
13 Magnetic Materials and Devices

Most of the world’s bits are stored by orienting magnetic spins. The evolution of these

magnetic storage devices is a good lesson in mature technology. For many years, confident

and sensible predictions have shown why alternatives, such as optical storage, will soon

replace magnetic media, but each year evolutionary innovations bring magnetic storage

ever closer to fundamental physical limits and lead to revolutionary new applications.

In the densest disks the bit spacing is on the order of 1 µm, reaching the diffraction

limit for optical storage. This requires flying the recording head that close to the platter,

which is comparable to the mean free path of an air molecule and hence in a regime

where the air must be described by the discrete particles of kinetic theory rather than

the continuum partial differential equations of hydrodynamics. Many gigabytes fit in

drives that are just a few inches big, with costs that have dropped from thousands to

hundreds of dollars [Grochowski et al., 1993]. These improvements are the result of

a combination of accumulated experience with this system, sophisticated study of the

underlying mechanisms, and some luck in how nature responds to such aggressive scaling

[Mallinson, 1996]. Surely a time will come when we will stop using spinning platters of

what is essentially rust for information storage, but that time remains further off than

was once thought.

Magnetism is a surprisingly complex and poorly-understood subject. This chapter

therefore starts with a review of the basic phenomenology of magnetic materials, and an

introduction to the mechanisms that cause it. These are then applied to explain magnetic

storage, and device applications of magnetic materials.

13.1 MAGNET ISM

In Chapter 6 we saw that the energy density in a field is

U ≡
1

2
(~E · ~D + ~B · ~H)

(
J

m3

)

, (13.1)

and that in a magnetic material

~B = µ ~H = µ0µr
~H = µ0(1 + χm) ~H = µ0( ~H + ~M ) , (13.2)

where ~B is the magnetic flux density, ~H is the magnetic field strength, and ~M is the

magnetization. The magnetization is equal to the magnetic moment ~m of the material
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per volume:

~M =
~m

V
. (13.3)

Unlike most engineering practice, in the study of magnetic media CGS units are most

commonly used because the magnitudes of the quantities are more appropriate. MKS

(SI) magnetic fields are measured in amps per meter; the conversion to the CGS (EM)

unit, the oersted, is

H : 1
A

m
=
4π

103
Oe . (13.4)

The SI flux density is measured in tesla; the conversion to gauss is

B : 1 T = 104 G . (13.5)
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Figure 13.1. Measurement of permeability by an inhomogeneous field.

Now consider what happens if a material is brought into a magnetic field that has a

gradient in the z direction. This might be created by a magnet with tapered pole pieces,
shown in Figure 13.1. If the material has a volume V , assumed to be small compared
to the length scale of the gradient, then the change in energy after it is brought into the

field is equal to the field energy stored in the material minus the energy that was there

beforehand:

∆E =
1

2

∫

material

~B · ~H dV −
1

2

∫

no material

~B · ~H dV

=
1

2
V µ0µrH

2 −
1

2
V µ0H

2

=
1

2
V µ0(µr − 1)H

2

=
1

2
V µ0χmH

2 . (13.6)

There will be a force on the material, measured by the scale in Figure 13.1, that is equal
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to the gradient of this energy

F = −
d∆E

dz

= −V µ0χmH
dH

dz
. (13.7)

The force will be proportional to the magnetic susceptibility χm, which is equal to the
relative permeability µr minus 1. This technique, proposed by Faraday, provides a simple
way to measure the permeability of a material. It leads to the following unexpected ex-

perimental result: some materials (diamagnetic, superconducting) move up the gradient

towards the weaker field, and some (paramagnetic, ferromagnetic, ferrimagnetic) move

down it towards the stronger field. Diamagnetic materials have a small negative suscep-

tibility (µr = 0.99996 for Au), paramagnetic materials have a small positive susceptibility
(µr = 1.00002 for Al), and ferromagnetic and ferrimagnetic materials have a huge positive
susceptibility (µr ∼ 10

4 for steel). In a superconductor, theMeissner effect requires that

there be no flux lines in the material. This implies that ~B = 0 and so

~H = − ~M ⇒ χm =
M

H
= −1 . (13.8)

This susceptibility is many orders of magnitude larger than that for a normal diamagnetic

material; this strong repulsion can be used for magnetic levitation of bearings and vehicles

[Nakashima, 1998].

