THE SHEFFER 3TROKE. It is even possible to reduce the number of
basic organs to one, although 1t cannot be done with any of the three organs
enumerated above. We wlll, however, introduce two new organs, elther of
which suffices by itself.

The first universal organ corresponds to the well-known "Sheffer
stroke" function. Its use In this context was suggested by K. A. Brueckner
and G. Gell-Mann. In symbols, it can be represented (and abbreviated) as
shown on Flgure 12. The three fundamental Boolean operations can now be
performed as shown in Flgure 13.

g (alp) = (ab)™!

a /// a
b:;; —— (alb) b — :)————(olb)
W

FIGURE 12

ab  ORGAN NO.1 OF FIGURE 10 :
a
ab
b (o<

a+b ORGAN NO. 2 OF FIGURE 10:

a
b
‘o™ ORGAN NO.3 OF FIGURE.10: .
a ——< Z :)_____ a-!
FIGURE 13

The delays are 2, 2, 1, respectively, and in this case the com-
plication caused by these delay-relationships 1s essential. Indeed, the
output of the Sheffer-stroke is an antimonotone function of its inputs.
Hence in every network derived from 1t, even-delay outputs will be mono-
tone functlons of its inputs, and odd-delay outputs wlll be antimonotone
ones. Now ab and a + b are not antimonotone, and ab~! and a~' are
not monotone. Hence no delay-value can simultaneously accomodate in this

set up one of the two first organs and one of the two last organs.
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presented in Figure 13, both with the same delay, namely 2.

1.

.2), securing the adequacy of the system
Doubling the unit delay

Thus

Figure 10) are correctly represented,

only ') is adequate becaus

to be adequate (cf. k.1.2).

m (a,b,c) = ab+ actbc =

[gT=xe]

A1l of the examples whi
sections have had a certain property in common;
of the inputs at the left could be traced through the

ab:

a+tb:

ab and a + b

The second universal orgsn is the "mg, jority
ely designated) in Figure b,

(according to

and the new system (majority organ

(a+b)(a+c)b+c) :

——o)——n(ebe) =

————m)

m(a,b.c)

[ql=z*]

——

FIGURE 14

5.

5.1

\\.\N

FIGURE 15

LOGICS AND INFORMATION

Intultionistic Logics

e the system based on those two organs is known

ch have been described in the laqp two
in each, a stimulus of one

machine until at a
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certaln time later it came out as a stimulus of the output on the right. To
be specific, no pulse could ever return to a neuron through which it had
once passed. A system with this property 1is called circle-free by W. S.
McCulloch and W. Pitts [2]. Whlle the theory of circle-free machines 1s at-
tractive because of its simplicity, 1t 1s not hard to see that these ma-
chines are very limlted in their scope.

When the assumption of no circles in the network .1s dropped, the
situation 1s radically altered. In this far more complicated case, the out-
put of the machlne at any time may depend on the state of the inputs in the
indefinitely remote past. For example, the simplest kind of cyclic circuilt,
as shown in Figure 16, is a king of memory machine. Once this organ has
been stimulated by a, 1t remains stimulated and sends forth a pulse in b
at all times thereafter. With more complicated networks, we can construct
machines which will count, which wlll do simple arithmetilc, and which will
even perform certain unlimited inductive processes. Some of these will be
11lustrated by examples In 6. The use of cycles or feedback in automats

FIGURE 16

extends the logic of constructable machines to a large portion of intultion-
istic loglc. Not all of intultionistlc logic is so obtained, however, since
these machines are limited by their fixed size. (For this, and for the re-
mainder of this chapter cf. also the remarks at the end of 3.3) Yet, if our
automata are furnished with an unlimited memory — for example, an infinite
tape, and scanners connected to afferent organs, along with sultable efferent
organs to perform motor operations and/or print on the tape — the logic of
constructable machines becomes precisely equivalent to intuitionistic logic
(see A. M. Turing [5]). In particular, all numbers computable in the sense
of Turing can be computed by some such network.

5.2 Information

5.2.1 (GENERAL OBSERVATIONS. Our considerations deal with varying situations,
each of which contalns a certaln amount of information. It 1s desirable to
have a means of measuring that amount. In most cases of importance, this is
possible. Suppose an event 1s one selected from a finlte set of possible
events. Then the number of possible events can be regarded as a measure of
the information content of knowing which event occurred, provided all events
are a priori equally probable. However, instead of using the number n of
possible events as the measure of information, it is advantageous to use a
certain function of n, namely the logarithm. Thls step can be (heuristi-
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cally) justified as follows: If two physical systems I and II represent n
and m (a priori equally probable) alternatives, respectlvely, then union
I + II represents nm such alternatives. Now 1t is desirable that the
(numerical ) measure of information be (numerically) additive under this
(substantively) additive composition I + II. Hence some function f(n)
ahould be used instead of n, such that

(3) f(mm) = £(n) + £(m).

In addition, for n >m I represents more information than II, hence it
is reasonable to require )

() n>m implies f{(n) > f£(m).

Note, that f(n) is defined for n = 1,2, only. PFrom (3), (&) one

concludes easily, that
(s5) f(n)

for some constant C > 0. (Since f(n) is defined for n = 1,2, only,
(3) alone does not imply this, even not with a constant C = o!) Next, 1t
i1s conventional to let the minimum non-vanishing amount of informstilon,
i.e., that which corresponds to n = 2, be the unit of information — the
"bit". This means that f£(2) =1, 1l.e., C = 1/1ln 2, and so

(6) - f(n) = log n.

Clnn

n

AWV

This concept of information was successively developed by several authors
in the late 1920's and early 1930's, and finally integrated into a broader
system by C. E. Shannon [3].

5.2,2 EXAMPLES. The following simple examples give some 1llustration:

The outcome of the flip of a coin 1s one bit. That of the roll of a die 1is
21036 = 2.5 bits. A decimsl digit represents 2loglo = 3.3 bits, a letter
of the alphabet represents 2log26 = 4.7 Ybilts, a single character from a
Lbh-key, 2-setting typewriter represents 2log(hh X 2) = 6.5 bits. (In all
these we assume, for the seke of the argument, although actually unrealis-
“tically, & priori equal probability of all possible cholces.)
‘that any line or nerve fibre which can be classified as either stimulated
or non-stimilated carries precisely one bilt of information, while a bundle
of n such lines can communicate n bits. It is important to observe
that this definition is possible only on the assumption that a background
of a priori knowledge exists, namely, the knowledge of a system of a priori
equally probable events.

This definition can be generalized to the case where the possible
events are not all squally probable. Suppose the events are known to have
probabilitiles Pys Pps --vs Py Then the information contained in the know-
ledge of which of these events actually occurs, 1s defined to be

n
(7) H =-§;- Py 2log p; (bits).
=1

It follows -
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Incase P, =D, = -++ =Py = 1/n, this definition is the same as the pre-
vious one. This result, too, was obtained by C. E. Shannon {31, although
it is implicit in the earller work of L. Szilard {L4].

An important observation about this definition is that it bears
close resemblance to the statistical definition of the entropy of a thermo-
dynamical system. If the possible events are just the known possible states
of the system with thelr corresponding probabilities, then the two defini-
tions are identical. Pursuing this, one can construct a mathematical theory
of the commmication of information patterned after statistical mechanics.
(See L. Szilard (4] and C. E. Shannon [3]1.) That information theory should
thus reveal itself as an essentlally thermodynamical discipline, 1s not at
all surprising: The closeness and the nature of the connectlon between in-
formation and éntropy 1s inherent in L. Boltzman's classical definition of
entropy (apart from a constant, dimensional factor) as the logarithm of the
"configuration number." The "configuration number" 1s the number of a priori
equally probable states that are compatible with the macroscopic description
of the state — 1.e., 1t corresponds to the amount of (miscroscoplc) informa-
tion that 1s missing in the (macroscopic) description.

6. TYPICAL SYNTHESES OF AUTOMATA
6.1 The Memory Unit

One of the best ways to become familiar with the ideas which have
Jbeen introduced, is to study some concrete examples of simple networks.
This section is devoted to a consideration of a few of them.

‘ The first example will be constructed with the help of the three
basic organs of Flgure 10. It 1s shown in Figure 18. It is a slight re-
finement of the primitive memory network of Figure 16.

This network has two inputs a and D and one output x. At
time t, x 1is stimulaEed if and only if a has been stimulated at an

A

earliér time, and no sﬁiﬁulation of b has occurred since then. Roughly  {

spesking, the machine remenmbers whether a or b was the last input to be
stimilated. Thus x 1s stimulated, if 1t has been stimulated immedlately
before — to be designated by x' — or if a has been stimulated immediately
before, but b has not been stimilated immediately before. This is ex-
pressed by the formula X = (x' + a)b'1, i.e., by the network shown in
Figure 17. Now x should be fed back into x' (since x' 1s the

X" Y

a a - '
— X X

b b

FIGURE 17 FIGURE 18
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immediately preceding state of x). This gives the network shown in
Figure 18, where thils branch of x 1s designated by y. However, the de-
lay of the first network is 2, hence the second network's memory extends
over past events that lie an even number of time (delay) units back. I.e.,
the output x 1s stimilated if and only if &a has been stimulated at an
earller time, an even number of unlts before, and no stimulation of b has
occurred since then, alsc an even number of units before. Enumerating the
time units by an integer t, 1t is thus seen, that this network represents
a separate memory for even and for odd t. For each case it 1s a simple
"off-on", 1.e., one bilt, memory. Thus 1t 1s in its entirety a two bit
memory . .

. 6.2 Scalers
4 In the examples that follow, free use will be made of the general
family of basic organs considered in 2.3, at least for all ¢ = Xy (cf. (2)
there). The reduction thence to elementary organs in the original sense is
secured by the Reduction Theorem in 3.2, and in the subsequently developed
1nterpretatiohs, according to section 4, by our considerations there. It
1s therefore unnecessary to concern ourselves here with these reductions.
The second example is a machine which counts input stimuli by
two's. It will be called & "scaler by two"™. Its dlagram is shown in

Figure 19.

FIGURE 19

M -+ - Dy adding auother input;—-the repressor; the above mechanism can
be turned off at will. The dlagram becomes as shown in Figure 20. The re-
sult will be called a "scaler by two" with a repressor and denoted as in-
dicated by Figure 20.

FIGURE 20
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In order to obtaln larger counts, the "scaler by two" networks can
be hooked in series. Thus a "scaler by 2" 1 shown in Figure 21. The
use of the repressor is of course optional here. "Scalers by m", where
m 1is not necessarily of the form 2n, can also be constructed with little
difficulty, but we will not go into this here.

NO. 1 NO.2 NO. 3

{ ———{ Sc 2 > Sc2p --— —{Sc 2

) : T

sc 2N"p—m— &

I

r
FIGURE 21

6.3 learning

Using these "scalers by 2 (1.e., n-stage counters), 1t 1s
possible to construct the followlng sort of "learning device”. This net-
work has two inputs a and b. It 1s designed to learn that whenever a
1s stimulated, then, in the next instant, b will be stimulated. If this
occurs 256 times (not necessarily consecutively and possibly with many ex-
ceptions to the rule), the machine learns to anticipate a pulse from Db
one unit of time after a has been actlve, and expresses this by being
stimulated at 1ts b output after every stimulation of &a. The dlagram is
-shown in Figure 22. {The "cxpression" described above will-be made effec--.-
tive in the desired sense by the network of Figure 24, cf. its discussion
below).

