
(14.1) (a) Show that the circuits in Figures 14.1 and 14.2 differentiate, integrate, sum, and difference.  

Zin and Zout share current I 

The virtual ground is held constant 

 

𝐼𝑖𝑛 =
𝑉𝑖𝑛 − 0

𝑅𝑖𝑛
= 𝐼𝑜𝑢𝑡 

𝑉𝑜𝑢𝑡 = 0 + 𝐼𝑜𝑢𝑡𝑅𝑜𝑢𝑡 

 

𝐼 =
𝑉𝑖𝑛

𝑅𝑖𝑛
 

𝑉𝐶 = ∫ 𝐼𝑑𝑡 

𝑉𝑜𝑢𝑡 = 0 = 𝑉𝐶 = ∫
𝑉𝑖𝑛

𝑅𝑖𝑛
𝑑𝑡 

 

 

𝑖𝑖𝑛 = 𝐶
𝑑𝑉𝐶

𝑑𝑡
 

𝑖 =
𝑉𝑜𝑢𝑡

𝑅
 

𝑉𝑜𝑢𝑡 =
𝑑𝑉𝑖𝑛

𝑑𝑡
𝐶𝑅 

 

𝑖𝑜𝑢𝑡 = ∑𝑖𝑖𝑛 = ∑
𝑉𝑖𝑛

𝑅𝑖𝑛
 

𝑉𝑜𝑢𝑡 = 𝑖𝑜𝑢𝑡𝑅𝑜𝑢𝑡 = 𝑅𝑜𝑢𝑡∑
𝑉𝑖𝑛

𝑅𝑖𝑛
 

 

𝑉+ = 𝑉2 (
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡
) 



𝑉− = 𝑉𝑜𝑢𝑡 (
𝑅𝑖𝑛

𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡
) + 𝑉1 (

𝑅𝑜𝑢𝑡

𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡
) 

𝑉2 (
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡
) = 𝑉𝑜𝑢𝑡 (

𝑅𝑖𝑛

𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡
) + 𝑉1 (

𝑅𝑜𝑢𝑡

𝑅𝑖𝑛 + 𝑅𝑜𝑢𝑡
) 

𝑉2𝑅𝑜𝑢𝑡 = 𝑉𝑜𝑢𝑡𝑅𝑖𝑛 + 𝑉1𝑅𝑜𝑢𝑡 

𝑉2𝑅𝑜𝑢𝑡 − 𝑉1𝑅𝑜𝑢𝑡 = 𝑉𝑜𝑢𝑡𝑅𝑖𝑛 

𝑉𝑜𝑢𝑡 = −(𝑉2 − 𝑉1)
𝑅𝑜𝑢𝑡

𝑅𝑖𝑛
  

 

 

 

 

(b) Design a non-inverting op-amp amplifier. Why are they used less commonly than inverting ones?  

 

William’s Rule: “Always invert (except when you can't)." 

“A zero volt summing point is a very friendly and reassuring place.  It is (nominally) predictable, 

mathematically docile, and immune from the sneaky common mode dragons.” 

CMRR aside, a non-inverting amplifier has higher input impedance, lower output impedance, and 

doesn’t suffer blow-through at frequencies the op-amp can’t keep up with. 

 



(c) Design a transimpedance (voltage out proportional to current in) and a transconductance (current 

out proportional to voltage in) op-amp circuit.  

 

 

 

 

(d) Derive equation (14.16).  

14.16:    
𝑑𝑉𝐹

𝑑𝑡
= −

𝑅𝑂

𝑅𝐼

𝑑𝑉𝑃𝐷

𝑑𝑡 
−

𝑉𝑃𝐷

𝑅𝐼𝐶
  



 

 

𝑖 =
𝑉𝑃𝐷

𝑅1
  

𝑉𝐹 = 𝑖𝑅0 + 𝑉𝐶 

𝑑𝑉𝐶

𝑑𝑡
=

𝑖

𝐶
 

 

𝑉𝐹 =
𝑉𝑃𝐷

𝑅1
 𝑅0 + 𝑉𝐶 

𝑑𝑉𝐹 = 𝑑𝑉𝑃𝐷

𝑅0

𝑅1
 + 𝑑𝑉𝐶 

𝑑𝑉𝐹 = 𝑑𝑉𝑃𝐷

𝑅0

𝑅1
 +

𝑖

𝐶
 

 

