
15 Transducers

Information technology requires technology, and it requires information. From the ear-

liest computers (and people), external interfaces have been essential to their intelligence

[Turing, 1950]. Sensors are used to convert a parameter of interest to a from that is more

convenient to use. The most familiar sensors provide an electrical output, but many other

kinds of mappings are possible. An optical sensor that modulates light in a fiber might

be appropriate if interference, explosion, or speed is a concern. Sensors are sometimes

called transducers, although transduction is more correctly used to refer to bidirectional

mechanisms such as piezoelectricity that can convert between pressure and charge.

There are almost as many sensors as sensees. The enormous diversity of things that

can be measured, and of people doing the measuring, is reflected in the range of available

solutions. Because many of these mechanisms are complex, with embodiments that are

considered to be trade secrets, and the safety of nuclear reactors or rocketships depends

on them, the literature is a curious combination of profound insights and received wisdom

that is repeated for reasons of liability rather than scientific merit. There is certainly a

lot of room left for innovation.

We’ve already covered many important types of sensors. The purpose of this chapter is

not to fill in the remaining ones – that would fill a shelf full of books. It is to introduce some

of the physics that follows from relaxing assumptions we’ve been relying on, and show

the applications to sensing that then follow. The first section will drop the independence

of particle states used in deriving partition functions, which will lead to superconductivity

and magnetic field sensors that can resolve individual flux quanta. Then comes eliminating

the assumption that thermodynamic distributions are in equilibrium. Instead of just using

a p-n junction as a thermometer by measuring the reverse-biased current, we’ll see that
because it is not in thermal equilibrium the presence of an electrical current through it

lets it also act as a refrigerator. Finally, we’ll question whether space and time themselves

are independent or dependent variables, and find the relativistic corrections needed to

make GPS work.

15.1 MANY-BODY EFFECTS

Because most devices operate somewhere above absolute zero, we’ve relied on statistical

mechanics to find the occupancy of their available particle states. This has proceeded by

finding the states for a single particle, and then maximizing the entropy of the distribu-

tion over those states subject to appropriate constraints. While a plausible approach, this
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ignores the possibility that the multi-particle states are very different from those avail-

able to single particles. The consequences of these much more challenging calculations

are called variously many-body, cooperative, or collective effects. We’ll see next that

electrons in a metal provide a striking example of such behavior.

15.1.1 Superconductivity

In Chapter 11 electrons in a metal were found to have nearly-free plane-wave states,

occupied up to a Fermi energy EF. The negatively-charged electrons travel in a sea of
positive ionic charge. A reasonable, and quite incorrect, assumption is that the electrons

weakly repel each other. What actually happens is that the conduction electrons zipping

along at the Fermi energy quickly pass the much heavier positive ions. An ion is attracted

towards a passing electron, but by the time the ion begins moving the electron is long

since gone. A second electron that passes by will be attracted by the positive wake left by

the first electron, effectively being drawn towards the electron. What’s actually happening

is that the second electron is absorbing a lattice phonon excited by the first one.

To find the possible states of the two-electron system, let’s look at those that have

opposite momentum so that the combined system is at rest

ψ =
∑

k

ake
i~k·~x1e−i~k·~x2 =

∑

k

ake
i~k·(~x1−~x2) . (15.1)

This must satisfy the two-electron Schrödinger equation

− h̄2

2m

(
∇2
1 +∇2

2

)
ψ + V (~x1, ~x2)ψ = Eψ , (15.2)

where V is their effective interaction potential. Plugging in the wave function, multiplying
both sides by ei

~k′
·(~x1−~x2), and then integrating over all space and using the orthonormality

of the eigenstates gives

(E − 2ǫk) ak =
∑

k′

Vkk′ak′ , (15.3)

where ǫk are the single-particle eigenstate energies, and Vkk′ is the expectation value of

the interaction potential between a pair of momentum states.

Because of Pauli exclusion with all of the core electrons, ak will vanish for k below the
Fermi level kF (Chapter 11). And Vkk′ will be small above some cutoff k > kc, because
if an electron passes by an ion too quickly the ion won’t move. A Nobel-prize-worthy

approximation is to assume that the potential is zero below the Fermi energy EF and
also above a cutoff EF+Ec(kc), and has a constant value −V in between [Cooper, 1956].
Then the potential comes out of the sum

ak = −V
∑kc

k=kF
ak′

E − 2ǫk
, (15.4)

which can be simplified by summing both sides over k:

1

V
=

kc∑

k=kF

1

2ǫk −E
. (15.5)
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Because of the large number of states, the sum can be replaced by an integral weighted

by the density of states NF at the Fermi energy

1

V
= NF

∫ EF+Ec

EF

1

2ǫ−E
dǫ

=
NF

2
log

(
2EF + 2Ec −E

2EF −E

)

E
(

1− e−2/NFV
)

= 2EF
(

1− e−2/NFV
)

− 2Ece−2/NFV

E ≈ 2EF − 2Ece−2/NFV . (15.6)

This is a remarkable result: for any value of V , no matter how small, it is energetically
favorable for the electrons to form bound pairs. These are called Cooper pairs in honor

of Leon Cooper, who first did this calculation. At high temperatures thermal energies

exceed the binding energy, but as a metal is cooled it becomes significant.

Even more remarkable is the symmetry implication. Because electrons are fermions

their wave functions must be antisymmetric. But because a Cooper pair has two electrons,

interchanging a pair of electrons changes the sign twice, leaving it unchanged. This means

that Cooper pairs are bosons. And that means that an arbitrary number can be in the

same state, and in particular they can all be in the ground state. When this happens to

bosons it is called Bose–Einstein condensation, and it can even occur with entire atoms

[Anderson et al., 1995]. When it happens to Cooper pairs the result is superconductivity.