This 1s clearly learning in the crudest and most inefficient way,
only. With some effort, it 1s possible to refine the machine so that, first,
it will learn only if it receives no counter-instances of the pattern "b
follows a" during the time when 1t 1s collecting these 256 instances; and,
second, having once learned, the machine can unlearn by the occurrence of
64 counter-examples to "b follows a" if no (positive) instances of this
pattern interrupt the (negative) serles. Otherwise, the behaviour is as
before. The diagram i1s shown in Figure 23. To meke thils learning effective,
one has to use x to gate a 80 as to replace b at its normal functions.
Let these be represented by an output c¢. Then this process 1s mediated by
the network shown in Figure 24. This network must then be attached to the
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FIGURE 24

7. THE ROLE OF ERROR

Exemplification wit

h the Help of the Memory Unlt

In all the previous considerations,

basic components were faultless in their performance .

clearly not a very realistic one.

ones are statistically subject to fallure,

animsl neurons too. Hence it is desirable to

reality as a basis for our constructlions,
The simplest assumption concerning errors 1is

this:

61

it has been assumed that the
This assumption 1s
Mechanical devlices as well as electrical
and the same 1s probably true for
find a closer approximation to
end to study this revigsed situation.
With every basic organ 1s




§AL&
& PO

WA
o A

62 VON NEUMANN

assoclated & positive number e such that in any operation, the organ will
fall to function correctly with the (precise) probabllity e. This malfunc-
tioning 1s assumed to occur statistically independently of the general state
of the network and of the occurrence of other malfunctions. A more general
assumption, which is a good deal more realistic, 1s this: The malfunctions
are statlstically dependent on the general state of the network and on each
other. In any particular state, however, a malfunctlon of the basic organ
in question has a probability of malfunctioning which is < e. For the pres-
ent occasion, we make the first (narrower and simpler) assumption, and that
with a single e: Every neuron has statistically Independently of all else
exactly the probability e of misfiring. Evidently, it might as well be
supposed e < 1/2, since an organ which consistently misbehaves with a
probability > 1/2, 1is just behaving with the negative of 1its attributed
function, and a (complementary) probabllity of error < 1/2. Indeed, if the
organ is thus redefined as its own opposite, 1ts e (> 1/2) goes then over
into t - ¢ (< 1/2). In practice it will be found necessary to have ¢ a
rather small number, and one of the objectives of thls investigation is to
find the limits of this smallness, such that useful results can still be
aqhieved.

It is important to emphasize, that the difficulty Introduced by
allowing error is not so much that incorrect information will be obtained,
but rather that irrelevant results will be produced. As a simple example,
consider the memory organ of Figure 16. Once stimulated, this network .
should continue to emit pulses at all later times; but suppose it has the
probabllity e of making an error. Suppose the organ recelves a stimula-
tion at time t and no later ones. Let the probability that the organ is
stlll excited after s cycles be denoted Pg+ Then the recursion formula

Parl =1 - ¢€) Pq +e (1 - ps) = Pz ~<pPs +€"€:‘/C’ts‘
fori = Ps -2ep, +6

is clearly satisfled. Thils can be wrltten Psri-i = ps - Z2ps e -

- YR
(gay - 1/2)= (1 - 26) (og - 1/2) = felmied-2(1-2€)
and so
S -2e¢8
(8) I 1/2 ='(1 - 2¢) (po— 1/2) ~ e (po- 1/2)
for small e. The quantity Py - 1/2 can be taken as a rough measure of

the amount of discrimination in the system after the s -th cycle. Ac-
cording to the above formula, Py 1/2 as 8 9 » — a fact which is ex-
pressed by saylng that, after a long time, the memory content of the machine
disappears, since 1t tends to equal likelihood of being rigit or wrong, i.e.,
to irrelevancy.

- \ Q@ _=2es
Qv (1-22)% = | omd dw € = O

‘”’ g er]

@0

-2¢ _2¢S
_ 25

=

Sr o,
-Gz o ~SU-26)°(-2) o< 4 -
= DT : '}“.{‘ 3 X -yl
& éS: :\; l Q.xm.-t ANSRA ‘3%’»6’
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o 2ce Q\uﬁmﬁ?u&

£%0 /



PROBABILISTIC LOGICS

7.2 The General Definition
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This example is typical of meny. In a complicated network, with
long stimulus-response chains, the probability of errors in the basic organs
mekes the response of the final outputs unrelisble, 1.e., irrelevant, unless
some control mechanism prevents the accumulation of these basic errors. We
will consider two aspects of this problem. Let the data be these: The func-
tion which the automaton is to perform 1s given; a basic organ 1s glven
(Sheffer stroke, for example); a number e (< 1/2), which is the probabll-
1ty of malfunctioning of this basic organ, is prescribed. The first question
is: Given B > 0, can a corresponding automaton be constructed from the
given organs, which will perform the desired function and will commit an
error (in the final result, i.e., output) with probability < 82 How small
can 5 be prescribed? The second question i1s: Are there other ways to
interpret the problem which will allow us to improve the accuracy of the

result?

7.3 An Apparent Limitation

in partial answer to the first question, we notlce now that 8,
the prescribed maximum allowable (final) error of the machine, must not be
less than e. For any output of the sutomaton is the immediate result of
the operation of a single final neuron and the reliability of the whole
system cannot be better than the reliability of this last neuron.
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7.4 The Multiple Line Trick

In answer to the second gquestion, a method willl be analyzed by
which this threshold restriction 38 > e can be removed. In fact we will
be able to prescribe & arbiltrarily small (for suitable, but fixed, €).
The trick conslsts in carrying all the messages simultaneously on a bundle
y of N lines (N 1s a large integer) instead of just a single or double = . e
strand as in the automata described up to now. An sutomaton would then be
represented by a black box wilth several bundles of inputs and outputs,. as
shown in Figure 25. Instead of requiring that all or none of the lines of
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FIGURE 25
the bundle be stimulated, a certain critical (or fiduciary) level A 1s set:
0 <A< 1/2. The stimulation of >(1 - AN 1lines of a bundle is interpreted
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as a positive state of the bundle. The stimulation of < A N 1lines 1s
considered as a negative state. All levels of stimulation between these
‘values are intermediate or undecided. It will be shown that by suiltably
constructing the automaton, the number of lines deviating from the "cor-
rectly functioning” majorities of their bundles can be kept at or below the
critical level A N (wlth arbitrarily high probability). Such a system of
construction is referred to as "multiplexing". Before turning to the multl-
plexed automata, however, it is well to consider the ways in which error
can be controlled in our customary single line networks.

8. CONTROL OF ERROR IN SINGLE LINE AUTOMATA
8.1 The Simplified Probability Assumption

In 7.3 1t was indicated that when dealing with an automaton in
which messages are carried on a single (or even a double) line, and in which .
the components have a definite probability e of making an error, there is
a lower bound to the accuracy of the operation of the machine. It will now
be shbwn'that it is nevertheless possible to keep the accuracy within reason-
able bounds by suitably designing the network. For the sake of simplicity
only circle-free automata (cf. 5.1) will be considered in this section, al-
though the conclusions could be extended, with proper safeguards, to all
automata. Of the varlous essentially equlvalent systems of basic organs
(cf. section &) 1t is, in the present instance, most convenlent to select
the ma jority organ, which is shown in Figure 14, as the baslc organ for our
networks. The number e (0 < € < 1/2) will denote the probability each
ma jority organ has for melfunctioning.

8.2 The Majority Organ

We first investigate upper bounds for the probability of errors as
“impulses pass through a single ma jorlty orgah of & hetwork. Three lines con-
stitute the inputs of the majority organ. They come from other organs or
are external inputs of the network. Let n1; P n3 be three numbers
(o < 4 < 1), which are respectively upper bounds for the probabllities
that these lines will be carrying the wrong impulses. Then e + LR PO n3
is an upper bound for the probability that the output line of the majority
organ will act improperly. This upper bound 1is valid in all cases. Under
proper circumstances it can be improved. In particular, assume: (1) The
probabilities of errors in the input lines are independent, (ii) under proper
functioning of the network, these lines should always be in the same state of
exclitation (either all stimulated, or all unstimulated). In this latter case
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is an upper bound for at least two of the input lines carrying the wrong
impulses, and thence
e'=(1—e)9+e(1—9)~=e+(1—2e)9

is a smaller upper bound for the probability of failure in the output line.
If all n4 <7, then e + 37 1s a general upper bound, and

e + (1 - 2¢) (3q2 - 2q3) < €+ 3n2 is an upper bound for the speclal case.
Thus 1t appears that in the general case each operation of the automaton in-
creases the probabllity of error, since e + 37 >n, SO that if the serial
depth of the machine (or rather of the process to be performed) is very
great, 1t will be impractical or impossible to obtalin any kind of accuracy.
In the speclal case, on the other hand, this is not necessarlly so -

€ + 3ﬂ2 < n 1is possible. Hence, the chance of keeping the error under con-
trol 1lies in maintaining the conditions of the speclal case throughout the

construction. We will now exhiblt a method which achieves this.

8.3 Synthesis of Automata

8.3.1 THE HEURISTIC ARGUMENT. The basic 1idea in this procedure 1is very
gimple. Instead of running the incoming data into a single machine, the
seme information is simultaneously fed into a number of ldentical machines,
and the result that comes out of & majority of these machines 1s assumed to
be true. It must be shown that this technique can really be used to control
error. ’ :

Denote by O the given network (assume two outputs in the specific
instance picture in Figure 26)., Construct O in triplicate, labeling the
coples 01, 02, 03 respectively. Conslder the system shown in Figure 26,

FIGURE 26

For each of the final majority orgens the conditions of the special
case considered above obtain. Consequently, 1f 1 1s an upper bound for
the probability of error at any output of the original network 0, then

(9) n* = e+ (1 - 2¢) (3% - 2n3) = £ ()

is an upper bound for the probability of error at any output of the new net-
work O#*. The graph is the curve 1* =’fe(“)’ shown in Figure 27.
Consider the intersections of the curve with the diagonal n* = 73

First, n = 1/2 1is at any rate such an intersection. Dividing g1 - f_ ()
2((1 - 2€)q2 - (1 - 2e)y + €), hence the other inter-

by g - 1/2 glves
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sections are the roots of (1 - 2e)q2 - (1 ~2¢e)y +e=0, 1.e.,

1 1 - b€
n = 5'(1 L A - v )
I.e., for e > 1/6 they do not exist (being complex (for e > 1/6) or
=1/2 (for e = 1/6)); while for e < 1/6 they are 4 = Ng» 1 - ngy, where

1 ’VI—EG 2
(10) T]O= 5 (1— T———E)=€+3€ + ..

For n =0; n* = € >n. This, and the monotony and cpntinuity of 1% = fe(n)
therefore imply:

First case, e >1/6: 0 <1 < 1/2 implies 17 < n* < 1/2;

% <n <1 implies 1/2 < g* < 7,

Second case, e < 1/6: 0<n< N, dmplies 1 < 9% < gt

N, << 1/2 implies Ny < n* < 1 1/2< <1 - 1, implies

< 1% <1 - 53 1 -1, << 1 implies 1 - My < n* < 1.