Why do materials have such different opinions about how to behave in a magnetic

field? We now turn to the microscopic origin of magnetic phenomena. Ferromagnetism

is the most important mechanism for magnetic storage, but it will be instructive to relate

all of them.

13.1.1 Diamagnetism

Lenz’s Law states that a time-varying magnetic field induces a current in a loop that

acts to oppose the field; diamagnetism comes from this effect operating on the electrons

in an atom. Although this is a quantum system, a simple model due to Langevin is in

good quantitative agreement with experimental measurements. Viewed semiclassically,

the magnetic moment of an electron orbiting a nucleus is

m = I A =
qv

2πr
πr2 =

qvr

2
. (13.9)

A time-varying field threading this loop gives rise to an induced potential around the

loop

V = −
dΦ

dt
= −

d(BA)

dt
= −µ0

d(HA)

dt
, (13.10)

taking the magnetic field direction to be normal to the loop. This accelerates the electron

by

a =
dv

dt
=
F

me

=
qV

2πrme

= −µ0
qr

2me

dH

dt
. (13.11)

Integrating both sides as the field is ramped up from 0 to H in a time T gives the total



13.1 Magnetism 195

change in velocity

∫ T

0

dv

dt
dt =

∫ T

0

−µ0
qr

2me

dH

dt
dt

∆v = −µ0
qrH

2me

, (13.12)

which in turn gives the change in the moment

∆m =
q∆vr

2
= −µ0

q2r2H

4me

. (13.13)

The magnetization caused by this induced moment is

M =
m

V
= −µ0

q2Zr2H

4meV
, (13.14)

where V is the volume of the atom, and the factor of Z has been added to account for
multiple electrons in the atom. The susceptibility is then

χm =
M

H
= −µ0

q2Zr2

4meV
. (13.15)

Even though this estimate has ignored both thermodynamics and quantum mechanics, it

gives numbers that are in line with observed values for diamagnetic materials (Problem

13.1), and shows why diamagnetism is not strongly temperature dependent.

13.1.2 Paramagnetism

The effective current loop used in the preceeding calculation is not fixed in space; under

an applied field it can change its orientation as well as speed up or slow down. For the

simplest quantum mechanical case of non-interacting spin-1/2 magnetic moments, this

corresponds to flipping between states parallel and antiparallel to the field (Chapter 16).

If the magnetic moment is m, the energy of the two states is ±mB. If the density of
these moments is n, then the magnetization is found from the expected value of the spin
orientation

M = nm〈s〉

= nm

∑

s=−1,1 se
−Es/kT

∑

s=−1,1 e
−Es/kT

= nm
emB/kT − e−mB/kT

emB/kT + e−mB/kT
. (13.16)

mB is usually much smaller than kT , so the exponentials can be expanded as 1±mB/kT ,
giving

M =
nm2B

kT

=
nm2µ0H

kT
(13.17)
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or

χm =
M

H

=
nm2µ0
kT

≡
C

T
. (13.18)

This is Curie’s Law and the constant C is (can you guess?) the Curie constant.
Curie’s Law might be expected to apply to the conduction electrons in a metal, which

have a spin magnetic moment of

µB =
eh̄

2me

= 9.274×10−24
J

T
, (13.19)

but the susceptibility of most metals is found to be relatively independent of temperature

rather than inversely proportional to it. Pauli solved this mystery by pointing out that the

derivation of Curie’s Law used a canonical partition function, which is appropriate only

in the high-temperature limit. Otherwise, the Fermi–Dirac distribution must be used.