Superconductivity is explained by the BCS theory, named for its developers John

Bardeen and Robert Schrieffer along with Leon Cooper [Bardeen et al., 1957]. The

difficulty in working out the details of the Bose–Einstein condensation of Cooper pairs

is that each electron must wear two hats: it must be a member of a pair to act as a boson,

and it must also act as a fermion to provide the exclusion that makes pairing possible.

The resulting symmetry explains why superconductors carry persistent currents without

loss. In a normal metal, resistance occurs through electrons losing energy in inelastic

collisions to phonons. But in a superconductor, each electron is part of a collective state

that reflects not just its pairing but also its contribution through exclusion to many other

pairs. For one of these electrons to scatter it must destroy the symmetry of this much

larger state, an enormously unfavorable event that happens exceedingly rarely.

Since the pairs are locally all in the same state, a collective wave function ψ(~x, t) =√
n eiϕ can be defined, where |ψ|2 = n is the pair density and ϕ is their phase. Ginzberg

and Landau originally assumed this relationship [Ginzburg & Landau, 1950], and it was

later justified as an approximation to the full BCS theory when the density and phase

vary slowly compared to the pair size. In terms of ψ, the current associated with the pairs
can be found from the expectation value for their velocity ~v times their charge 2e

~J =

∫

ψ∗2e~vψ d~x . (15.7)

In the CGS units usually used for superconductivity, the momentum of a particle in an

electromagnetic field has an extra piece

~p = m~v + q ~A/c (15.8)

due to the force associated with moving through the vector potential ~A [Goldstein, 1980],
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therefore plugging in the momentum operator shows that the velocity is found from

~v = −i h̄
m
∇− q

mc
~A . (15.9)

The current is then

~J =

∫

ψ∗2e~vψ d~x

=

∫ √
n exp(−iϕ)2e

(

−i h̄
m
∇− 2e

mc
~A

)√
n exp(iϕ) d~x

=
2ne

m

(

h̄∇ϕ− 2e

c
~A

)

. (15.10)

Taking the curl provides a relationship between ~J and ~B

∇× ~J = −4ne
2

mc
∇× ~A = −4ne

2

mc
~B (15.11)

called the London equation. Since ∇× ~B = (4π/c) ~J ,

∇×∇× ~B =
4π

c
∇× ~J

−∇2 ~B = −4π
c

4ne2

mc
~B . (15.12)

This differential equation shows that the magnetic field is exponentially screened at the

surface, and hence that the supercurrent travels within the London penetration depth

to cancel the field in the interior. This is the origin of theMeissner effect introduced in

Chapter 13: superconductors expel magnetic fields.

Consider now a superconducting loop threaded by a flux Φ. In the interior where

there are no currents, equation (15.10) becomes h̄c∇ϕ = 2e ~A. Integrating this around
the loop,

h̄c∇ϕ = 2e ~A

h̄c

∮

∇ϕ · d~l = 2e
∮

~A · d~l

h̄c∆ϕ = 2e

∫

∇× ~A · d ~A

= 2e

∫

~B · d ~A

= 2eΦ

∆ϕ =
2e

h̄c
Φ . (15.13)

But

∆ϕ = 2πm (15.14)

must hold, where m is an integer, so that the phase is continuous around the loop. This

means that the supercurrent in the loop varies as a function of the external field to enforce

a flux quantization condition

Φ =
2πh̄c

2e
m =

hc

2e
m ≡ Φ0m . (15.15)
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15.1.2 SQUIDs

As with semiconductors, superconducting devices rely on junctions. Consider two super-

conductors separated by an insulating layer so thin that Cooper pairs can tunnel through

it. This geometry is called a Josephson junction, after Brian Josephson who as a graduate

student predicted its unexpected behavior [Josephson, 1962].

Let ψ1 and ψ2 be the wave functions on either side of the junction, and r be the
characteristic rate for tunneling. Then the rate of change of the wave functions due to

tunneling is found from the time-dependent Schrödinger equation

ih̄
∂ψ1
∂t

= h̄rψ2 ih̄
∂ψ2
∂t

= h̄rψ1 . (15.16)

Substituting ψ1 =
√
n1 exp(iϕ1) and ψ2 =

√
n2 exp(iϕ2) shows that

ih̄
1

2
√
n1

∂n1
∂t

exp(iϕ1) + ih̄
√
n1 exp(iϕ1) i

∂ϕ1
∂t

= h̄r
√
n2 exp(iϕ2)

∂n1
∂t

+ 2in1
∂ϕ1
∂t

= −2ir√n1n2 exp[i(ϕ2 − ϕ1)] , (15.17)

which has a real part

∂n1
∂t

= 2r
√
n1n2 sin(ϕ2 − ϕ1) . (15.18)

The current density J across the junction is proportional to the rate of change of the
pair density. If the superconductors are identical then n1 ≈ n2, so combining all the
constants into a coefficient J0 gives

J = J0 sin(ϕ2 − ϕ1) . (15.19)

This is quite unlike anything we’ve seen before: there is a current in the absence of an

applied voltage, with a sinusoidal dependence on the quantum phase difference. This is

called the DC Josephson effect.