Now we must expect numerous successive occurrences of the situa-
tion under consideration, if it Is to be used as a baslc procedure. Hence
the 1terative behavior of the operation n - n* = fe(“) i1s relevant. Now
it 1s clear from the above, that in the first case the successive iterates
of the process in question always converge to 1/2, no matter what the
original =n; while in the second case these iterates converge to us if
the original n < 1/2, and to 1 - 1, 1f the original n > 1t/2.

In other words: In the first case no error level other than
n ~ 1/2 can maintain itself in the long run. I.e., the process asymptoti-
cally degenerates to total lrrelevance, like the one discussed in 7.1. In
the second case the error-levels n ~ 1, and g ~ 1 - 1, Will not only
maintain themselves in the long run, but they represent the asymptotic be-
havior for any original 4 < 1/2 or n >1/2, respectively.

These arguments, although heuristic, make it clear that the second
case alone can be used for the desired error-level control. I.e., we must
require e < 1/6, 1l.e., the error-level for a single basic organ function
must be less than ~'16%. The stable, ultimate error-lesvelshould then be
o (we postulate, of course, that the start be made with an error-level
n < 1/2). o 1s small If ¢ 1is, hence e must be small, and so

2
=€ + 3€ + ...

(1)

This would therefore glve an g}pimate error-level of ~ 10% (i.e., Ny ~ .1)
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for a single basic organ function error-level of ~ 8% (L.e. € ~ .08).

8.3.2 THE RIGOROUS ARGUMENT. To meke this heuristic argument binding, 1t
would be necessary to construct an error controlling network P* for any
so that all bassic organs in P* are so connected as to
ma jority organ, &as discussed above.
and it will therefore be necessary to
although its general pattern will be

given network P,
put them into the gspeclal case for a
This will not be uniformly possible,
modify the above heuristic argument,

maintained.

It is, then desired, to f£ind for any glven network P an essentially
which 1s error-safe in some suitable sense, that con-
We will define this as meaning, that
to one of P) the (separate)
<My The value

equivalent network P¥,
forms with the ideas expressed so far.
for each output line of P* (corresponding
probablility of an incorrect message (over this 1line) is
of n will result from phe subsequent discussion.

The construction will be an induction over the longest serial

chain of basic orgsns in P, say u = n(P).

Consider the structure of P. The number of 1ts inputs 1 and
outputs ¢ 1s arbitrary, but every output of P must either come from a
basic orgen in P, or directly from an input, or from a ground or live
gource. Omit the first mentioned basic organs from P, as well as the out-
puts other than the first mentioned ones, and designate the network that 1s

left over by Q. This is schematically shown in Figure 28. (Some of the
pe split lines coming from a single

apparently separate outputs of Q may
one, but this is irrelevant for what follows.)

FIGURE 28

If Q 1is void, then there)is nothing to prove; let therefore Q

be non-void. Then clearly p(Q) = n(P) - 1.
Hence the induction permits us to assume the existence of a net-

work Q* which 1s essentially equivalent to Q, and has for each output
a (separate) error-probability < n,.

We now provide three coples of Q*:
P* as shown in Figure 29. (Instead of drawing the, rather complicated, con-
nections across the two dotted areas, they are indicated by attaching identl-
cal markings to endings that should be connected.)

Now the (separate) output error-probabilities of Q* are (by jn-
ductive assumption) <1, The majority organs in the first column in the
above figure (those without a l:]) are so connected as to belong into the

Qf1, sz, Qf3, and construct
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special case for a majority organ (cf. 8.2), hence their outputs have (sep-
arate) error-probabilities < fe(n1). The majority organs in the second

column in the above figure (those with & EJ)
thelr (separate) error-probabilities are <€+ 3 fe(n1).

b
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ep- ) Consequently the inductive step succeeds, and therefore the at-
: tempted inductive proof is binding, if
ence
(12) e+ 30 (1)) <0y
b . : 8.4 Numerical Evalustion
Substituting the expression (9) for fe(n) into condition (12)
glves
be + 31 - 2¢)(31% - 213) < ny,
i.e.,
3 2 1 2¢
¢ T‘1"%"1-" — 2¢€ n1—3l1—§€izo'
L '
Clearly the smallest n, > 0 fulfilling this condition is wanted. Since
ﬁ » the left hand side 1s < o for n, <0, this means the smallest (real, and
hence, by the above, positive) root of
3 3 .2 1 2¢
(13) R S o T 16 A Bl
We Ymow from the preceding heuristic argument, that e < 1/6 will be neces-
sary — but actually even more mist be required. Indeed, for n, = 1/@ the
left hand side of (13) is = - (1 + €) /(6 - 12¢) <0, hence a significant
| and acceptable 1, (1.e., an 1,y < 1/2), can be obtained from (13) only
if it has three real roots. A simple calculation shows, that for e = 1/6
only one real root exists 1, = 1.h25. Hence the limiting e calls for
the existence of a double root. Further calculation gshows, that the double
root in questlon occurs for € = .0073, and that its value is 1, = .060.

Consequently € < .0073 1s the actual requirement, l.e., the error-level
of a single basic organ function must be < .73%. The stable, ultimate
error-level is then the smallest positive root 1, of (13). n, 1is small
if ¢ 1s, hence ¢ must be small;and-so-(from.{1.3).).

ny = lbe + 152¢% + .

It is easlly seen, that e.g. an ultimate error level of 2% (1.e., N = .02)
calls for a single baslic organ function error-level of 419 (L.e., € = .00k1).

This result shows that errors can be controlled. But the method
of construction used in the proof about threefolds the number of basic organs
in P* for an increase of w(P) by 1, hence P* has to contain about
3“(P) such organs. Consequently the procedure 1s impractical.

The restriction ¢ < .0073 has no absolute significance. It .
could be relaxed by iterating the process of triplication at each step. The
inequallty e < 1/6 1s essentisl, however, slnce our first argument showed,
that for ¢ > 1/6 even for s basic organ in the most favorable situatlon
(namely in the "special” one) no interval of improvement exlsts.
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9. THE TECHNIQUE OF MULTIPLEXING
9.1 General Remarks on Multiplexing

The general process of multiplexing in order to control error was
already referred to in 7.4. The messages are carried on N 1lines. A posi-
tive number A(< 1/2) 1s chosen and the stimulation of >(1 - A)N 1lines
of the bundle is interpreted as a positive message, the stimulation of
< AN lines as a negative message. Any other number of stimulated lines is
interpreted as malfunction. The complete system must be organized in such
& manner, that a malfunction of the whole automaton cannot be caused by the
malfunctioning of a single component, or of a small number of components,
but only by the malfunctioning of a large number of them. As we will see
later, the probability of such occurrences can be made arbltrarily small
provided the number of lines in each bundle 1is made sufficiently great.

All of section 9 will be devoted to a description of the method of con-
‘structing multiplexed automata and its discussion, without consldering the
Posslbllity of error in the baslc components. In section 10 we will then
introduce errors in the basic components, and estimate their effects.

9.2 The Majority Organ

9.2.1 THE BASIC EXECUTIVE ORGAN. The first thing to consider is the method
of constructing networks which will perform the tasks of the basic organs
for bundles of inputs and outputs instead of single lines.

A simple example will make the process clear. Consider the prob-
lem of constructing the analog of the majority organ which will accomodate
bundles of five lines. This is easily done using the ordinary majority
organ of Figure 12, as shown in Figure 30. (The connections are replaced

by suitable markings, in the same way as in Figure 29.)

FIGURE 30 )
9.2.2 THE NEED FOR A RESTORING ORGAN. It is intuitively clear that if

almost all lines of two of the input bundles are stimilated, then almost
all lines of the output bundle will be stimulated. Similarly if almost
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none of the lines of two of the input bundles are stimulated, then the
mechanism will stimulate almost none of its output lines. However, another
fact is brought to light. Suppose that a critical level A = 1/5 1s set
for the bundles. Then if two of the input bundles have 4 lines stimulated
while the other has none, the output may have only 3 lines stimulated. The
same effect prevalls in the negative case. If two bundles have just one
Input each stimulated, while the third bundle has all of its inputs stimu-
lated, then the resulting output may be the stimulation of two lines. 1In
other words, the relative number of lines in the bundle, which are not in
the ma jorlty state, can double in passing through the generalized ma jority
system. A more careful analysis (similar to the one that will be gone into
in more detall for the case of the Sheffer organ in 10) shows the following:
If, in some situation, the operation of the organ should be governed by a
two-to-one majority of the input bundles (i.e., 1f two of these bundles are
both prevalently stimulated or both prevalently non-stimulated, while the
third one is in the opposite condition), then the most probable level of
the output error will be (approximately) the sum of the errors in the two
governing input bundles; on the other hand, in an operatlon in which the
organ 1s governed by & unanimous behavior of its input bundles (il.e., if
all three of these bundles are prevalently stimulated or all three are preva-
lently non-stimulated), then the output error will generally be smaller than
the (maximum of the) input errors. Thus in the significant case of two-to-
one me jorization, two significant inputs may combine to produce a result
lying in the intermediate region of uncertain information. What 1s needed
therefore, is a new type of organ which will restore the original stimula-
tlon level. In other words, we need a network having the property that, with
a falrly high degree of probability, it transforms an input bundle with a
stimulatlon level which 1s near to zero or to one into an output bundle with
stilmilation level which 1s even closer to the corresponding extreme.

Thus the multiplexed systems must contain two types of organs. The

- first-type 1s the executive oirgan which performs the desired basic-operationg.. .- . -

on the bundles. The second type  is an organ which restores the stimulation- .
level of the bundles, and hence erases the degradation caused by the execu-
tive organs. This situation has 1its analog in many of the real automata

which perform loglically complicated tasks. For example in electrical circuilts,
some of the vacuum tubes perform executive functions, such as detection or
rectificatlon or gatelng or coincidence-sensing, while the remainder are as-
signed the task of amplification, which is a restorative operation.

9.2.3 THE RESTORING ORGAN -

9.2.3.1 CONSTRUCTION. The construction of a restoring organ is quite éimple
in principle, and in fact contalned in the second remark made in 9.2.2. In a
crude way, the ordinary majorlty organ already performs this task. Indeed in
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the simplest case, for a bundle of three lines, the majority organ has pre-
cisely the right characteristics: It suppresses a single incoming impulse
as well as a single Incoming non-impulse, 1.e., it amplifies the prevalence
of the presence as well as of the absence of Impulses. To display this
tralt most clearly, it suffices to split its output line into three lines,
as shown in Figure 31.
Now for large bundles, in the sense of the
(EE},:<: remark referred to above, concerning the reduction
of errors in the case of a response induced by a
unanimous behavior of the input bundles, 1t is pos-
FIGURE 31 sible to connect up majority organs in parallei

and thereby produce the desired restoration. However, it 1s necessary to
assume that the stimulated (or non-stimulated) lines are distributed at ran-
dom in the bundle. Thils randomness must then be maintained at all times.
The principle 1s illustrated by Figure 32. The "black box" U 1s supposed
to permute the lines of the input bundle that pass through it, so as to re-
store the randomness of the pulses in 1ts lines. This is necessary, since
to the left of U the input bundle consists of a set of triads, where the
lines of each triad originate in the splitting of a single line, and hence
are always all three in the same condition. Yet, to the right of U the
lines of the corresponding triad must be statistlcally independent, in order
to permit the application of the statistical formula to be given below for
the functioning of the majority organ into which they feed. The way to se-
lect such a "randomizing"” permutation will not be considered here — it is
intultively plausible that most "complicated" permutations will be sulted
for this "randomizing" role. (Cf. 11.2.)