The band diagrams in Chapter 11 were drawn as a function of momentum, with each

momentum state containing a spin-down and a spin-up state. Figure 13.2 replots a band

diagram with all the spin-down states on the left and the spin-up states on the right;

each spin state is now associated with +k and −k momentum states. An applied field

will split the spin energies. Because the Fermi energies must remain equal, some electron

spins flip (assuming that there are available states for them to go into). The number of

electrons transferred is approximately equal to the energy split times the density of states

at the Fermi energy n(EF). The two populations will equalize when half the difference
is transferred, but there are two momentum states for each spin state:

∆n = ∆E n(EF) = BµBn(EF) . (13.20)

E
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DE k

Figure 13.2. Spin band splitting in a field.

The magnetization is the induced moment per volume

M =
m

V
= µB ∆n = µ

2
BBn(EF) , (13.21)
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therefore the susceptibility is

χm =
M

H
= µ0µ

2
Bn(EF) . (13.22)

This is the spin paramagnetism of a metal. It is positive, roughly temperature-independent,

and it will vanish if the density of states vanishes at the Fermi energy because the valence

band is full. A paramagnetic material still has the diamagnetic magnetization from the

electron orbits, but if the paramagnetic magnetization is large enough it will dominate.

This is one example of how materials can be paramagnetic (partially-filled conduction

band), diamagnetic (filled valence band), or have little susceptibility (diamagnetism can-

cels paramagnetism).

Other than obeying Fermi–Dirac statistics, Pauli paramagnetism assumes that the spins

are independent. One sign of the failure of this approximation is that in many materials

Curie’s Law is empirically found to need an offset

χm =
C

T − TC
. (13.23)

This is the Curie–Weiss Law. TC is the Curie temperature, and can be quite large: 1043
K in iron, for example. If it is defined in terms of the Curie constant as TC = λC, the
susceptibility can be rewritten as

χm =
M

H

=
C

T − λC
HC =MT −MλC
C

T
=

M

H + λM
. (13.24)

This recovers the original form of Curie’s Law, if we assume that the spins see a local

field λM added to the applied field H. The offset λM is called the molecular field, and

to understand it we must understand the origin of ferromagnetism and its relatives.

13.1.3 Ferro-, antiferro-, and ferri-magnetism

Diamagnetism and paramagnetism can arise from a range of mechanisms, all relatively

weak. Ferromagnetic materials behave very differently in an applied field: the response

is large and hysteretic. This dependence of the present state of the sample on its past

history provides the memory mechanism needed for magnetic storage. The magnetization

of a ferromagnet could be measured by the apparatus in Figure 13.1, or its modern cousin

the Vibrating Sample Magnetometer (VSM) that vibrates the sample in a fixed applied

field and listens in nearby pickup coils to the signal due to the moving magnetization.

If the induced magnetization is plotted as a function of the applied field, the result will

look something like Figure 13.3. It is still true by definition that B = µ0(H +M ), but
now the simple ratio µ = B/H must be replaced with the differential permeability

µ = dB/dH.
As the applied field is ramped up, the magnetization grows until it reaches a saturation

valueMS that is independent of the field. When the field is brought back to zero a remnant
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Figure 13.3. A hysteresis loop.

magnetization MR remains, and if the field is further decreased to the coercivity −HC

the remnant magnetization will be removed. This is called a hysteresis loop; it can also

be plotted as B vs H.

Such persistent magnetic ordering cannot be explained by magnetic forces, which are

typically much smaller than kT . They can actually be ignored; to understand this we
must turn to the much larger electrostatic interactions (Problem 13.2), and quantum

mechanics. Let’s start with the simplest possible model for a solid, two nuclei and two

electrons. Although this is really just a hydrogen molecule, it’s enough to introduce the

origin of ferromagnetism.

Call the nuclei a and b, and the electrons 1 and 2. If we isolate one of the atoms, say
electron 1 around nucleus a, and assume that the nucleus is so massive that it doesn’t
move, the Hamiltonian is just

Ha =
p21
2m

−
e2

r1a
, (13.25)

where r1a is the distance between electron 1 and nucleus a. Let ϕa(~x1) be the lowest-
energy eigenfunction of this Hamiltonian.