Now turn on a potential V across the junction, adding an energy term to the Hamil-

tonian from the pair charge −2e

ih̄
∂ψ1
∂t

= h̄rψ2 − eV ψ1 ih̄
∂ψ2
∂t

= h̄rψ1 + eV ψ2 . (15.20)

Once again plugging in the wave functions on each side,

∂n1
∂t

+ 2in1
∂ϕ1
∂t

= −2ir√n1n2 exp[i(ϕ2 − ϕ1)] + i
2eV

h̄
n1 , (15.21)

which has an imaginary part

∂ϕ1
∂t

= −r
√
n2
n1
cos(ϕ2 − ϕ1) +

eV

h̄
. (15.22)

Taking n1 ≈ n2 and subtracting the corresponding equation for ∂ϕ2/∂t leaves

∂(ϕ2 − ϕ1)

∂t
= −2eV

h̄
. (15.23)
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The current density through the junction is found by integrating this and plugging it

into the real part of equation (15.21):

J = J0 sin

(

−2eV
h̄

t

)

. (15.24)

Now the current oscillates, with the proportionality between frequency and voltage given

by the ratio of fundamental constants e/h̄. This is the AC Josephson effect.

JFJ

Figure 15.1. A SQUID. Current flows through two thin insulating barriers in a

superconducting loop.

Finally, connect two Josephson junctions in a loop to from a Superconducting Quan-

tum Interference Device (SQUID), as shown in Figure 15.1. From equation (15.13) the

phase difference around the loop must be 2eΦ/h̄c, and from equation (15.19) the total
current is the sum over the two branches, each of which goes as the sine of the phase

difference over the junctions, so the combined current is

J = J0
[

sin
(

ϕ0 +
e

h̄c
Φ
)

+ sin
(

ϕ0 −
e

h̄c
Φ
)]

= 2J0 sin(ϕ0) cos

(
eΦ

h̄c

)

, (15.25)

where ϕ0 is an overall phase. Because of the interference between the two branches
the current is a periodic function of the flux, which is why this geometry is called an

interferometer. What makes it so interesting is the size of the period. A single flux

quantum is just

Φ0 =
2πh̄c

2e
=
hc

2e
= 2.07×10−7 G · cm2 . (15.26)

Measuring the current oscillations in a SQUID is not only the most sensitive way to

detect magnetic fields, it can also be used to determine many other small quantities

(such as voltage) by converting them to a magnetic field first (for voltage, with a current

loop). Superconducting tunnel junctions can also be used as the basis for a high-speed,

low-dissipation logic family [Likharev, 1999].

15.2 NON-EQUILIBRIUM THERMODYNAMICS

Many-body effects can profoundly change the states available to a system, as we saw in

superconductivity, but these states are still populated in equilibrium with the maximum-

entropy distribution (Section 3.4). Here we’ll relax the assumption of thermal equilibrium,

and find still more surprises in the behavior of electrons in a metal.
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The entropy S is an extensive quantity that is a function of the size of a system,
unlike intensive properties like temperature that have the same value in subsystems. It

will in turn depend on other extensive variables, such as the total energy and number

of particles, with densities f1, f2, . . . . Using the chain rule, the rate of change of the
entropy is

∂S

∂t
=

∑

i

∂S

∂fi

∂fi
∂t

≡
∑

i

Fi
∂fi
∂t

. (15.27)

This defines intensive thermodynamic forces Fi conjugate to the fi’s, which will vanish
at the peak of the entropy. If there is a current density ~Ji transporting the quantity fi
(such as the local number of electrons), it will likewise lead to an entropy current

~JS =
∑

i

Fi
~Ji . (15.28)

If fi is conserved, then by Gauss’ Theorem the local rate of change will be due to the
divergence of the current

0 =
∂fi
∂t

+∇ · ~Ji . (15.29)

Because entropy can be created and destroyed, its rate of change is

dS

dt
=
∂S

∂t
+∇ · ~Js

=
∑

i

Fi
∂fi
∂t

+∇ ·
∑

i

Fi
~Ji

=
∑

i

Fi
∂fi
∂t

+
∑

i

~Ji · ∇Fi +
∑

i

Fi ∇ · ~Ji
︸ ︷︷ ︸

−∂fi
∂t

=
∑

i

~Ji · ∇Fi . (15.30)

Since TdS = dQ, the left hand side represents dissipation. The right hand side is the
product of currents and forces that drive them; think of P = IV . It is experimentally
found in many systems near equilibrium that these currents and forces are related linearly,

~Ji =
∑

j

Lij∇Fj , (15.31)

such as Ohm’s Law for electrical conduction or Fourier’s Law for thermal conduction.

This equation says that the current moves in the direction that maximizes the entropy,

with a flux proportional to the gradient, defining linear non-equilibrium thermodynam-

ics.

The microscopic laws in a system put important constraints on the macroscopic Lij

coefficients. To see this, remember that

p(S) =
eS/kB
∫
eS/kB

(15.32)
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(equation 3.46). Therefore the product of one of the extensive variables fi and a ther-
modynamic force Fj is

〈fiFj〉 =
∫

fiFjp(~f ) d~f

=

∫

fi
∂S

∂fj
p(~f ) d~f

=

∫

fi
∂S

∂fj
eS(

~f )/kB d~f
∫

eS(
~f )/kB d~f

= kB

∫

fi
∂

∂fj
eS(

~f )/kB d~f
∫

eS(
~f )/kB d~f

= −kB

∫
∂fi
∂fj

eS(
~f )/kB d~f

∫

eS(
~f )/kB d~f

(integrate by parts)

= −kBδij . (15.33)

For convenience, choose units for f and F that vanish in equilibrium. Then their

deviation from equilibrium will relax with the same linear coefficients

dfi
dt
=
∑

j

LijFj . (15.34)