9.2.3.2 NUMERICAL EVALUATION. If oaN of the N 1Incoming lines are stimu-
lated, then the probabllity of any majorlty organ being stimulated (by two
or three stimulated inputs) is

(11;) S o 3c¢_2 R é_a3i ) g(a»)

Thus approximately (i.e., with high probabllity, provided N 1s large)
a*N outputs will be excited. Plotting the curve of a* against «, as
shown in Figure 33, indicates clearly that this organ will have the desired
characteristics:

This curve intersects the diagonal a* = a three times: For
a =0, 1/2, 1. 0<a<1/2 implies O <a* <a; 1/2 <a <1 implies
a <a* <1. I.e., successlve lterates of thls process converge to 0 1if
the original a < 1/2 and to 1 1if the original a >1/2.

In other words: The error levels a ~ 0 and o ~ 1 willl not only
maintailn themselves in the long run, but they represent the asymptotic be-
havior for any original a < 1/2 or a > 1/2, respectively. Note, that
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because of g(1 - a) = 1 - g(a) there 1s complete symmetry between the
a < 1/2 reglon and the a > 1/2 region. *
a

20—

—

////iza@—

FIGURE 33

FIGURE 32

The process o - a* thus brings every a nearer to that one of
to which it was nearer originslly. This 1s precisely that pro-
cess of restoration, which was seen in 9.2.2 to be necessary. I.e., one or
more (successive)applications of this process will have the required restor-
ing effect.

Note, that this process of restoration is most effective when
a - a* = 2a3 - 3a2 + ¢ has its minimum or maximum, i.e., for
62 - 6a + 1 = 0o, l.e., for a = (3 :.Jé)/6 = .788, .212. Then
¢ - a* =¥ .096. I.e., the maximum restoration is effected on error levels
at the distance of 21.2¢ from 0% or 1004 — these are improved (brought

nearer) by 9.6%.

9.3 Other Basic Organs

We have so far assumed that the basic components of the construction
are majority organs. From these, an asnalog of the majority organ — one which
picked out a majority of bundles instead of a majority of single lines — was
constructed. Since this, when viewed as a baslc organ, is a universal orgen,
these considerations show that it 1s_at least theoretically possible to con-
struct any network with bundles instead of single lines. However there was
no necessity for starting from majorlity orgens. Indeed, any other basic
system whose universality was established in section 4 can be used instead.
The simplest procedure in such a case 1s to construct an (essential) equiva-
lent of the (single line) majority organ from the given baslc system
(cf. 4.2.2), and then proceed with this composite majority organ in the same
way, as was done above with the basic majority organ.

Thus, if the basic organs are those Nos. cne and two 1n Figure 10
(cf. the relevant discussion in 4.1.2), then the basic synthesis (that of the
na jorlty organ, cf. above) is immediately derivable from the introductory
formila of Figure 1h4.
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9.4 The Sheffer Stroke

9.4.1 THE EXECUTIVE ORGAN. Similerly, it 1s possible to construct the
entire mechanism starting from the Sheffer organ of Figure 12. In this case,
however, it is simpler not to effect the passage to an (essential) equiva-
lent of the majority organ (as suggested above), but to start de novo. Actu-
ally, the same procedure, which was seen above to work for the ma jority organ, |
works mutatis mutandls for the Sheffer organ, too. A brief description of
the direct procedure‘in this case is given in what follows:

Again, one beglns by constructing a network which will perform the
task of the Sheffer organ for bundles of inputs and outputs instead of single
lines. This is shown in Flgure 34 for bundles of five wires. (The connect-
ions are replaced by sultable markings, as in Filgures 29 and 30.)

It is intultively clear that if almost all lines of both input
bundles are stimulated, then almost none of the lines of the output bundle
will be stimulated. Similarly, 1f almost none of the lines of one input
bundle are stimulated, then almost all lines of the output bundle will be
stimulated. In addition to this oversll behavior, the following detalled
behavior is found (cf. the detailled consideration in 10.4). If the condition
of the organ 1s one of prevalent non-stimilation of the output bundle, and
hence 1s governed by (prevalent stimulationof ) both input bundles, then the
most probable level of the output error will be (approximately) the sum of
the errors in the two governing input bundles; if on the other hand the con-
dition of the organ is one of prevalent stimulation of the output bundle,
and hence 1s governed by (prevalent non-stimilation of ) one or of both input
bundles, then the output error will be on (approximately) the same level as
the input error, if (only) one input bundle is governlng (i.e., prevalently
non-stimilated), and it will be generally smaller than the input error, if
both input bundles are governing (i.e., prevalently non-stimulated). Thus
two significant inputs may produce a result lying in the intermediate zone
of uncertain information. Hence a restoring organ (for the error level) is
again needed; in-additicn to~the executlve organ:” - : e -

9.4.2 THE RESTORING ORGAN. Agaln, the above indicates that the restoring
organ can be cbtained from a speclal case functioning of the standard execu-
tive organ, namely by obtaining all inputs from a single input bundle, and
seeing to it that the output bundle has the same size as the original input
pundle. The principle 1is i{llustrated by Figure 35. The "plack box"™ U 1is
again supposed to effect a sultable permutation of the lines that pass
through it, for the same reasons and in the same menner as in the correspond-
ing situation for the ma jority organ (cf. Figure 32). I.e., it must have a

"rgndomizing" effect.
If oN of the N incomlng lines are stimilated, then the probab-

111ty of any Sheffer organ being stimulated (by at least one non-stimulated
input) is
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(15) ot =1 - a® = hla).

Thus approximately (i.e., with high probability provided N 1is large)

~ a'N outputs will be excited. Plotting the curve of af against o dis-
closes some characteristic differences agalnst the previous case (that one
of the majorlity organs, l.e., a* = 3a2 - 2a3 = gla), cf. 9.2.3), which
require further discussion. This curve is shown in Figure 36. Clearly at
is an antimonotone function of a, 1i.e., instead of restoring an excltation
level (1.e., bringing it closer tc 0 or to 1, respectively), it transforms
it into its opposite (i.e., it brings the neighborhood of 0 close to 1,
and the neilghborhood of 1 close to 0). In additlon it produces for «
nesr to 1 an a less near to 0 (about twice farther), but for a near
to 0 an o much néarer to 1 (second order !). All these circumstances
suggest, that the operation should be iterated.

Let the restoring organ therefore consist of two of the previously
plctured orgens in series, as shown in Figure 37. (The "black boxes" U1, U2
play the same role as their analog U plays in Figure 35.) This organ trans-
forms an input excltation level oN into an output excltation level of ap-

proximately (cf. above) ~ ot where

ottt =1 - (1 - a®)? = n(h(e)) = ka),

l.e.,

++ b

(16) att = 20% - af = k(a).

This curve of o' against o 1s shown in Figure 38. This curve 1s very
similar to that one obtained for the majority organ (i.e.,

a* = 3a2 - 2a3 = g(a), ef. 9.2.3). Indeed: The curve intersects the dilag-
onal o't a 1in the interval 0 < a <1 three times: PFor a = O, oy 1,
where o« = (- 1 +4¥5)/2 = .618. (There is a fourth Intersectlon

o)
ax =~-1- aQ = - 1.618, but this is irrelevant, since it is not in the
interval 0 <a < 1.) 0 <a <a, implies O < ot <a; @) <a <1 implies
. — :
a<a < 1.

In other words: The role of the error levels o ~ O and a ~ 1
is precisely the same as for the ma jority organ (cf. 9.2.3), except that the
1imit between thelr respective areas of control lies at a = &y instead of
at o =1/2. I.e., the process « > att brings every o« nearer to either
0 or to 1, but the preference to 0 or to 1 1s settled at a discrimi-
nation level of 61.84 (i.e., ao) instead of one of so% (i.e., 1/2).
Thus, apart from a certain asymmetric distortion, the organ behaves like 1ts
counterpart considered for the ma jority organ — l1.e., it is an effective
restoring mechanism.
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10. ERROR IN MULTIPIEX SYSTEMS QLD

10.1 General Remarks

In section 9 the technique for constructing multiplexed automata
was described. However, the role of errars entered at best intuitively and
sumarily, and therefore 1t has still not been proved that these systems
will do what 1s claimed for them — namely control error. Section 10 1is
devoted to a sketch of the statistical analysis necessary to show that, by
using large enough bundles of lines, any desired degree of accuracy (1.e.,
as small a probability of malfunction of the ultimate output of the network
as desired) can be obtained with a multiplexed automaton.

For simplicity, we will only consider automata which are con-
structed from ‘the Sheffer organs. These are easier to analyze since they
involve only two inputs. At the same time, ths Sheffer organ is (by itself)
universal (cf. ¥.2.1), hence every automaton 1s essentially equivalent to
a network of Sheffer organs.

Errors in the operation of an automaton arise from two sources.
First, the indlvidual basic organs can make mistakes. It will be assumed
as before, that, under any circumstance, the probability of this happening
is just e. Any operation on the bundle can be considered as a random
sampling of size N (N Ybeing the size of the bundle). The number of errors
committed by the individual basic organs in any operation on the bundle 1is
then a random variable, distributed approximately normally with mean eN
and standard deviation Je(1 - ¢)N. A second source of failures arises be-
cause in operating with bundles which are not all in the seme state of
stimilation or non-stimulation, the possibility of miltiplying error by un-
fortunate combinations of lines into the basic (single line) organs 1s al-
ways present. This interacts with the statistical effects, and in particular
with the processes of degeneration and of restoration of which we spoke in

9.2.2, 9.2.3 and g.k.2. e -
L

10.2 The Distribution of the Response Set Size

10.2.1 EXACT THECRY. In order to glve a statistical treatment of the prob-
lem, consider the Figure 3k, showing a network of Sheffer organs, which was
discussed in 9.k.1. Let again N be the number of lines in each (input or
output) bundle. Let X Dbe the set of those 1=1, ..., N for which line
No. 1 in the first input pundle is stimulated at time t; let Y be the
corresponding set for the second input bundle and time t; and let “Z be
the corresponding set for the output bundle, assuming the correct function-
ing of all the Sheffer organs involved, and time t + 1. let X, Y have
¢N, nN elements, respectively, but otherwise be random — i.e., equidistrib-
uted over all pairs of sets with these numbers of elements. What can then
be sald about the number of elements tN of 22 Clearly &, 1, §, are the
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relative levels of excitation of the two input bundles and of the output
bundle, respectively, of the network under consideration. The question is
then: What is the distribution of the (stochastic) variable ¢ 1n terms
of the (glven) &, n ?

let W be the complementary set of Z. ILet p, q, T be the
numbers of elements of X, ¥, W, respectively, so that p = tN, q = 1N,

(1-t)N. Then the problem is to determine the distribution of the

(stochastic) variable r in terms of the (glven) p, q — i.e., the prob-
ability of any given r in combination with any given p, Q-