Now bring the atoms closer together. The single-electron eigenfunctions will no longer

be eigenfunctions of the joint Hamiltonian, but we can use them as a basis to build those

up. These joint wave functions ψ(1, 2) must satisfy two essential constraints. Because
quantum particles are indistinguishable, expectation values must not change if the par-

ticles are interchanged, so

|ψ(1, 2)|2 = |ψ(2, 1)|2 . (13.26)

And because electrons are fermions, the wave function must be antisymmetric, changing

sign if the electrons are swapped

ψ(1, 2) = −ψ(2, 1) . (13.27)

ψ must describe both the spin and spatial degrees of freedom of the electrons. Chapter
16 will work out the form of the spin states for two electrons; these will be either sym-

metric or antisymmetric under particle interchange. This means that the corresponding

spatial wave functions must be either antisymmetric or symmetric, to preserve the overall
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antisymmetry. We can construct such states from our single-electron eigenfunctions by

combining them as

ψ(~x1, ~x2) = ϕa(~x1)ϕb(~x2)± ϕa(~x2)ϕb(~x1) . (13.28)

The plus sign goes with the antisymmetric spin state, and the minus sign with the

symmetric spin state. These will no longer be eigenfunctions of the joint Hamiltonian,

but will be a good approximation as the atoms begin to come together, and will be part

of a complete basis set to expand an arbitrary solution.

The Hamiltonian for the joint system becomes

H =
p21
2m

+
p22
2m

−
e2

r1a
−
e2

r2b
︸ ︷︷ ︸

H0

+
e2

rab
+
e2

r12
−
e2

r1b
−

e2

r2a
︸ ︷︷ ︸

Hint

. (13.29)

H0 is the sum of the Hamiltonians for the individual atoms, having the single-electron

eigenstates, and Hint is the interaction Hamiltonian that arises from bringing the atoms

together. The energy associated with the interaction is Eint = 〈ψ|Hint|ψ〉. If we evaluate
this for our basis wave function,

Eint = 〈ψ|Hint|ψ〉

=

∫ ∫

ψ∗

(
e2

rab
+
e2

r12
−
e2

r1b
−

e2

r2a

)

ψ d~x1d~x2

= 2

∫ ∫

|ϕa(~x1)|
2|ϕb(~x2)|

2

(
e2

rab
+
e2

r12
−
e2

r1b
−

e2

r2a

)

d~x1d~x2

± 2

∫ ∫

ϕ∗

a(~x1)ϕ
∗

b (~x2)ϕa(~x2)ϕb(~x1)

(
e2

rab
+
e2

r12
−
e2

r1b
−

e2

r2a

)

d~x1d~x2

= Eoverlap ±Eexchange . (13.30)

The first term is the overlap integral, and the second is the exchange integral. Here

is the essential point: the preferred spin orientation will be the one that minimizes the

contribution from the exchange integral. The relative orientation of the electron spins

determines the symmetry of the spin wave function. It in turn constrains the spatial wave

function to be either symmetric or antisymmetric, determining the sign of the exchange

integral. This integral is a function of electrostatic forces, setting an energy scale much

larger than the magnetic forces associated with the spin ordering. This is how electrostatic

interactions lead to stable magnetic ordering.

The overlap integral is really a manifestation of the Pauli exclusion principle. The

electrons can’t be in the same state, leading to an effective force between them. Although

its origin lies in the foundations of symmetry in quantum mechanics, its consequence

is a very real interaction. For spin 1/2, in Chapter 16 we will see that the dot product
~S1 · ~S2 of two spins ~S1 and ~S2 can have eigenvalues of −3/4 for the antisymmetric spin
state or +1/4 for the symmetric state. Through the exchange integral, these spin states
are associated with overall energies Eantisymmetric and Esymmetric . This relationship can be
described by an effective spin Hamiltonian