This is an experimentally-justified conjecture first made by [Onsager, 1931]. It implies

that
〈

fi
dfj
dt

〉

=
∑

k

Ljk〈fiFk〉

= −kBLji (15.35)

and
〈
dfi
dt
fj

〉

=
∑

k

Lik〈FkFj〉

= −kBLij . (15.36)

The time derivatives are defined as the expectations of the change over an interval τ
that is long compared to the time scale of microscopic dynamics but short compared to

the time scale for macroscopic changes,

〈

fi
dfj
dt

〉

=
1

τ

〈
fi(t)

[
fj(t + τ )− fj(t)

]〉

=
1

τ
〈fi(t)fj(t + τ )〉 −

1

τ
〈fi(t)fj (t)〉 (15.37)
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and
〈
dfi
dt
fj

〉

=
1

τ
〈[fi(t + τ )− fi(t)] fj(t)〉

=
1

τ
〈fi(t)fj (t + τ )〉 −

1

τ
〈fi(t)fj(t)〉 . (15.38)

But most physical laws, other than magnetism, are unchanged if t→ −t, therefore
〈fi(t)fj(t + τ )〉 = 〈fi(−t)fj(−t− τ )〉

= 〈fi(t + τ )fj(t)〉 . (15.39)

This requires that
〈
dfi
dt
fj

〉

=

〈

fi
dfj
dt

〉

(15.40)

and hence

Lij = Lji . (15.41)

This is Onsager’s Reciprocity Theorem. It provides a direct connection between appar-

ently unrelated phenomena, as we’ll see in the next section. If there are magnetic fields

present, then B must be replaced with −B along with changing the sign of t.

15.2.1 Thermoelectricity

Now let’s apply this theory to electrons in a metal. Their energy U will vary with changes
in both the entropy dS and the particle number dN

dU = TdS + (µ + qV )dN (15.42)

through the chemical potential µ (equation 11.5) and the electrical potential V . The sum
µ + qV is called the electrochemical potential.

The entropy change is thus

dS =
1

T
dU − µ + qV

T
dN , (15.43)

and the currents are

~JS =
1

T
~JU − µ + qV

T
~JN , (15.44)

or since TdS = dQ the heat current JQ is

~JQ = ~JU − (µ + qV ) ~JN . (15.45)

Therefore from equation (15.30) the derivative of the entropy is

dS

dt
= ~JU · ∇

(
1

T

)

− ~JN · ∇
(
µ + qV

T

)

= ~JU · ∇
(
1

T

)

− (µ + qV ) ~JN · ∇
(
1

T

)

− 1

T
~JN · ∇(µ + qV )

=
[

~JU − (µ + qV ) ~JN
]

︸ ︷︷ ︸

~JQ

·∇
(
1

T

)

− ~JN · 1
T
∇(µ + qV ) . (15.46)



15.2 Non-Equilibrium Thermodynamics 245

Near equilibrium, these pairs of conjugate currents and forces will be related by linear

coefficients

~JQ = LQQ∇
(
1

T

)

− LQN
1

T
∇(µ + qV )

~JN = LNQ∇
(
1

T

)

− LNN
1

T
∇(µ + qV ) . (15.47)

The first represents the thermal current, and the second is the electrical current.

Seebeck PeltierT0

JQ

T1

A

B

A

B

B

JQ

T1

V

JN

T0

T0

Figure 15.2. Thermoelectric effects.

Crucially, these coefficients are material-dependent. Consider the two cases in Figure

15.2. In the first, two materials A and B meet at a junction at a temperature T0, and
are connected to a voltmeter at a temperature T1. Since the voltmeter draws no electrical
current, JN = 0, so from equation (15.47)

0 = LNQ∇
(
1

T

)

− LNN
1

T
∇(µ + qV )

−∇(µ + qV ) = −TLNQ

LNN

∇
(
1

T

)

=
LNQ

TLNN

∇T

≡ S∇T . (15.48)

The gradient of the electrochemical potential is equal to the thermal gradient times the

thermopower or Seebeck coefficient S. Integrating the thermal gradient along A and

B will give the same result T1 − T0, but integrating the electrochemical gradient will
give a different answer because the materials are different. This is called the Seebeck

effect, and is used in thermocouples to measure temperature. There are many standard
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thermocouple pairs with known dependence of S on T . For example, a junction between
copper and constantan (an alloy of 55% Cu with 45% Ni), called a type T thermocouple,

produces 40.9 µV/◦C at 25 ◦C.

There is one subtlety in the use of a thermocouple: there will be extra unintentional

thermocouple junctions at the contacts between the leads and the voltmeter. Eliminating

their influence requires either fixing their temperature (historically, with an ice bath)

or measuring it (typically with a temperature-dependent resistor or diode, Chapter 11).

While it might appear to be nonsensical to use a thermometer in order to make a ther-

mometer work, among the many desirable features of thermocouples that lead to their

routine use are their low cost, small size, and wide temperature range. These are all

consequences of the fact that the sensor is just a junction between dissimilar metals. For

many applications these benefits more than justify the addition of an extra electronic

thermometer that does not need compensation at the instrument connections.

The second circuit in Figure 15.2 drives an electrical current around a loop between

the two materials, which are held at the same temperature. Now∇(1/T ) = 0, so the ratio
of the currents is

JQ
JN

≡ Π = LQN

LNN

(15.49)

This defines the Peltier coefficient Π. To maintain the isothermal condition, a thermal

current must flow into one junction and out of the other one if there is an electrical

current. That means that the circuit acts as a heat pump, generating heat on one side and

removing it on the other. Unlike ordinary ohmic heating this process is reversible, and

unlike ohmic heating it can also be used to cool things.