W 1is clearly the intersection of the sets X, Y+ W=XY. Let
U, V' be the (relative) complements of W in X, ¥, respectively:
U=X-W, V=Y -W, and let S be the (absolute, 1l.e., in the set

(1, ..., N)) complement of the sum of X and ¥: 5 = - (X + Y). Then
W, U, V, & are pairwlse disjoint sets making up together precisely the
entire set (1, ..., N), with r, p-r, q-r, N-Dp-QqQ+7T elements,

respectively. Apart from thls they are unrestricted. Thus they offer to-
gether N!/[r!(p - r)i(q - )N -p - q+ r)t] possible choices. Since
there are a priori N!/[p!(N - p)!] possible choices of an X with p
elements and a priori N!/[q!(N - q)!] possible cholces of a Y with q
elements, this means that the looked for probability of W having r
elements 1is

= N! N! N! )
e ‘(rz(p-r)!(q-r)z(N-p-q+r)! /'5TTN:57T LI EDL

p! (N-p)lg!(N-g)!
'(p—r) (a- r)'IN—p—q+r)‘NT

Note, that this formula also shows that p = 0 when r < 0 or
p-r<©0 or g-r<o0 or N-p-gq+r<0, 1il.e., when r violates

the conditlons
Max(o, p+a- N) <r< Min(p, Q)

This is clear combinatorially, in view of the meaning of X, Y and W. In
terms of &, n, t the above conditions become

(17) 1 - Max(0, € +q - 1) > ¢ 21 - Min(e, n)-

Returning to the expression for p, substituting the &, n, ¢
expressions for p, @, r and using Stirling's formula for the factorlals

involved, gives

Ja e—eN ,

18 ~
(18) P o

where

a = g(1-¢)n(1-n)
(e+e- 1)(g+n 0=-¢)(@-E-n-t)
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8 =(t+e-1)In (L+e-1)+(t+q-1)1In (L+1q-1)+
+ (- (-8 +((-¢t-1=-¢)In(2-¢-1-2¢)-
~tIne-(1-¢)In (1 -¢)-qlnq- (1 -1n)In (0 - q).

From this
o _ (L +& - 1) (L +n-~1)
st T et -
>%e 1 1 1 1
3 TFE T T T AT T Rt ot
L]

Hence 6 =0, § =0 for ¢ =1 - ¢&n, and 526/8§2 > 0 for all
t (in its entire interval of variability according to (17)). Consequently
>0 forall ¢t £ 1 —tn (within the interval (17)). This implies, in
view of (18) that for all ¢ which are significantly £ 1 - &n, p tends
to 0 very rapidly as N gets large. It suffices therefore to evaluate
(18) for ¢ ~ 1 - &n. Now a = 1/[¢ (1 -1t) a1 - n)], 3%e/3t? -
/g (1 =€) (1 -1q)] for ¢ =1 -¢n . Hence

1
TE(T-E)n (0T -nJ)

6. (t-(1-tq))°
2e (1 -¢t)n (1 - 1)

a

for t ~ 1 - tn. Therefore
(19) o ~ 1 o 2E
ver g (1 -¢) n (1 -n)N

is an acceptable approximation for o-

r 1s an integer-valued variable, hence ¢ 1 - § is a rational-
valued variaeble, with the fixed denominator N. Since N 1s assumed to be
very large, the range of ¢ 1s very dense. It 1s therefore permissible to
replace 1t by.a continuous one, and.to describe the distribution of §{ by a
probability-density o. p 1s the probability of a single value of {, and
since the values of ¢ are equidistant, with a separation d4¢ = 1/N, the
relation between o and p 18 best defined by odf{ =f, 1l.e., o = pN.
Therefore (19) becomes

(¢
(1

~t —
=3

-
-t

(20) 1 _%( C (1 -§Tl) )2
~ e
Tl i (G-t a (- /N Ve (1-g)m (1 - /N

This formulae means obviously the following: -

4 is approximately normelly distributed, with the mean 1 - &q
and the dispersion V¢ (1 - &) n (1 - 4)/N. DNote, that the rapid decrease
of the normal distribution function (i.e., the right hand side of (20))with
N (which 1s exponential !) is valid as long as { 1s near to 1 - &y, only
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the coefficient of N (in the exponent, 1. e.,

- % (-G =) /e (0 =€) q (1 -1)7 N2 1s somewhat altered as
{ deviates from 1 - ¢ . (This follows from the discussion of e glven
above.)

The simple statistical discussion of 9.4 amounted to attributing
to ¢ the unique value 1 - En. We see now that this is approximately true:

E=(1-tn)+4e (W -e)q (1-9)/ N s,
(21) & 1s a stochastic variable, normally distributed, with the
mean O and the dispersion 1.

10.2.2 THEORY WITH ERRORS. We must now pass from r,t, which postulate
faultless functioning of all Sheffer organs in the network, to r',¢!
which correspond to the actual functioning of all these orgens —-1l.e., to
a probability e of error on each functioning. Among the r organs each
, of which should correctly stimulate its output, each error reduces r! by
one unit. The number of errors here is approximately normally distributed,
with the mean er and the dispersion J:_TT_:—:j_;. (cf. the remark made
in 10.1). Among the N - r organs, each of which should correctly not
stimilate 1ts output, each error increases ! by one unit. The number of
errors here 1s again approximately normally distributed, with the mean
€ (N -r), and the dispersion ve (1 - €) (N ~-r) (cf. as above). Thus
r' - r 1s the difference of these two (independent) stochastic variables.
Hence 1it, too, is approximately normally distributed, with the mean
- er + e(N - r) = ¢(N - 2r), and the dispersion

VWe -2+ e T (7o ry )2 - 1/;(1 - €) N.
I. e., (approximately) )

r' = r + 2¢ (g -r)+Ve (1-¢€)N &',

where &' 1s normally distributed, with the mean 0 and the dispersion 1.
From this

<4

v ety 2_(_._.%,.(% ) NTO T T e,
and then by (21)
£ = (1 - gn) + 2¢ (8 - 2) +
+(1-2e)Ne (1 -¢)q (W =-9) /N & -
-Ne (1 -¢) /N &,
Clearly (1 -2¢)Ve (1 -¢) n(1 -n) /N & -ve (1 - €) / Ns', too,
1s normelly distributed, with the mean 0 and the dispersion
Vb -2t 0 )n G-m /8 P+ e TR -
=Y -2t (1-e)n (- +ec1 - /T
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Hence (21) becomes at last (we write again ¢ 1n place of ¢'):
= (1 -gn)+2e (en-3) ¥
s V(G -2 (-e)n(1-m) e -/ N %,

&% 1is a stochastic variable, normally distributed, with the mean
0 and the dispersion 1.

{22)

10.3 The Restoring Organ

This discussion equally covers the situations that are dealt with
in Figures 35 and 37,,show£ng networks of Sheffer organs in 9.%.2.

Consider first Figure 35. We have here a single input bundle of
N 1lines, and an output bundle of N 1ines. However, the two-way split
and the subsequent "pandomizing” permutation produce an input bundle of
oN 1lines and (to the right of U) the even lines of this bundle on one
hand, and its odd lines on the other hand; may be viewed as two input bundles
of N lines’eaqh.» Beyond this polnt the network is the same as that one of
Figure 34, discussed in 9.4.1. If the original input pundle had &N stimu-
lated lines, then each one of the two derived input bundles will also have
¢N stimulated lines. (To be sure of this, 1t is necessary to choose the
"ngndomizing" permutation U of Figure 35 in such a manner, that it per-
mutes the even lines among each other, and the odd lines among each other.
This is compatible with 1ts "pandomizing” the relationship of the family of
all even lines to the family of all odd lines. Hence it 1s reasonable to
expect, that thls requirement does not conflict with the desired "random-
izing" character of the permutation.) Let the output bundle have (N stimu-
lated lines. Then we are clearly dealing with the same case as in (22), ex-
cept that it is specialized to &t = 17.
Hence (22) becomes:

e ¢ = (1 - £2) + 2¢ (¢2 _7%) .
VG -2 (2 (1 -8+ e (1 - e))/ N B
g% 1s a stochastic varlable, normally distributed, with the
mean © and the dispersion 1.

(23)

Consider next Figure 37. Three bundles are relevant here: The
input bundle at the extreme left, the intermediate bundle issuing directly
from the first tier of Sheffer organs, and the output bundle, issuing dai-
rectly from the second tiler of Sheffer organs, i.e., at the extreme right.
Each one of these three bundles consists of N 1lines. Let the number/of
stimulated lines in each bundle be ¢N, oN, ¥N, respectively. Then (23)
above applles, with its &,¢ replaced first by t, o, and second by o, ¥:

R e e
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€
[

(1 - t2) + 2¢ (£2 - %) +

+

V(- 2¢)2 (601 - )2 + € (1 - €))/N %x ,
(24) ‘l!=(1—a)2)+2e (me—lzo)+
sV = 26)% (01 - ©))2 + € (1 - €))/N prxx

G**, ©b*** are stochastic variables, independently and normally
distributed, with the mean 0 and the dispersion 1.

10.% Qualitative Evaluation of the Results

In what follows, (22) and (24) will be relevant — i.e., the Sheffer
organ networks of Figures 34 and 37.

Before going into these considerations, however, we have to make
.an observation concerning (22). (22) shows that the (relative) excitation
levels &, n on the input bundles of its network generate approximately
(1.e., for large N and small e) the (relative) excitation level
;0 =1 - &n on the output bundle of that network. This justifies the state-
ments made 1n 9.4.1 about the detalled functioning of the network. Indeed:
If the two input bundles are both prevalently stimulated, i1.e., if ¢ ~ 1,

n ~ 1 then the distance of ¢, from 0 is about the sum of the distances
of ¢ and of n from 1: ;0 =(1 -¢)+¢& (1 -1q). If one of the two
input bundles, say the first one, is prevalently non-stimulated, while the
other one 1s prevalently stimulated, it.e., if ¢ ~ 0, 71 ~ 1, then the dis-
tance of {c from 1 1is about the distahce of ¢ from o: 1 - to = &0-
If both 1nput bundles are prevalently non-stimulated, i.e., if ¢ ~ o,

T ~ 0, then the distance of go from 1 1s small compared to the distances
of both ¢ and g from o0: 1 - §o = En-

10.5 Complete Quantitative Theory

16.5.1 - GENERAL RESULTS. ' We can now pass to the complete statistical analysis
of the Sheffer stroke operatlon on bundles. In order to do this; we must
agree on a systematic way to handle this operation by a network. The system _
to be adopted will be the following: The necessary executive organ will be
followed in series by a restoring organ. I.e., the Sheffer organ network of

Figure 34 will be followed in series by the Sheffer organ network of Figure 37.

This means that the formulas of (22) are to be followed by those of (24).
Thus ¢,7 are the excitation levels of the two input bundles, v is the
excitatlon level of the output bundle, and we have:

rd

~
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small enough.
WO =21 - m2,
o (aA°) for
n21-A;v=1—o(Al‘) for & <A, 1 XA
will guarantee the desiderata stated further above.