Hspin =
1

4
(Eantisymmetric + 3Esymmetric)− (Eantisymmetric −Esymmetric)~S1 · ~S2 , (13.31)
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verified by plugging in ~S1 ·~S2 = −3/4,+1/4. Dropping the constant that does not depend
on the spins, calling the prefactor J , and generalizing to more than two spins gives the
Heisenberg Hamiltonian

Hspin = −
∑

i,j

Jij ~Si · ~Sj . (13.32)

This interaction is called J coupling. If J is positive, as it is for the metals Fe, Co, and Ni,
then the spins will want to point in the same direction, giving ferromagnetic ordering.

In an antiferromagnet such as Mn or Cr the exchange energy is negative, therefore

neighboring spins alternate orientation and there is no net moment even though there

is long-range magnetic order. A ferrimagnet is a ceramic oxide that has a spontaneous

moment but is a good insulator. The moment arises because it has an antiferromagnetic

coupling, but there are interpenetrating spin-up and spin-down lattices that have differ-

ent moments that do not cancel. Most common ferrimagnets are made from materials

containing iron oxides, called ferrites. Because they do not conduct, they do not screen

electric fields or have eddy current heating, and so they are useful for a range of microwave

applications as well as guiding flux in coils. One example is the microwave equivalent

of optical Faraday rotation, which is used in a “magic T” to steer microwave signals in

different directions depending on whether they arrive at the input or the output port.

This apparent violation of reversibility is possible because magnetic interactions break

time reversal invariance, since the sign of time appears in the velocity in the basic ~v× ~B
law. Cables are often wrapped around ferrites, such as the beads on computer monitor

cables, to add inductance to filter out unwanted high-frequency components.

Equation (13.32) can include terms coupling non-adjacent spins. The exchange inter-

action between overlapping wave functions in equation (13.30) is called direct exchange;

it’s also possible for an exchange interaction to pass through many intervening particles.

This is called indirect exchange. An important example occurs in NMR, where bonding

electrons mediate an exchange interaction between atomic nuclei [Ernst et al., 1994], and

indirect exchange is the origin of the strength of rare-earth magnets [Buschow, 1991].

Although a great deal is known about the behavior of the Heisenberg Hamiltonian, quan-

titatively calculating the Jij ’s and its solution from first principles remain dauntingly

open problems because of the challenge of handling these many-body effects beyond the

independent electron approximation [Mattis, 1988].

At high temperatures, ferromagnets become paramagnets when thermal excitations

become more significant than the exchange energy. This is observed to be a sharp tran-

sition, with the saturation magnetization vanishing at the Curie temperature TC (Figure
13.4). Likewise, antiferromagnets become paramagnets above theNéel temperature. As a

ferromagnet is lowered below its Curie temperature, the saturation magnetization reaches

a limiting value when all of the spins in the material are aligned.

The remnant magnetization is what’s left of the saturation magnetization after the

applied field is taken away. If it is large, the material is said to be hard and is useful as

a permanent magnet. If it is small, the material is said to be soft. Microscopically, these

materials differ in their local anisotropy. Because the energy stored in a magnetic field is

E =
1

2µ

∫

B2 dV , (13.33)
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Figure 13.4. The temperature dependence of the saturation magnetization.

the energy will be minimized if the magnetic flux density is greatest in regions of high

permeability. Therefore, materials with high permeability “pull in” the field from around

them; that is why this property is called permeability. It can be used to guide the field

in a recording head or transformer core. Since there is dissipation associated with a hys-

teresis loop (Problem 13.5), these applications use a soft magnetic material with a narrow

hysteresis loop. This is particularly true of metallic glasses that are formed by rapidly

quenching metallic alloys to prevent the growth of crystalline ordering. Transformer core

materials are also often laminated from thin sheets; this reduces eddy current heating if

the laminations are perdendicular to the direction electrons are accelerated by the field.