Because the Onsager relations require that LQN = LNQ,

Π = ST . (15.50)

There’s no a priori reason to expect a relationship between the coefficients in circuits act-

ing as a thermometer and a refrigerator; it is a consequence of the time-reversal invariance

of their governing equations.

Materials for practical Peltier coolers require a large thermopower, along with a high

electrical conductivity σ and low thermal conductivity κ. These can be combined to
define a dimensionless figure of merit

ZT ≡ S2σ

κ
. (15.51)

The most common choice is doped semiconducting bismuth telluride, which has ZT ∼ 1.
The junctions in a Peltier cooler are wired in series to increase the device resistance in

order to reduce the ohmic heating losses, and they can be stacked in parallel to increase

the temperature drop. They find application in cooling without moving parts everything

from chips to submarines. One of the most important applications is cooling other sen-

sors, such as infrared detectors, which have sensitivities that improve with decreasing

temperature. The maximum temperature difference that can be achieved is set by the

decrease of the thermopower at low tempeatures as the electron scattering rate that es-

tablishes the thermalization decreases. A temperature difference of about 100 ◦C is the

limit for bismuth telluride with no heat load, with a maximum efficiency ratio of heat

pumped to power supplied of ∼0.25–0.5 due to internal losses.
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15.2.2 Piezoelectricity

A second important example of a reciprocity relationship is between force and electric

fields, called piezoelectricity. If an electric field ~E and a stress (force per area) ~T are

applied to a material, the resulting polarization ~P is

~P = d~T + χ~E , (15.52)

where χ is the susceptibility matrix and d is the piezoelectric matrix. The corresponding
strain ~S (relative displacement) is

~S = c~T + d~E , (15.53)

where c is the mechanical compliance matrix. Because of Onsager’s Theorem the d’s are

the same. Once again, there’s no a priori reason to expect the electrical field produced in

response to a mechanical force to have the same coefficient as the displacement produced

by a field.

F F

Figure 15.3. Charge locations in the unit cell for ferroelectric (left) and non-ferroelectric

(right) piezoelectric materials.

There are two kinds of piezoelectricity, shown in Figure 15.3. In a ferroelectric material

there is a dipole moment that is intrinsic to the unit cell because of offset interpenetrating

lattices. The moment will change its value if the aspect ratio of the unit cell changes. In

non-ferroelectric piezoelectricity there is no intrinsic moment, but an applied force can

break the symmetry of the local charge distribution and induce one. Ferroelectrics are

always piezoelectric, but the converse is not true. Barium titanate (BaTiO3) is an example

of the former; quartz the latter. Even bones are piezoelectric, which is how they grow to

best resist stress [Fukada & Yasuda, 1957].

Because of the reciprocity relationship, piezoelectrics are equally useful as acoustic

detectors and generators. If electrodes are deposited on the top and bottom of a piezo-

electric, a mechanically-induced change in the polarization will induce charge in the

electrodes, and vice versa. Since the material is a charge source rather than a voltage

source the response falls off at low frequencies, and piezoelectrics need to be used with

high input-impedance instrumentation to not load them.

If the relative charge positions can change in the unit cell, ferroelectrics will have
~E, ~P curves analogous to the ~H, ~M curves of a ferromagnet (hence the name), and a

Curie temperature above which their ordering is lost. The hysteresis can be applied in

electrically-addressed non-volatile memories [Scott, 1998] and displays [Surguy, 1993].

Ferroelectric piezoelectrics are poled by heating the material under an applied field to
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induce the polarization, possibly along with a mechanical stress to align crystalline do-

mains. The anisotropic piezoelectric axes are conventionally defined so that “3” points in

the direction of the thickness, “1” points in the extrusion direction, and “2” is transverse.

The d33 coefficient corresponds to a force applied across the thickness inducing a field in
that direction. The common ceramic piezoelectric PZT (Pb(Zr,Ti)O3) has a d33 of ∼280
pC/N. The polymer PVDF (polyvinylidene fluoride) has a d33 of −33 pC/N. While this
is smaller than that of PZT, PVDF is attractive because it is thin, flexible, and broadband

[Kawai, 1969]. The d31 coefficient, which represents a transverse field being produced
by in-plane stress, is typically an order of magnitude smaller, but is very useful because

the mechanical response can be much greater.

15.3 RELATIVITY

The last assumption to relax is that time and space are independent of the observer. While

that might sound more like a matter for philosophy or science fiction than engineering

design, relativistic effects have significant implications for applications such as navigation

that rely on accurate time-keeping. To make that connection we’ll need to first look at

how time is measured, then how relativity corrects it, and finally at position measurement.

15.3.1 Clocks

Cm Lm Rm

Ce

3

1

2

Figure 15.4. The effective circuit for a piezoelectric resonator, and the thickness shear mode.

The reciprocal relationship between polarization and displacement in a piezoelectric

material means that its electrical behavior depends on its mechanical properties. Figure

15.4 shows the effective circuit for a piezoelectric crystal between electrodes. In paral-

lel with the electrical capacitance Ce, there is a series RLC circuit associated with its

mechanical response. The capacitance Cm represents energy storage in physical displace-
ments, the inductance Lm comes from the inertial mass of the material, and the resistance
Rm is due to its mechanical dissipation. Because of the piezoelectricity, these all appear
as electrical components connected to the electrodes.

Now consider what happens when this circuit is connected in the feedback network of

an amplifier. If an amplifier’s output is related to its input by inverting gain y = −Ax,
and if the feedback circuit scales the output by a complex coefficient x = F (ω)y, then
x = −AF (ω)x. This is only possible if AF (ω) = −1, therefore the phase of F must be
π (or a higher multiple). Problem 15.3 will show that this phase shift occurs around the
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resonance frequency ω = 1/
√
LmCm. This means that any noise initially in the circuit

at that frequency will grow exponentially until it either clips or is intentionally limited.