−𝑑𝑉𝐹 = 𝑑𝑉𝑃𝐷

𝑅0

𝑅1
 +

𝑉𝑃𝐷

𝑅1𝐶
 

 

 

 

 

 

(14.2) If an op-amp with a gain–bandwidth product of 10 MHz and an open-loop DC gain of 100 dB is 

configured as an inverting amplifier, plot the magnitude and phase of the gain as a function of frequency 

as Rout/Rin is varied.  

 

(14.3) A lock-in has an oscillator frequency of 100 kHz, a bandpass filter Q of 50 (remember that the Q or 

quality factor is the ratio of the center frequency to the width between the frequencies at which the 

power is reduced by a factor of 2), an input detector that has a flat response up to 1 MHz, and an output 

filter time constant of 1 s. For simplicity, assume that both filters are flat in their passbands and have 



sharp cutoffs. Estimate the amount of noise reduction at each stage for a signal corrupted by additive 

uncorrelated white noise. 

 

𝐴(𝑡) + 𝜂(𝑡) 

 

(𝐴(𝑡) + 𝜂(𝑡))𝑒𝑖𝜔𝑡 

 

(14.4) (a) For an order 4 maximal LFSR work out the bit sequence.  

1 1 1 0 1 0 1 1 0 0 1 0 0 0 1  

arr = [1,0,0,0] 
constants = [1,0,0,1] 
 
for i in range(64): 
    output = sum([a*b for a,b in zip(arr, constants)]) % 2 
    print output, 
    arr = [output]+ arr[:-1] 
 

(b) If an LFSR has a chip rate of 1 GHz, how long must it be for the time between repeats to be the age of 

the universe?  

13.772 Byr * 1GHz = 4.34𝐸26 

N=89 

(c) Assuming a flat noise power spectrum, what is the coding gain if the entire sequence is used to send 

one bit?  

Coding gain is 10log10(2^89) 

A linear block code’s coding gain is 𝐾𝐷/𝑁:  

Maximum distance code d = n-k+1 

𝑘(𝑛 − 𝑘 + 1)/𝑛 = 𝑘 − 𝑘/𝑛 − 1/𝑛 

 

(14.5) What is the SNR due to quantization noise in an 8-bit A/D? 16-bit? How much must the former be 

averaged to match the latter?  



Quantization error is ½ an LSB on average flatly distributed.  The energy is therefore: 

∫ 𝑥𝑑𝑥
2−𝑁−1

−2−𝑁−1
= 

√∫ 𝑒2

𝑞
2

−
𝑞
2

= √∫ 𝑥2/2𝑁+1
2−𝑁−1

−2−𝑁−1
= √

1

12
2−2(𝑁+1) 

 

Quantization noise = 2−(𝑁+1)√
1

12
 

Signal Power = rms of a full scale sinusoid = 
1

4√2
 

Snr = 
(1/4√2)

2−(𝑁+1)/√12
 

8 bit= .00056  -65dB 

16 bit = 0.0000022  -113dB 

Oversampling 8 additional bits requires 28 = 256 samples, but would never work in practice. 

(14.6) The message 00 10 01 11 00 (c1, c2) was received from a noisy channel. If it was sent by the 

convolutional encoder in Figure 14.20, what data were transmitted? 

I wrote a naïve decoder.  Message 10110 should result in 00 11 01 01 00, which is only two errors. 

compare =[0,0,1,0,0,1,1,1,0,0] 
 
possiblecodes = range(32) 
for code in possiblecodes: 
    arr = [0,0,0] 
    val = [] 
    print code 
    for i in range(5): 
        inbit = 1&(code>>i) 
        arr = [inbit, arr[0], arr[1]] 
 
        c1=sum(arr)%2 
        c2=(arr[0]+arr[2])%2 
        print c1,c2,'  ', 
        val.append(c1) 



        val.append(c2); 
    print '' 
    right= [i[0]==i[1] for i in zip(val,compare)] 
    print right 
    print sum([i*1 for i in right]) 
    print 
    