Because of the exchange energy, in a ferromagnet the atomic spins are locally aligned

forming domains. However, the domain size is usually much smaller than the sample size

because of competing factors such as thermal fluctuations which can reorient domains,

and because of the energy stored in the fields produced by the domains. To see the latter

effect, consider what happens to a sample that is initially homogeneously magnetized

(Figure 13.5). There is a large energy that is stored in the external return flux, which can

be reduced by splitting the spins into two opposite domains so that the return flux does

not have to travel as far. This can be further reduced by splitting into four domains, and

so forth. The process does not continue indefinitely, because at the boundary between

domains the spins require a few hundred lattice spacings to change direction in what is

called a Bloch wall. Through the dot product, the exchange energy is proportional to

the cosine of relative spin orientations θ. In the limit of a small misalignment this can be
expanded as 1 − θ2. Expanding the wall over multiple spins incurs a linear increase in
energy from the number of spins, but saves a quadratic amount of energy by reducing

the relative angles. This spreads the wall out, up to a size limited by favorable global spin

alignment. The final domain size is a result of the tradeoff among all of these mechanisms;

characteristic sizes are 1–100 µm. Amagnetic bubble is a small domain that is just a single

loop of a Bloch wall; magnetic bubbles were once of interest for non-volatile memories,

but were limited by the speed at which they could be moved.

Each trip around a hysteresis loop starts with most of the spins pointing in the same

direction; because of temperature some will point in other directions. As an external field

is swept, domains with spins pointing in the opposite directions will be seeded and grow,
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Figure 13.5. Magnetic domains reduce return flux energy.

eventually taking over the entire sample. This process takes time; moving the field quickly

has little effect. Therefore the shape of a hysteresis loop will also depend on how fast the

field is changed, reaching a limit in the case of slow field changes. If the field does not

reach the saturation magnetization then some domains will be left with opposite spins.

This is why slowly reducing an oscillating magnetic field will demagnetize a sample. If

a hysteresis loop is examined in detail, the continuous curve is actually made of discrete

steps called Barkhausen steps. These arise from discontinuous jumps in the size of the

magnetic domains; within a single step the change in the magnetization is reversible.

13.2 MAGNETIC RECORDING

Magnetic recording started with Valdemar Poulsen crudely recording speech on a steel

wire in 1898 by using a electromagnet hung from a trolley running along the wire. Since

then the sophistication of the media and recording systems has progressed profoundly, but

the basic principle is unchanged: write the message as magnetization in a suitable media,

and then later detect that magnetization. Because thermal fluctuations can move domain

walls, all magnetic media will eventually erase themselves if left at room temperature;

like most digital media they are not suitable for very long-term archival storage unless

there is regular error correction.

13.2.1 Magnetic Media

Most magnetic media consist of ferrite particles in a binder. To give the sharpest and

most stable hysteresis curve, the particles are chosen to be just small enough (∼1 µm)

so that they cannot support a transverse domain wall. The oldest material used, and still

one of the most common, is the phase γ-Fe2O3 (gamma ferric oxide). It has a coercivity
of 300 Oe and a Curie temperature of 600 ◦C, although it undergoes a phase transition at

400 ◦C. Chromium dioxide (CrO2) became popular for analog recording because of its

higher coercivity of 450 Oe, but this comes at the price of a Curie temperature reduced

to just 128 ◦C. One of the highest coercivities occurs in BaFe12O19 at ∼6000 Oe, making
it useful for magnetic stripes on credit cards. This is actually too large to be useful for
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recording; Co–Ti is added to reduce the coercivity down to ∼1000 Oe. Other materials
can be added to improve the mechanical properties of the medium, such as ceramic

particles that help protect it from hard disk head crashes (discovered accidently from

using ceramic materials to grind iron oxide powder in a ball mill).

Magnetic tape is made by dispersing the ferrite in a solvent and binder and spreading

it on a substrate, typically a polyester such as mylar, that is ∼1 mil thick (0.001 inch,
25.4 µm). A strong field is applied to orient the particles along the tape axis, the solvent

is dried by heating, and then the tape is compressed and polished between rollers. Floppy

disks are made in a similar manner except that the particles are randomly aligned, leading

to a smaller remnant magnetization on the order of 1000 G instead of 1500 G. About

2000 square miles of recording media were coated in 1990.