This mechanism is used to generate the clocks for almost all digital systems.

The great advantage of using a piezoelectric crystal rather than an ordinary inductor

and capacitor comes in the performance of its effective components. Quartz (SiO2) is the

most commonly-used material, because it is literally as cheap as sand, and because its

mechanical parameters can have a weak thermal dependence. The resonant mode used

more frequently is a thickness shear, but flexural resonances and higher-order modes can

also be excited, and it’s possible to use a Surface Acoustic Wave (SAW) instead of

these bulk acoustic waves [Kino, 1987]. For a quartz resonator, Cm is typically on the
order of femtofarads and Lm is millihenrys, giving resonant frequencies on the order of
megahertz, with overtones up to hundreds of megahertz. Capacitors and inductors in

this range would be much more susceptible to parasitic coupling and thermal drift. Even

worse, the Q of a conventional LC circuit is ∼ 10−100. For a quartz resonator, it’s
∼ 104−105 because the mechanical damping due to internal friction is much smaller
than the comparable electrical resistance. Since the Q is equal to f/δf , the inverse limits
the relative uncertainty δt/t in the time derived the resonator.
The dominant frequency variation in a quartz resonator comes from thermal drifts

changing its stiffness. This can be corrected by measuring the temperature and using it

to tune the resonator circuit in a TCXO (Temperature Compensated Crystal Oscilla-

tor), reducing the relative error to ∼ 106. Even better, an OCXO (Oven Compensated
Crystal Oscillator) fixes the temperature of the resonator, and can do that at the tem-

perature where quartz is least sensitive to drift, reducing the short-term relative error to

∼ 10−8 [Walls & Vig, 1995].
Measuring time to a part in 108 may sound impressive, and it is, but it’s not hard to

need more. An error of 1 ns will be made in ∼10−9 s×108 = 0.1 s. Since electromagnetic
radiation travels 1 ft/ns, this means that if a quartz oscillator is used to determine the

arrival time of an RF signal, it will be off by the equivalent of 10 feet after running for 1

second, a difference of some concern if you’re trying to use it to land an airplane. And as

important as the precision (variance) is the accuracy (bias). The resonant frequency of a

quartz oscillator is determined by its mechanical properties. Even if these are sufficiently

stable, if the resonator wasn’t cut to exactly the right length or if its stiffness changes

from aging then the airplane will predictably land in the middle of a field.

Both of these problems are solved by recognizing that macroscopic objects can differ,

but the microscopic properties of all atoms are identical. Quantum mechanically there is

no way to distinguish between two atoms, so clocks based on atomic resonators will keep

the same time. This is an old idea [Kusch, 1949] that has both required and enabled a

great deal of new technology [Major, 1998].

Cesium has one stable isotope, 133Cs, with a nuclear spin of I = 7/2. There is a single
outer electron, which in its ground state is in an s orbital with angular momentum L = 0.
Therefore, since the electron spin is S = 1/2, its total angular momentum J = L + S
can be ±1/2. If the electron is parallel to the nucleus, the angular momentum of them
together is F = I + J = 4, and if it is antiparallel F = 3. These energies will be split

because of dipole–dipole coupling between the electron and the nucleus. This is called

fine structure, because the scale is smaller than transitions between outer electron levels.

Chapter 16 will discuss the addition of quantum angular momentum, and the allowed
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Figure 15.5. Cesium energy levels.

spin states. The component m aligned with a magnetic field is quantized in integer steps,

so that for F = 3,m = −3,−2, . . . , 2, 3. The energies of these states are split due to
the dipolar coupling to the field, revealing hyperfine structure as the field is increased.

In the limit of a strong magnetic field the relative orientation of the electron and nuclear

spins no longer matters, and the energy depends only on the alignment with the field.

This is shown in Figure 15.5.

Now consider the atomic clock shown in Figure 15.6. Cesium atoms emerge from

an oven into a vacuum chamber, and then pass through a strong magnetic field with

a gradient. It’s energetically favorable for one group of states to be in a weaker field,

and the other in a stronger field, so they split into two beams. An aperture selects just

one of these. The cesium atoms then enter into a region with a uniform magnetic field,

carefully screened from external fields. Microwaves are applied with a frequency tuned

to the F = 3→ 4 transition betweenmF = 0 levels, which to first order are independent

of the magnetic field. The field used is just strong enough to split the hyperfine states,

but not so strong as to start separating the multiplets.

Then the cesium beam passes through another strong gradient field. With no RF ap-

plied, the atoms once again are attracted in the direction of the stronger field, pulling

them to a detector. But if the RF exactly matches the F = 3 → 4,mF = 0 transition

frequency, atoms will emerge in the multiplet with the opposite orientation, being at-

tracted to the weaker field and changing the flux reaching the detector. By modulating

the RF, and feeding back the detector signal, its frequency can be locked onto the res-

onance. The frequency of this transition has now become the definition of the second,

ν = 9 192 631 770 Hz. The spectral linewidth is limited by the frequency–time uncer-
tainty from passing through the field, which is improved by making the middle region

as long as possible. A Ramsey cavity reduces the required homogeneity by applying the

RF coherently at just the beginning and end of the interval [Ramsey, 1980].
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Figure 15.6. Cesium beam atomic clock.

