(14.1) (a) Show that the circuits in Figures 14.1 and 14.2 differentiate, integrate, sum, and difference.

Zin and Zout share current |

The virtual ground is held constant

lin = Rin = Loyt

Vout = 0+ Loy Rous

;= Vin
Rin
Ve = [1dt
[/.
Vout=0=VC=fR#dt
m
dve
lin = CE
— Vout
R
av;
Vout == d_z'nCR

. . Vi
lout = Xlin = ZRl_n
in
V.

, in
Vout = loutRout = RoutzR
in

Rout )

v, =V (—
* 2 Rin+Rout



Rin Rout
e ) )
out Rin + Rout ! Rin + Rout

Rout Rin Rout
Vo (o) = Vo (s o) Y ()
g Rin + Rout out Rin + Rout ! Rin + Rout
VaRout = VoutRin + ViRoys
VaRout = ViRout = VoutRin

Rout

Vour = _(VZ - Vl) Rp

(b) Design a non-inverting op-amp amplifier. Why are they used less commonly than inverting ones?

ouT

William’s Rule: “Always invert (except when you can't)."

“A zero volt summing point is a very friendly and reassuring place. It is (nominally) predictable,
mathematically docile, and immune from the sneaky common mode dragons.”

CMRR aside, a non-inverting amplifier has higher input impedance, lower output impedance, and
doesn’t suffer blow-through at frequencies the op-amp can’t keep up with.



(c) Design a transimpedance (voltage out proportional to current in) and a transconductance (current
out proportional to voltage in) op-amp circuit.

6
Current

Voltage

Current

Voltage

G IE}

(d) Derive equation (14.16).

dv RodVpp V,
1416: — =22 __PP

dt R, dt R,C



Ry
VF:iR0+VC
ave i
dt ¢

v
VF:%R()'{'VC
1

Ro
dVF = deDR_ + dVC
1

v = av,, 2o
F PPR. T C

Vpp

v = av., 2o

(14.2) If an op-amp with a gain—bandwidth product of 10 MHz and an open-loop DC gain of 100 dB is
configured as an inverting amplifier, plot the magnitude and phase of the gain as a function of frequency

as Rout/Rin is varied.

(14.3) A lock-in has an oscillator frequency of 100 kHz, a bandpass filter Q of 50 (remember that the Q or
quality factor is the ratio of the center frequency to the width between the frequencies at which the
power is reduced by a factor of 2), an input detector that has a flat response up to 1 MHz, and an output
filter time constant of 1 s. For simplicity, assume that both filters are flat in their passbands and have



sharp cutoffs. Estimate the amount of noise reduction at each stage for a signal corrupted by additive
uncorrelated white noise.

A(t) +n(t)

(A©® +n(®))e’*

(14.4) (a) For an order 4 maximal LFSR work out the bit sequence.
111010110010001

arr =[1,0,0,0]
constants = [1,0,0,1]

foriin range(64):
output = sum([a*b for a,b in zip(arr, constants)]) % 2

print output,
arr = [output]+ arr[:-1]

(b) If an LFSR has a chip rate of 1 GHz, how long must it be for the time between repeats to be the age of
the universe?

13.772 Byr * 1GHz = 4.34E?°
N=89

(c) Assuming a flat noise power spectrum, what is the coding gain if the entire sequence is used to send
one bit?

Coding gain is 10log10(2”89)
A linear block code’s coding gain is KD /N:
Maximum distance code d = n-k+1

kin—k+1)/n=k—k/n—1/n

(14.5) What is the SNR due to quantization noise in an 8-bit A/D? 16-bit? How much must the former be
averaged to match the latter?



Quantization error is % an LSB on average flatly distributed. The energy is therefore:

2—N—1

f xdx =
—2—-N-1
2—-N-1 1
eZ - x2 2N+1 — _2—2(N+1)
—f_z—N—l / 12

. . . _ 1
Quantization noise = 2~ W+1) /E
- . . 1
Signal Power = rms of a full scale sinusoid = —
42

__ (1/4v2)
Snr = =D 113

8 bit=.00056 - -65dB
16 bit = 0.0000022 - -113dB
Oversampling 8 additional bits requires 28 = 256 samples, but would never work in practice.

(14.6) The message 00 10 01 11 00 (c1, c2) was received from a noisy channel. If it was sent by the
convolutional encoder in Figure 14.20, what data were transmitted?

| wrote a naive decoder. Message 10110 should resultin 00 11 01 01 00, which is only two errors.
compare =[0,0,1,0,0,1,1,1,0,0]

possiblecodes = range(32)
for code in possiblecodes:

arr=[0,0,0]
val =[]
print code

foriin range(5):
inbit = 1&(code>>i)
arr = [inbit, arr[0], arr[1]]

cl=sum(arr)%2
c2=(arr[0]+arr[2])%2
printcl,c2,' ',
val.append(c1)



val.append(c2);
print "'
right= [i[0]==i[1] for i in zip(val,compare)]
print right
print sum([i*1 for i in right])
print