The most sophisticated hard disks replace this process by the vacuum deposition of

thin magnetic films such as CoCr or CoNi. A film of 500 Å can have a coercivity of

1000 Oe, and when deposited on a glass or diamond-turned Al substrate it can be flat

and smooth enough to permit extremely close head–platter distances. Thin films also

have the advantage of hysteresis curves that are almost rectangular, so that the transition

between orientations is very sharp. Further improvements to the media are coming from

lithographic patterning to eliminate the interaction energy between adjacent bits, and

storing the bits with a vertical domain orientation to pack them together more closely

[Bertram et al., 1998; Todorovic et al., 1999]. Such refinements have brought magnetic

recording over a density of 100 Gbit/in2, challenging the diffraction limit of optical

storage.

13.2.2 Magnetic Recording

The most common recording heads contain an inductor wound around a loop of a mag-

netically soft permeable material such as permalloy (Ni78Fe22), which has a permeability

over ∼105. The large permeability guides the field to a gap that produces a fringing
field that is used for reading and writing (Figure 13.6). In a laminated head sheets of

permalloy approximately 1 mil thick are stacked and pressed; this helps confine the flux

within the head because there is a cost for it to cross between laminations, and it reduces

eddy current losses. The gap is polished and then filled with a spacer such as glass.

If an analog signal to be recorded was applied directly to the write head, the recording

would be dreadful because of the hysteresis of the media. This can be cured by adding a

high-frequency bias signal, typically in the range of 100–400 kHz and with an amplitude

∼10 times that of the desired signal. The bias takes the media quickly around the hys-
teresis loop. With no write signal, this just swings between the saturation magnetizations.

However, when the write signal is added, one side of the cycle is slightly less magnetized

than the other, and it was experimentally discovered that this difference is surprisingly

linear in the write signal as long as it is not too large. The high-frequency bias is removed

when the recording is read because it is far out of the bandwidth of the read electronics.

Permalloy is a mechanically soft material and so permalloy heads suffer from wear

and poor dimensional control. Much more durable heads, such as those needed for video

recording, are made from a ferrite with a layer of SiO2 grown at an interface to provide

the gap. The most precise heads are made by thin film deposition on a substrate of a
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Figure 13.6. An inductive recording head.

permalloy layer, a layer of copper coils, a top permalloy layer, and then a SiO2 overlayer;

these are used in very high density computer disks.

Videotape and digital audio tape systems require high frequencies, ∼10 MHz. Even
if the read and write electronics could operate at these frequencies, the corresponding

wavelength of the recording on the tape would be too short for the spins to follow. A

solution to this problem, developed by the Ampex Corporation around 1956, is to move

the head relative to the tape so that the relative speed between the head and the tape can

be much higher. This can be done with helical scanning, shown in Figure 13.7.

Figure 13.7. Tracks written by helical scan magnetic recording.

The heads that have been discussed so far use inductive coils for picking up the signal.
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As the size of the area that is written decreases it becomes necessary to use more and

more turns in the coil to maintain an adequate signal strength, but this increases the

inductance, slowing down the response of the head. Also, for a constant speed drive the

signal strength will vary from the edge to the center of the platter because the relative

velocity between the platter and the head changes. An alternative is magnetoresistive

heads, which use a material that has a resistance that depends on an applied magnetic

field. A common example is permalloy, which changes its resistance by a few percent in

the fields used for recording. Aside from having no inductance, magnetoresistive heads

have the great advantage that the response does not depend on the relative velocity of

the head and the substrate, and so it is expected that they will become dominant for

high-performance applications.