Switching from quartz to a cesium beam reduces the relative uncertainty in the time to

∼10−12. By using lasers to perform the state selection, and to cool the atoms so that they
can be dropped in a gravitational fountain, this can be extended to ∼10−15 [Gibble &
Chu, 1993]. And this spectacular performance is as stable and repeatable as the quantum

states of the atom, which as far as we can tell does not have a cosmological drift.

15.3.2 Time

Atoms might not drift, but time itself can. This shocking conclusion follows from the

failure of the Michelson–Morley experiment in 1887 to observe a difference in the speed

of light moving parallel and perpendicular to the Earth’s orbit that would be caused

by motion through a medium carrying electromagnetic waves. This, plus Lorentz’s de-

velopment of transformations between inertial frames that leave Maxwell’s equations

unchanged, led to the theory of special relativity [Einstein, 1916]. The lack of an elec-

tromagnetic ether also helped lead to the recognition that electromagnetic radiation is

quantized in photons.

d = ctsaucerr = ctlab

x =  tlab

Figure 15.7. Time dilation.

Figure 15.7 shows why the experimental observation that the velocity of light is con-

stant regardless of the relative motion of the emitter and detector implies that time must

not be. A flying saucer is passing by with a velocity v. At t = 0 there is a flash of light,
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and both a stationary observer in the lab and a moving observer on the flying saucer

synchronize their clocks. If the saucer has a diameter d, the flash will reach the far end
when d = ctsaucer. At that instant the rocket will have traveled x = vtlab, and in the lab
frame the light will have traveled a distance r = ctlab. The times in the two frames can
be related by reconciling this geometry:

r2 = x2 + d2

c2t2lab = v
2t2lab + c

2t2saucer

tlab =
tsaucer

√

1− v2/c2

≡ γtrocket . (15.54)

More time appears to pass in the lab than on the saucer, with time in the moving frame

stopping in the limit v → c (!). This time dilation must be the most dramatic application
of Pythagoras’ Theorem.

Scaling time in turn implies that momentum is also scaled between moving frames,

p = mv = m
dx

dt
→ m

dx

dt
γ = mvγ . (15.55)

Since energy is the integral of force times displacement, and force is the rate of change

of the momentum in a frame, the energy after accelerating from 0 to v is

E =

∫ v

0

F dx

=

∫ v

0

dp

dt
dx

=

∫ v

0

dx

dt
dp

=

∫ v

0

v′ dp

=

∫ v

0

v′ d(mv′γ)

= m

∫ v

0

v′ d

[

v′
(
1− v′2/c2

)1/2

]

= m

∫ v

0

v′
[

1
(
1− v′2/c2

)1/2
+

v′2/c2
(
1− v′2/c2

)3/2

]

dv′

= m

∫ v

0

v′
(
1− v′2/c2

)3/2
dv′

=
mc2

(
1− v2/c2

)1/2

= mc2γ . (15.56)
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In the low-velocity limit this has the famous form

E =
mc2

(
1− v2/c2

)1/2
≈ mc2 +

1

2
mv2 . (15.57)

The appearance of a rest mass energy mc2 associated with matter rather than motion had
enormous implications for physics (and everything else).
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Figure 15.8. Gravitational red shift.

Now consider what happens when a mass m is moved in the gravitational field of a

mass M from a radius r′ to r, as shown in Figure 15.8. The rest mass energy doesn’t
change, but the gravitational potential energy does. From quantum mechanics we know

thatE = hν, so that in either position it’s possible for all of the energy (rest plus potential)
to be converted into a photon with frequency E/h. But then there’s a problem, because
if the photon instead of the mass travels from r′ to r, the energies no longer match. By
converting the photon back into mass, depending on the direction it travels it’s possible

to either run the cycle as a perpetual motion machine or cause the mass to vanish. Since

that’s an appealing but as far as we know entirely impossible outcome, the more plausible

conclusion is that the frequency of light must depend on gravity. This is called the

gravitational red shift.

In the last section we saw that electromagnetic oscillations define time, so the relative

time at two radii must also be scaled by the ratio of the frequencies

t =
1− GM

rc2

1− GM

r′c2

t′ . (15.58)

Time slows down as gravity increases, one of the most surprising predictions from general

relativity, the extension of special relativity to include gravity [Einstein, 1905]. The seeds

of quantum mechanics were lurking in the invariance of the speed of light in special

relativity, and we obtained the red shift by combining quantum mechanics with special

relativity, but to date gravity itself has defied a quantum explanation [Hawking, 1993].

The apparent passage of time depends on motion, and on gravity. While not familiar

from our non-relativistic everyday experience, these effects are not only measurable by an

atomic clock, they are essential corrections needed by practical electromagnetic ranging

systems (Problem 15.5).
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15.3.3 Position

The history of time is intimately tied to the history of navigation. The latitude of a

ship at sea can easily be determined from the stars, but because of the Earth’s rotation a

reliable time reference is needed to find its longitude. A catastrophic shipwreck in 1707

led the British government to offer a large prize for an improved chronometer, which

was eventually claimed by John Harrison in 1765 for a clever mechanical design good to

better than 1 s/day, a relative error of 10−5 that is competitive with today’s quartz clocks

[Sobel, 1996].

British ships sailing from London set their chronometers by observing a red ball

dropped on a pole above the Royal Observatory in Greenwich at 1 pm every day (chosen to

follow noon astronomical observations). This is why balls are dropped to mark new years,

and why UTC (Coordinated Universal Time), originally called GMT (Greenwich

Mean Time), is still measured from the zero degree meridian that passes through the

Observatory. While modern position measurement systems have improved on the means

for clock distribution, they still rely on timing measurements made relative to a reference

event at a known time and location.