93% of t
at most 7% of the lines of a bundle represents a negatlve message;

e of uncertainty, indicating an effective

Consider now a given fiduclary level A.
1ike the "correct" one of the Sheffer stroke, with an overwhelming probabil-
The implication of ¥ <& by
E <48, 21 -4

This means:

This may, of course; only be expected for N
In addition, it will be necessary to make an

and a fixed, positive e.
on the complete formulae of (25).
here, but 1ts results will be described.

The most favorable filduclary level &,

this calculation turns out to be A

sufficiently small.
appropriate cholce of the flduciary level A.
If N is so large and

containing factors
"overwhelmingly probeble" inferences become even strictly true, 1f

Indeed, then (25) glves
i.e., Vv =
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(1 - gn) + 2¢ (gn - 3) +
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+

€
]

+

E)F+ (1 - €))/N b*x,

the implication of ¢ > 1 - A by
¥>1 -4 by
1 T]-)

E <4, n LA

1NN and

val between 7% and 93% is a zon
malfunction of the network.

§ =f, =1 -¢tn, 0
1 - (281 -(£1)2)2. Now it is easy to verify
£ >1-0,121-28;%=1-0(a%) for <2,

Hence sufficiently small A

10.5.2 NUMERICAL EVALUATION. - Consider next--the case of a fixed, finite N
Then a more elaborate calculation must be based

This calculation will not be carried out

VIO - 202 £(1 - e)n (1 - n) + e(1 - €))/N &%,
(1 -t7) + 2 (¢°

VT(1 - 2¢)2 (t(1

¥ o= (1 - m2) + 2e(m2

F YO - 26)? (000
5%, 5% pr** - are stochastic variables, independently and

L\ normally distributed, with the mean O and the dlspersion 1.
Then we need a behavior,

w))2 + e(1 - €))/N bx*x,

§_>_]'A:le1‘A;
the implicatlion of
(We are, of course, using the symmetry in

sufficiently large

i1s so small, that all terms in (25)
can be neglected, then the above desired

A is

2
1';:

from the point of view of
I.e., stimulation of at least

he lines of a bundle represents a positive message; stimulation of

the inter-

Having established thils fiduclary level, there exlsts also an upper

bound for the allowsble values of
e > .0107,

This is

In other words,

the risk of effective melfunction of the network will be
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above a fixed, positive lower bound, no matter how large a bundle size N
1s used. The calculations were therefore continued with a specific
€ < .0107, namely, with e = .005.

With these assumptions, then, the calculation yields an estimate
for the probability of malfunction of the network, i.e., of the violation
of the desiderata stated further above. As 1s to be expected, this estimate
i1s glven by an error Integral. This is

1.2 1 2
1 © =X 1 -z K
p(N) = — [ e"2° dx ~ e 2
J2n K J2n X
(26)
where
k = .062 VN

expresses, In a certain sense, the total allowable error divided by a com-
posite standard deviation. The approxlimation is of course valid only for
large N. It can also be written in the form

(27)’ ) ) 6.1 _ 8.6 N
a7 P ~ —= 10 "~ 10,000
VN

The followlng tabie glves a better idea of the dependency expressed by the
formla:

N = number of lines in a bundle p(N) = probability of malfunction

1,000 2.7 x 1072

2,000 2.6 X 1077
3,000 2.5 X 107
5,000 by x 1078

10,000 1.6 x 10719

" 20,000 e e g g gD s
25,000 o q.2x 10723

Notice that for as many as 1000 lines in a bundle, the reliability (about
34) is rather poor. (Indeed, it is inferior to the e = .005, i.e., 1/2%,
that we started with.) However, a 25 fold increase in this size glves very
good reliasbillity.

70.5.3 EXAMPLES.

10.5.3.1 FIRST EXAMPLE. To get an ldea of the significance-of these slzes
and the corresponding approximations, consider the two foliowing examples.
Consider first a computing machine with 2500 vacuum tubes, each
of which is actuated on the average once every 5 microseconds. Assume that
a mean free path of 8 hours between errors is desired. In this period of
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time there will have been % X 2,500 X 8 x‘3,6oo X 106 = 1.4 X 1o15

actuations, hence the above specification calls for & ~ 1/[1.% x 10
=T X 10—1h. According to the above table this calls for an N Dbetween
10,000 and 20,000 — interpolating linearly on — 10log 5 gives N = 1%,000.
I.e., the system should be miltiplexed 14,000 times.
It is characteristic for the steepness of statistical curves in :
this domain of large numbers of events, that a 25 percent increase of N,
i.é., N = 17,500, glves (again by interpolation) & = k.5 X 10'17, i.e.,
a reliability which is 1,600 times better.

13] -

10!5.3.2 SECOND EXAMPIE. Consider second a plausible quantitative plcture
for the functioning of the human nervous gystem. The number of neurons 1n-
volved is usually glven as 1010,.but this number may be somewhat low, also
the synaptic end-bulbs and other possible autonomous sub-units may increase
1t significantly, perhaps a few hundred times. Let us therefore use the
figure 1012 for the number of basic organs that are present. A neuron may
be actuated up to 200 times per second, but this 1s an abnormally high rate
of actuation. The average neuron will probable be actuated a good deal less
frequently, in the absence of better information 10 actuations per second
maey be taken as an average filgure of at least the right order. It 1s hard
to tell what the mean free path between errors should be. Let us take the
view that errors properly defined are to be quite serious errors, and since
they are not ordinarily observed, let us take a mean free path which 1s long
compared to an ordinery human life - zay 10,000 years. This means

1013 X 10,000 X 31,536,000 X 10 = 3.2 X 1025 actuations, hence it calls
for & ~ 1/(3.2 X 1097) = 3.2 X 10‘26 According to the table this lies
somewhat beyond N = 25,000 — extrapolating linearly on — 10 log 8 glves

N = 28,000. ‘
Note, that if this interpretation of the functioning of the human
nervous system were a valid one (for this cf. the remark of 11.1), the

number of basic organs involved would have to be reduced by a factor 28,000.
This peduces the number of relevaiit actiations and increases the value of
the necessary & by the same factor. I.e., '8 =9 X 10722, and hence
N = 23,000. The reduction of N is remarkably small — only 20%! This makes
a reevaluation of the reduced N with the new N,5 unnecessary: In fact
the new factor, i.e., 23,000, glves 3 = 7.k X 10-22 gnd this with the ap-
proximation used above, again N = 23,000. (Actually the change of N is
~ 120, i.e., only 1/2%!)

Replacing the 10,000 years, used above rather arbltrarlily, by
6 months, introduces another factor 20,000, and therefore a change og,about
the same size as the above one — now the value 1s easlly seen to be
N = 23,000 (uncorrected) or N = 19,000 (corrected).
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10.6 Conclusions

A1l this shows, that the order of magnitude of N is remarkably
Insensitive to variations in the requirements, as long as these requirements
are rather exacting ones, but not wholly outside the range of our (industrial
or natural) experience. Indeed, the N obtalned sbove were all ~ 20,000,
to within variations lying between - 30% and + 40%.

10.7 The General Scheme of Multiplexing

This 1is an opportune place to summarize our results concerning
multiplexing, i.e., the sections 9 and 10. Suppose it is desired to build
a machine to perform the logical function f(x, vy, ...) with a given ac-
curacy (probability of malfunction on the final result of the entire operation)
"n, using Sheffer neurons whose relilability (or accuracy , i.e., probabllity
of malfunction on a single operation) is e. We assume e = .005. The pro-
cedure 1is then as follows. ‘

First, design a network R for this function f(x, y, ...) as
though the basic (Sheffer) organs had perfect accuracy. Second, estimate
the maximum number of single (perfect) Sheffer organ reactions (summed over
all successive operations of all the Sheffer organs actually involved) that
occur in the network R 1in evaluating f(x, ¥y, ...) — say m such reactions.

Put 5 = n/m. Third, estimate the bundle size N that is needed to give
the multiplexed Sheffer orgen like network (cf. 10.5.2) an error probabllity
of at most &. Fourth, replace each single line of the network R by a
bundle of size N, and each Sheffer neuron of the network R Dby the multi-
plexed Sheffer organ network that goes with this N (cf. 10.5.1) ~ this
gives a network R(N). A "yes" will then be transmitted by the stimulation
of more than 93% of the strands in a bundle, a "no" by the stimulation of
less than 7%, and intermediate values wlll signify the occurrence of an essen-
tial maelfunction of the total system.

It should be noticed that this construction multiplies” the number
of lines by N and the number of basic organs by 3N. (In 10.5.3 we used a
uniform factor of multiplication N. In view of the insensitivity of N to
moderate changes in &, that we observed in 10.5.3.2, this difference is
irrelevant.) Our above considerations show, that the size of N 1is ~ 20,000
in all cases that interest us lmmediately. This implies, that such techniques
are impractical for present technologies of componentry (although this may
perhaps not be true for certain conceivable technologies of the future), but
they are not necessarily unreasoneble (at least not on grounds of size alone)
for the micro-componentry of the human nervous system. ’

Note, that the conditilons are significantly less favorable for the
non-multiplexing procedure to control error described in section 8. That
process multiplled the number of basic organs by about M, being the
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number of consecutlve steps (i.e., basic organ actuations) from input to
output, (cf. the end of 8.k). (In this way of counting, iterative processes
must be counted as many times as 1lterations occur.) Thus for u = 160,
which is not an excessive "logical depth," even for a conventional calcula-
tlon, 3160 ~ 2 X 1076, i.e., somewhat above the putative order of the
number of electrons in the universe. For u = 200 (only 25 percent more!)
then 3200 ~ 2,5 X 1095, l1.e., 1.2X 1019 times more — in view of the

gbove this requlres no comment .

11. GENERAL COMMENTS ON DIGITALIZATION AND MULTIPLEXING

11.1 Plausibility of Various Assumptions Regarding the Digltal vs.
Anslog Character of the Nervous System

" We now pass to some pemarks of a more general character.

The question of the number of basic neurons required to bulld a
miltiplexed automaton serves as an introduction for the first remark. The
sbove discussion shows, that the multiplexing technique 1is impractical on
the level of present technology, but quite practical for a perfectly con-
celvable, more advanced technology, and for the natural relay-organs {neurons).
I.e., 1t merely calls for micro-componentry which is not at all unnatural as
a concept on this ievel. It is therefore quite reasonable to ask specifically,
whether 1t, or something more or less like it, 1s a feature of the actually
existing human (or rather: animal) nervous system.