There has been a great deal of interest in giant magnetoresistance materials, such as

multilayer or granular structures of NiFeCo/Cu, which can have magnetoresistances of

tens of percent [Baibich et al., 1988]. These operate by using the field to modify spin-

dependent electron transport properties [Parkin, 1994]. Even larger magnetoresistance is

seen in materials related to La0.7Ca0.3MnO3 [Ramirez et al., 1997]. This change can be

100% or more, and has come to be called colossal magnetoresistance (of course).

13.2.3 Recording Systems

Commercial magnetic storage systems ranges from pocket players up to petabyte servers;

some sample parameters for examples across this spectrum are listed below. Perhaps

the most aggressive scaling has been in PC disk drives, which continue to get cheaper,

smaller, denser, and more reliable. Because of this, they are being assembled into RAID

(Redundant Arrays of Inexpensive Disks) systems to provide much greater capacity and

fault tolerance at prices well below traditional large storage systems. As with all other

aspects of magnetic storage, it is hard to beat mature solutions refined by big markets.

Audiotape (cassette)

• Frequency range: 20 Hz–20 kHz (CrO2 tape)
• Bias frequency: 100 kHz
• SNR: 80 dB (Dolby S)
• Tape speed: 1-7/8 inches per second
• Shortest wavelength: 2 µm

Videotape (VHS-SP)

• Tape speed: 1-5/16 inches per second
• Tape width: 0.5 in
• Track pitch: 58 µm
• Track angle from horizontal: 6◦

• Drum diameter: 2.45 in
• Drum rotation rate: 1800 revolutions per minute
• Luminance modulation: 3.4–4.4 MHz (FM)
• SNR: 42 dB
• Relative head speed: 220 inches per second
• Shortest wavelength: 1 µm
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Floppy Disk (3.5 in HD)

• Formatted capacity: 1.44 MB

• Data transfer rate: 500 kbit/s

• Bit density: 17434 bits per inch

• Track density: 135 tracks per inch

• Rotation rate: 300 revolutions per minute

Hard Disk (Toshiba MK7559GSXP)

• Disk size: 2.5 in

• Number of platters: 2

• Number of heads: 4

• Capacity: 750 GB

• Areal density: 541 Gbit per square inch

• Rotation rate: 5,400 revolutions per minute

• Media transfer rate: 1.4 Gbps

13.3 SPINTRONICS

spintronics [Wolf et al., 2001, Žutić et al., 2004, Awschalom & Flatté, 2007]

magnetoristance [Thomson, 1857]

GMR, CMR [Ramirez, 1997]

spin injection ferromagnet metal [Johnson & Silsbee, 1985] semiconductor [Hammar

et al., 1999]

spin valve [Dieny et al., 1991, Jedema et al., 2001]

magnetic tunnel junctions [Zhua & Park, 2006]

MRAM [Tehrani et al., 1999]

spin field-effect transistor SFET [Datta & Das, 1990]
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13.5 PROBLEMS

(13.1) (a) Estimate the diamagnetic susceptibility of a typical solid.

(b) Using this, estimate the field strength needed to levitate a frog, assuming a

gradient that drops to zero across the frog. Express your answer in teslas.

(13.2) Estimate the size of the direct magnetic interaction energy between two adjacent

free electrons in a solid, and compare this to size of their electrostatic interaction

energy. Remember that the field of a magnetic dipole ~m is

~B =
µ0
4π

[
3x̂(x̂ · ~m)− ~m

|~x|3

]

. (13.34)

(13.3) Using the equation for the energy in a magnetic field, describe why:

(a) A permanent magnet is attracted to an unmagnetized ferromagnet.

(b) The opposite poles of permanent magnets attract each other.

(13.4) Estimate the saturation magnetization for iron at 0 K.

(13.5) (a) Show that the area enclosed in a hysteresis loop in the (B,H) plane is equal
to the energy dissipated in going around the loop.

(b) Estimate the power dissipated if 1 kg of iron is cycled through a hysteresis

loop at 60 Hz; the coercivity of iron is 4×103 A/m.
(13.6) Approximately what current would be required in a straght wire to be able to

erase a γ-Fe2O3 recording at a distance of 1 cm?