Schemes for timing radiation scattered from a passive object include RADAR (RAdio

Detection And Ranging) [Skolnik, 1990], LIDAR (LIght Detection And Ranging),

and SONAR (SOund Navigation And Ranging). Acoustic ranging is the simplest to

implement because of the slow propagation speeds: at 20 ◦C the speed of sound is 343

m/s in air, 1482 m/s in water, and 5960 m/s in steel. These vary with temperature

and ambient conditions, requiring environmental corrections and limiting the accuracy

of absolute measurements. The index of refraction for light is a weaker function of

atmospheric conditions, and it can propagate much further, but optical ranging requires

timing on much faster scales. A time of flight measurement determines the distance

directly from the arrival delay

d = v ∆t ⇒ ∆t =
d

v
. (15.59)

This can be converted to a phase measurement by modulating the light with an amplitude

envelope with a frequency ν, so that an observed modulation phase shift ∆ϕ is related
to the distance by

d =
∆ϕ

2π

v

ν
⇒ ∆ϕ =

2πνd

v
. (15.60)

Now ν can be selected to bring ∆ϕ into a convenient range. This is how laser range-
finders work [Rüeger, 1990].

In all of these systems the transmitter and receiver share a clock so that the timing

needs only be reliable over the propagation interval. In a bistatic configuration the trans-

mitter is separated from the receiver, putting much more stringent demands on their

synchronization. And if an active receiver seeks to directly determine its position from

multiple transmitters, they must each have reliable independent time references. The

development of atomic clocks that can fly in a satellite makes this possible globally in the

GPS (Global Positioning System) [Bhaskar et al., 1996].

GPS uses the NAVSTAR (NAVigation System with Timing And Ranging) con-

stellation of 24 satellites at an altitude of 20 200 km in six orbital planes at an inclination
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to the equator of 55◦. Each satellite transmits a message containing its orbital parameters

(which are frequently updated from tracking ground stations) and the time from onboard

atomic clocks. Knowledge of the distance to one satellite locates the receiver on a sphere,

two satellites constrain it to a curve, and three to a pair of points (one of which is usu-

ally unphysical). To eliminate the need for the receiver to have an independent atomic

clock to determine the range, the signal from a fourth satellite is used to overdetermine

the geometry and let the three-dimensional position be found using only relative arrival

measurements that can be performed with a quartz oscillator.

The satellites transmit at two frequencies, 1575.42 MHz and 1227.6 MHz, to enable

correction of ionospheric propagation delays. To improve both the timing resolution

and the interference rejection a spread spectrum modulation is used. There are two

codes. The first, C/A (Coarse/Acquisition), has a sequence of 1023 chips that repeats

every millisecond. This is used for the Standard Positioning Service (SPS) available

to anyone, and to transmit the acquisition information for the cryptographically-encoded

Precise Positioning Service (PPS) that has a period of seven days and is restricted to

the military.

The resolution of PPS is on the order of 10 m. The possible C/A resolution is about

40 m; this was degraded by the infamous Selective Availability (SA) program to 100 m to

limit the strategic use of GPS. These intentional random errors were eliminated inDGPS

(Differential GPS) by using the signal from a ground station with a known location to

deduce the correction. With averaging, GPS is used for sub-centimeter measurements of

geolotical motion [Herring, 1999].

Problem 15.5 looks at the importance of relativistic corrections to the nanosecond

timing of the GPS atomic clocks. Relativity can also be applied directly to measure

rotation through the Sagnac effect. It will take light a time

τ =
2πr

c
(15.61)

to be guided by mirrors or a fiber around a ring of radius r. If the ring is rotating at a
rate Ω, the tangential velocity is

Ω

(
rad

s

)

× 1 cycle

2π rad
× 2πr

1 cycle
= Ωr . (15.62)

The speed of light is the same in the ring frame and in the laboratory frame, but the

distance traveled is not. During the time τ the perimeter of the ring will have advanced
by a distance Ωrτ . If the light is traveling in the direction of rotation this distance is
added to its path, and if it is traveling in the opposite direction it is subtracted. The

difference between the two paths is

∆l = 2τΩr =
4πΩr2

c
. (15.63)

Beams sent in both directions and then recombined will generate interference fringes

from the path difference. This provides a way to measure Ω that is robust because there

are no moving parts, and has an enormous dynamic range because of the periodicity of

the fringe pattern. The sensitivity can be increased by sending the light around many

times, either through multiple fiber optic turns in a fiber-optic gyroscope, or by using

the ring as the cavity of a laser in a ring laser gyro [Chow et al., 1985].
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15.5 Problems

(15.1) Do a Taylor expansion of equation (15.6) around V = 0.
(15.2) If a SQUID with an area of A = 1 cm2 can detect 1 flux quantum, how far away

can it sense the field from a wire carrying 1 A?

(15.3) Typical parameters for a quartz resonator are Ce = 5 pF, Cm = 20 fF, Lm = 3 mH,
Rm = 6 Ω. Plot, and explain, the dependence of the reactance (imaginary part of
the impedance), resistance (real part), and the phase angle of the impedance on

the frequency.

(15.4) If a ship traveling on the equator uses one of John Harrison’s chronometers to

navigate, what is the error in its position after one month? What if it uses a cesium

beam atomic clock?

(15.5) GPS satellites orbit at an altitude of 20 180 km.

(a) How fast do they travel?

(b) What is their orbital period?

(c) Estimate the special-relativistic correction over one orbit between a clock on a

GPS satellite and one on the Earth. Which clock goes slower?

(d) What is the general-relativistic correction over one orbit? Which clock goes

slower?