The answer is not clear cut. The main trouble with the multi-
plexing systems, as described in the preceding section, is that they follow
too slavishly a fixed plan of construction — and specifically one, that is
inspired by the conventional procedures of mathematlics and mathematical
logics. It is true, that the animal nervous systems, too, obey some rigid
wgprchitectural" patterns in thelr large-scale construction, and that those

. varlgtions, which make one suspect a merely statistical design, seem to oc-

cur only in finer detail and on the micro-level. (It is characteristic of
this duaiity, that most investigators pelieve in the existence of overall
laws of large-scale nerve- stimulation and composite action that have only a
statistical character, and yet occasionally a single neuron is known to con-
trol a whole reflex-arc.) It is true, that our multiplexing scheme, too, is
rigid only in 1its large-scale pattern (the prototype network R, as a pattern,
and the general layout of the executive-plus-restoring organ, &s discussed
in 10.7 and in 10.5.1), while the "random” Ppermutation "h1pck boxes" (cf.
the relevant Figures 32, 35, 37 in 9.2.3 and 9.k.2) are typical of a "merely
statistical design." Yet the nervous system seems to be somewhat more flex-
ibly designed. Also, its "digital" (neural) operations are rather freely
alternating with "analog" (tumoral) processes in their complete chains of
causation. Finslly the whole logical pattern of the nervous system seems

Y
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e
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to deviate in certain important traits qualitatively and significantly from
our ordinary mathematical and mathematical-logical modes of operation: The
pulse-trains that carry "quantitative" messages along the nerve fibres

do not seem to be coded digital expressions (like a binary or a [Morse or
binary coded] decimal digitalizatlon) of & number, but rather "analog" ex-
Pressions of one, by way of their pulse-density, or something similar — al-
though much more than ordinary care should be exercised in passing judgments
in this field, where we have s0 lilttle factual information. Also, the
"logical depth" of our neural operations — i.e., the total number of basic
operations from (sensory) input to (memory) storage or (motor) output seems
to be much less than 1t would be in any artificial automaton (e.g. a com-
puting machine) dealing with problems of anywhere nearly comparasble com-
plexity. Thus deep differences in the basic organizational principles are
probably present.

Some simllarities, in addition to the one referred to above, are
nevertheless undeniable. The nerves are bundles of fibres — like our bundles.
The nervous system contains numerous "neural pools" whose function may well
be that of organs devoted to the restoring of excitation levels. (At least
of the two [extremel levels, e.g. one near to 0 and one near to 1, as
in the case discussed in section 9, especially 1n 9.2.2 and 9.2.3, 9.k.2.
Restoring one level only — by exciting or quenching or establishing some
intermediate stationary level — destroys rather than restores information,
since a system with a single stable state has a memory capacity o0 [cf. the
definition gilven in 5.2]. For systems which can stabilize [L.e., restore]
more than two excitation levels, cf. 12.6.)

11.2 Remarks Concerning the Concept of a Random Permutation

The second remark on the subject of multiplexed systems concerns
the problem (which was so carefully sidestepped in section 9) of maintaining
randomness of stimulation. For all statlstical analyses, it is necessary
to assume that this-randomness exists. In networks which allow feedback,:
however, when a pulse from an organ gets back tc the same organ at some later
time, there is danger of strong statistical correlation. Moreover, without
randomness, situations may arise where errors tend to be amplified instead
of cancelled out. E.g. it is possible, that the machine remembers 1ts mis-
takes, so to speak, and thereafter perpetuates them. A simplified example
of thils effect 1s furnished by the elementary memory organ of Figure 16, or
by a similar one, based on the Sheffer stroke, shown in Figure 39. We will

- discuss the latter. Thls system, onvided it mskes
no mistakes, fires on alternate moments of time.
Thus it has two possible states: Either it fires
at even times or at odd times. (For a quantitative
FIGURE 39 discussion of Figure 16, cf. 7.1.) However, once
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the mechanism makes a mistake, l1.e., if it falils to fire at the right parity,
or 1f 1t fires at the wrong parlty, that error will be remembered, 1l.e.,

the parity 1s now lastingly altered, until there occurs a new mistake. A b
slngle mistake thus destroys the memory of this particular machine for all i
earlier events. In multiplex systems, single errors are not necessarily |
disastrous: But without the "random" permutations introduced in section 9,
accumulated mlstakes can be still dangerous. '

To be more specific: Consider the network shown in Figure 35, but
without the line-permuting "black box" U. If each output line 1s now fed
back into its input 1line (1.e., into the one with the same number from above),
then pulses return to the identical orgen from which they started, and so
the whole organ is in fact a sum of separate organs according to Figure 39,
and hence it 1s just as sﬁbject to error as a single one of those organs
acting independently. However, if a permutation of the bundle is interposed,
as shown, in principle, by U in Figure 35, then the accuracy of the system
may be (statistically) improved. This is, of course, the trait which 1s
being looked for by the insertion of U, 1l.e., of a "random" permutation
in the sense of section 9. But how 1s it possible to perform a "random"
permutation? ¥

The problem is not immediately rigorously defined. It 1s, however,
quite propef to reinterpret it as a problem that can be stated in a rigorous
form, namely: It is desired to find one or more permutations which can be
used in the "black boxes" marked with U or U1' U2 in the relevant Fig-
ures 35, 37, so that the essential statistical properties that are asserted
there are truly present. Let us consider the simpler one of these two, l.e.,
the multiplexed version of the simple memory organ of Figure 39 — l.e., a
specific embodiment of Figure 35. The discussion given in 10.3 shows that
i1t 1is desirable, that the permutation U of Figure 35 permute the even lines
among each other, and the odd lines among each other. A possible rigorous
variant of the question that should now be asked is this.

e Pnd a fiduclary lewcl - A > 0-—gnd-e probability e > 0, such - = o
that-for any n >0 and any - 8 =1, 2, there exists an N = N(n, s) - -
and a permutation U = U N) satisfying the following requirement: Assume
that the probability of error in a single operation of any glven Sheffer
organ is e. Assume that at the time +t all lines of the above network are
stimilated, or that all are not stimulated. Then the number of lines stimu-
lated at the time t + s will be > (1 - A)N or < AN, respectively, with
a probability > 1 - 8. In addition N(n, s8) <C 1n(s/n), with a constant i
C (which should not be excessively great). . . é?

Note, that the results of section 10 make the surmise seem plausible, .
that A = .07, € = .005 and C ~ 10,000/[8.6 x 1n 10] ~ 500 are sultable
choices for the above purpose.

The following surmise concerning the nature of the permutation

T

s

e e
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U(N) has a certain plausibility: ILet N = 2%. Consider the 2 complexes

(d1, dyy e dz) (dx =0, 1 for »=1, ..., &). Let these correspond

)/

in some one to one way to the 2z integers 1 =1, ..., N:
(28) 1&2 (4, dyy ooy 4,)

Now let the mapplng

(29) 1 — 1t = U(N)i

be induced, under the correspondence (28), by the mapping
(30) (d1’ d2, ceey dz) —> (dz’ dys eoes dz-1)'

Obviously, the validity of our assertion 1s independent of the choice of the
correspondence (28). Now (30) does not change the parity of

)
2 4
A=1

hence the desideratum that U(N), 1.e., (29), should not change the parity
of 1 (cf. above) is certainly fulfilled, if the correspondence (28) is so
chosen as to let 1 have the same parlty as

L
2 4
A=1

This 1s clearly possible, since on either side each parity occurs precisely

22'1 times. This U N should fulfill the above requlrements.

11.3 Remarks Concerning the Simplified Probability Assumption

The third remark on multiplexed automata concerns the assumption
‘made in defining the unreliability of an individual neuron. It was assumed
that the probability of the neuron‘failing po_reaétAca;;édﬁiy was a constant
e, independent of time and of all previous inputs. This is an unrealistic
assumption. For example, the probabllity of fallure for the Sheffer organ
of Figure 12 may well be different when the Inputs a and b are both
stimulated, from the probability of failure when & and not b 1s stimu-
lated. In addition, these probabillities may change with previous history,
or simply with time and other environmental conditions. Also, they are
quite likely to be different from neuron to neuron. Attacking the problem
with these more realistic assumptions means finding the domains of operabil-
ity of individual neurons, finding the intersection of these domains (even
when drift with time 1s allowed) and finally, carrying out the statistlcal
estimates for this far more complicated situation. This will not be attempt-
ed here.
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12. ANALOG POSSIBILITIES
12.1 TFurther Remarks Concerning Analog Procedures

There is no valid reason for thinking that the system which has been
developed in the past pages 1s the only or the best model of any existing ner-
vous system or of any potential error-safe computing machine or logical machine.
Indeed, the form of our model-system 1s due largely to the Influence of the
techniques developed for digital computing and to the trends of the last six-
ty years in mathematlcal loglcs. Now, speaking specifically of the human
nervous system, thls 1s an enormous mechanism — at leat 10 times larger than
any artifact with which we are familiar — and its activitles are correspond-
ingly varied and complex. Its duties include the interpretation of external
sensory stimull, of reports of physical and chemical conditions, the control
of motor activities and of internal chemical levels, the memory function
with 1ts very complicated procedures for the transformation of and the search
for information, and of course, the continuous relaying of coded orders and
of more or less quantltative messages. It is possible to handle all these
processes by digital methods (i.e., by using numbers and expressing them in
the binary system — or, with some additional coding tricks, in the decimal
or some other system), and to process the digitalized, and usually numericlzed,
information by algebraical (i.e., basically aritimetical) methods. This 1s
probably the wey a human designer would at present approach such a problem.

It was pointed out in the discussion in 11.1, that the available evidence,
though scanty and lnadequate, rather tends to indicate that the human nervous
system uses different principles and procedures. Thus message pulse trains
seem to convey meaning by certain analoglc traits (within the pulse notatlon —
i1.e., this seems to be a mixed, part digital, part analog gystem), like the
time density of pulses in one line, correlations of the pulse time seriles
between different lines in a bundle; etc.

Hence our multiplexed system might come to resemble the basic
tralts of the human nervous system more closely, if we attenuated its rigid-
1y -discrete and digital character -in some respects. .The simplest step In.
this direction, which is rather directly suggested by the above remarks
about the humen nervous system, would seem to be this.

12.2 A Possible Analog Procedure

12.2.1 THE SET UP. In our prototype network R each line carries & "yesa"
(1.e., stimulation) or a "no" (i.e., non-stimulation) message — these are

interpreted as digits 1 and ©, respectively. Correspondingly, in the
final (multiplexed) network R(N) (vhich is derived from R) each bund1é
carries a "yes" = 1 (i.e., prevalent stimulation) or a "mo" = 0 (i.e.,

prevalent non-stimulation) message. Thus only two meaningful states, l.e.,
average levels of excitation ¢, are allowed for a bundle — actually for
one of these ¢ ~ 1 and for the other ¢ ~ 0.
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Now for large bundle sizes N the average excltation level ¢
is an approximately continuous quantity (in the interval 0 <t < 1) —
the larger N, the petter the approximation. 1t 1s therefore not unreason-
able to try to evolve a system in which & 1s treated as a continuous quan-
tity iIn 0 <t £ 1. This means an analog procedure {or rather, in the sense
dlscussed above, a mixed, part digital, part analog procedure). The pos-
sibility of developing such a system depends, of course, on finding suitable
algebralc procedures that fit into it, end being able to assure its stabil-
ity in the mathematical sense (i.e., adequate precision) and in the logical
sense (l.e., adequate control of errors). To this subject we will now de-
vote a few remarks.

12.2.2 THE OPERATIONS. Consider a multiplex automaton of the type which
has just peen consldered in 12.2.1, with bundle size N. Let & denote the
level of excitation of the bundle at any point, that is, the relative number
of excited lines. With this interpretation, the automaton is a mechanism
which performs certain numerical operations on a set of numbers to glve a
new number (or numbers). This method of interpreting a computer has some
sdvantages, as well as some dissdvantages in comparison with the digital,
"g11 or nothing", interpretatlon. The consplcuous advantage 1s that such an
interpretation allows the machine to carry more informstion with fewer com-
ponents than a cofresponding digltal automaton. A second advantage is that
i1t is very easy to construct an automaton which will perform the elementary
operations of arithmetics. (Or, to be more precise: An adequate subset of
these. OCf. the discusslon in 12.3.) For example, given ¢ and n, it is
possible to obtain % (¢ + n) as shown in Figure 40. Similarly, it 1s pos-
sible to obtain ot + (1 - a)n for any constant « with 0 <a < 1. (of
course, there must be o = M/N, M =0, 1, -+ N, but this range for o 1s
the same "approximate continuum" as that one for &, hence we may treat

the former as a continuum just as properly as the latter.) We need only
choose oN lines from the first bundle and combine them with (1 - a)N
1}n§§~££9m the_gecond. To obtain the quantity 1 - &n requires the set-up

éhéwniin Figure h{jd_ﬁinélly we can produce ady'conétéﬂf’eiéitatibnfiéV§I*"“

a (0 <a< 1), byoriginating a bundle so that oN lines come from a live
source and (1 - a)N from ground.

LN SELECTED 2 . 8
N LINES 2 k N LINES =
EN ::::—\\\:/' 3 EN <
STIMULATED —__\_-—"'\ w 3 STIMULATED o 2
— =5 zE
_Z_ 1] 3 [72]
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12.3 Discussion of the Algebraical Calculus Resulting from
the Above Operations

Thus our present analog system can be used to bulld up a system
of algebra where the fundamental operations are

a (for any constant a
(31) et + (1 -ah } { in 0<ac<1),

1 - &1
All these are to be viewed as functions of ¢,n. They lead to a system, in
which one can operate freely with all those functions f(g1, Epr oy gk)
of any k variables s Eps oees By that the functions of (31) generate.
I.e., with all functions that can be obtained by any succession of the fol-
lowing processes:

(A) In the functions of (31) replace ¢, n by any varlables
£4s §j- ‘
(B) In a function f(g?, ...5 &%), that has already been ob-
' tained, replace the variables EX, ooy £y, by any func-
tions g1(§1, ey gk), cees 81(51’ ey gk), respective-
1y, that have already been obtained.

To these, purely algebraical-combinatorial processes we add a properly an-
alytical one, which seems justified, since we have been dealing with ap-
proximative procedures, anyway:

(C) If a sequence of functions fu(gl, ey gk), U =1, 2, ..,
that have already been obtailned, converges uniformly (in
the domain 0 <g,< 1, ..., 0 <& < 1) for u -—»e to

f(§1, ceey gk), then form this f(g,, ..., gk).

Note, that in order to have the freedom of operatlion as expressed
by (4), (B), the same "randomness" condltions must be postulated as in the
corresponding parts of sections 9 and T¥.  Hérce "rdandomlzing” permutations
U must be interposed between consecutivé execitive organs (i.e., those de-
scribed above and reenumerated in (A)), just as in the sections referred to
above.

In ordinary algebra the basic functions are different ones, namely:

a (for any constant a
(32) g+ in 0<ac<1),
En

It is easily seen, that the system (31) can be generated (by (A),/
(B)) from the system (32), while the reverse 1s not obvlous (not even with
(C) added). In fact (31) is intrinsically more special than (32), i.e.,
the functions that (31) generates are fewer than those that (32) generates
(this 1s true for (4), (B), and also for (A), (B), (C)) — the former do not
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even include ¢t + n. Indeed all functions of (31), 1.e., of (A) based on
(31), have this property: If all varlables lie in the interval 0 <t <1,
then the function, too, lies in that interval. Thls property is conserved
under the applications of (B), (C). On the other hand t + 1 does not
possess thls property — hence it cannot be generated by (A), (B), (C) from
(31). (Note, that the above property of the functions of (31), and of all
those that they generate, 1s a quite natural one: They are all dealing with
excltation levels, and excitation levels must, by thelr nature, be numbers

¢ with o<¢ <1.)

In spite of this limitation, which seems to mark it as essentially
narrower than conventional algebra, the system of functions generated (by
(4), (B), (C)) from (31) is broad enough for all reasonable purposes. In-
deed, 1t can-'be shown that the functions so generated comprise precisely
the following class of functions: {

All functions f(gl, Eps -ees gk) which, as long as their varil-
ables E15 cees gk lie in the interval 0 <t < 1, are continuous and have
their value lying in that interval, too.

‘ We will not give the proof here, it runs along quite conventional
lines.

12.4 Limitations of thls System

This result makes it clear, that the above analog system, 1.e.,
the system of (31), guarantees for numbers ¢ with 0<%t <1 (l.e., for
the numbers that i1t deals with, namely excitation levels) the full freedom
of algebra and of analysis.

In view of these facts, this analog system would seem to have
clear superiority over the digital one. Unfortunately, the difficulty of
maintaining accuracy levels counterbalances the advantages to a large extent.
The accuracy can never be expected to exceed 1/N. 1In other words, there is
an intrinsic noilse level of the order 1/N, 1.e., for the N considered in 4

. 10.5.2 and 10.5.3 (up to ~ 20,000) at best 10"“.,, Moreover, in its effects
on the operations of (31), this noise level rises from 1/N to 1/AN.
(E.g., for the operation 1 - ¢1q, cf. the result (21) and the argument i
that leads to 1t.) With the above assumptions, this is at best ~ 10'2,
i.e., 1%! Hence after a moderate number of operations, the excitation
levels are more likely to resemble a random sampling of numbers than mathe-
matics.

It should be emphasized, however, that this 1s not a conclusive
argument that the human nervous system does not utllize the dgnalog system.
As was pointed out earlier, it is in fact known for at least some nervous
processes that they are of an analog nature, and that the explanation of

this may, at least in part, lie in the fact that the "logical depth" of the 3
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nervous network 1s quite shallow in some relevant places. To be more spe-
cific: The number of synapses of neurons from the peripheral sensory organs,
down the afferent nerve fibres, through the brain, back through the efferent L HB
nerves to the motor system may not be more than ~ 10. Of course the parallel
complexity of the network of neurons is indisputable. "Depth" introduced by
feedback in the human brain may be overcome by some kind of self-stabiliza-
tion. At the same time, a good argument can be put up that the animal nerv-
ous system uses analog methods (as they are interpreted above) only in the
crudest way, accuracy being a very minor consideration. '

12.5 A Plauslble Analog Mechanism: Density Modulation by Fatigue

Two more remarks should be made at this point. The first one deals
with some more specific aspects of the analog element in the organization and
functioning of the human nervous system. The second relates to the possibil-
ity of stabillizing the precision level of the analog procedure that was out-
lined above. '

This 1s the first remark. As we have mentloned earlier, many neu-
rons of the nervous system transmit intensitles (i.e., quantitative data)
by analog methods, but, in a way entirely different from the method described
in 12.2, 12.3 and 12.4. Instead of the level of excitation of a nerve (i.e.,
of a bundle of nerve fibres) varying, as described in 12.2, the single nerve
fibres fire repetitiously, but with varying frequency in time. For example,
the nerves transmitting a pressure stimulus may vary in frequency between,
say, 6 firings per second and, say, 60 firings per second. This frequency
1s a monotone function of the pressure. Another example 1s the optic nerve,
where a certaln set of fibres responds in a similar manner to the lntensity
of the Incoming light. This kind of behavior is explained by the mechanism
of neuron operation, and in particular with the phenomena of threshold and
of fatigue. With any peripheral neuron at any time can be assoclated a
threshold intensity: A stimulus will meke the neuron fire if and only if
1ts megnitude exceeds the threshold intensity. The behavior of the threshold
intensity as a function of the time after a typical neuron fires is qualita-
tively plctured in Figure k2. After firing, there 1s an "absolute refractory
period" of about 5 milliseconds, during which no stimulus can make the neuron
fire again. During this period, the threshold value is infinite. WNext comes
a "relstive refractory period" of about 10 milliseconds, during which time
the threshold level drops back to its equllibrium value (it may even oscil-
late about this value a few times at the end). This decrease is for the most
part monotonic. Now the nerve will fire again as soon as it 1s stimulated
with an intensity greater than its excltation threshold. Thus if the neurcn
1s subjected to continual excitation of constant intensity (above the equilib-
rium intensity), it will fire periodically with a period between 5 and 15
mllliseconds, depending on the intensity of the stimulus.
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Another interesting example of a nerve network which transmits
intensity by this means 1s the humen acoustic system. The ear analyzes a
sound wave 1nto\its component frequencles. These are transmitted to the
‘brain through different nerve fibres with the intensity variastions of the
corresponding component represented by the frequency modulation of nerve
firing. ‘

The chief purpose of all this discussion of nervous systems 1s to
point up the fact that it is dangerous to identify the real physical (or
blological) world with the models which are constructed to explain it. The
problem of understanding the animal nervous action is far deeper than the
problem of understanding the mechanism of a computing machine. Even plausible
explanations of nervous reaction should be taken with a very large grain of
salt.

12.6 Stabilization of the Analog System

We now come to the second remark. It was polnted out earlier,
that the analog mechanism that we discussed may have a way of stabilizing
excitation levels to a certain precision for its computing operations. This
can be done in the following way.

For the digital computer, the problem was to stabilize the excita

tion"level at (or near) the two values 0 and 1. This was accomplished by
repeatedly passing the bundle through a simple mechanism which changed an
excitation level ¢ into the level f(¢), where the function f(¢) had
the general form shown in Figure 43. The reason that such a mechanism is
& restoring organ for the excitation levels ¢ ~ 0 and £ ~1 (i.e., that
it stabilizes at — or near — 0 and 1) 1is that f(¢) has this property:
For some suitable ©b(o0 <b<1) 0<¢t< bimplies 0 < fe) <eg; bc<eg <1
Implies ¢ < f(¢) <1. Thus ¢ =0, 1 are the only stable fixpoints of
f(¢). (Cf. the discussion in 9.2.3 and 9.4.2.)

Now consider another f(t), which has the form shown in Figure Lk.
I.e., we have: ‘
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0=a. < b1 <&y, < .0 < a,_; < bv <a, = 1,

(¢

for 1= 1, <& <Dy implies &y _; < £(e) < ¢

cees VI By
g < fg) <8y

bi <k <8y implies
Hevre a (= 0), &5 -++» &, a,(=1) are f(g)'s only stable fixpoints,
and such a mechanism 1s a restoring organ for the excitation levels
o, a8, s a,(= 1). Choose, e-g-,
.., v), with v~ <5, or more generally, just
cey v)’ with some suitable v. Then this restoring
(with the seme prevalent

£ ~ a0(= 0), &,
8y = 1/v (4 = 0, 1,
a; -8 _1 <8 1=1,
organ clearly conserves precisions of the order 8
probability with which it restores).

13. CONCLUDING REMARK
13.1 A Possible Neurological Interpretation

There remains the question, whether such a mechanism is possible,
with the means that we are now envlsaging. We have seen further above, that
this is the case, if a function f£(g¢) with the properties just described
con be generated from (31). Such.a function can indeed be so generated.
Indced, this follows immediately from the generalﬂcharacterization @f the
class of functions that can be generated from (31), discussed in 12.3. How-
ever, we will not go here into this matter any further.

It is not inconcelvable that some "neural pools" in the human
nervous system may be such restoring organs, to maintain accuracy in those
parts of the network where the analog princple 1is used, and where there 1s
enough "logical depth" (cf. 12.4%) to make this type of stabilization

necessary.
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