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In this paper we will develop certain extensions and refinements of 
coding theory for noisy communication channels. First, a refinement 
of the argument based on "random" coding will be used to obtain an 
upper bound on the probability of error for an optimal code in the 
memoryless finite discrete channel. Next, an equation is obtained for 
the capacity of a finite state channel when the state can be calculated 
at both transmitting and receiving terminals. An analysis is also made 
of the more complex case where the state is calculable at the trans- 
mitring point but not necessarily at the receiving point. 

PROBABILITY OF ERROR BOUND FOR THE DISCRETE 
FINITE  MEMORYLESS CHANNEL 

A discrete finite memoryless  channel  with finite inpu t  and  o u t p u t  
a lphabets  is defined by  a set of t rans i t ion  probabil i t ies pi( j ) ,  

i =  1 , 2 , . . . , a ;  j = 1 , 2 , . - - , b ,  

wi th  ~'~. pi(j)  = 1 (i = 1, 2, . . .  , a) and all pi(j)  >-_ O. Here  pi(j)  is the  
probabi l i ty ,  if inpu t  let ter  i is used, t h a t  o u t p u t  le t ter  j will be received. 
A code word of length n is a sequence of n inpu t  letters ( tha t  is, n integers 
each chosen f rom 1, 2, -. • , a). A block code of length n with  M words  is a 
mapp ing  of the  integers f rom 1 to  M (messages) into a set of code words  
each of length n. A decoding system for such a code is a mapp ing  of all 
sequences of ou tpu t  words of length  n into the  integers f rom 1 to  M 
( that  is, a procedure  for deciding on an  original integer or message when  
any  par t icular  ou tpu t  word  is received). We  will be considering situa- 
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tions in which all integers from 1 to M are used with the same prob- 
ability 1/M. The probabili ty of error Po for a code and decoding system 
is the probabili ty of an integer being transmitted and received as a word 
which is mapped into a different integer ( that  is, decoded as another 
message). 

Thus:  

E E Pr(v P~ 
u V ES u 

where u ranges over all input integers 1, 2, . - .  , M; v ranges over the 
received words of length n; and S~ is the set of received words tha t  are 
not  decoded as u. Pr (v I u) is of course the probability of receiving v if 
the message is u. Thus if u is mapped into input word (i l ,  is,  . ' -  , i~) 
and v is word ( j l , j 2 ,  " "  ,jn), then 

Pr (v l u) = Ph(J0 P~2(J,) "'" pi,(jO. 

While we assume all messages in a code to be used with equal prob- 
abilities 1/M, it  is useful, in studying a channel, to consider the assign- 
ment  of different probabilities to input words. Suppose, in fact, tha t  in 
a given channel we assign arbitrary probabilities to the different input 
words u of length n, probability P(u) for word u. We then have prob- 
abilities for all input-output  word pairs of length n, 

Pr(u, v) = P(u) Pr(v I u), 

where u and v are input  and output  words of length n and Pr(v I u) is the 
probabili ty of output  word v if input word u is used. (This is the product  
of the transition probabilities for corresponding letters of u and v). 
Given P(u) then, any numerical function of u and v becomes a random 
variable. In particular, the mutual  information (per letter), I(u, v) is a 
random variable 

Pr(u, v) 1 Pr(v l u) 
I(u, v) = log P(u)Pr(v) - n log ~ P(u)Pr(v I u) 

u 

The distribution function for this random variable will be denoted by 
o(x). Thus 

p(x) = Pr[I(u, v) <= x] 

The function p(x) of course depends on the arbitrary assignment of 
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probabilities P(u).  We will now prove a theorem bounding the prob- 
ability of error for a possible code in terms of the function o(x). 

THEOREM 1: Suppose some P(u)  for input words u of length n gives rise 
to a distribution of information per letter p(I). Then given any integer M 
and any 0 > 0 there exists a bloelc code with M messages and a decoding 
system such that i f  these messages are used with equal probability, the 
probability of error P~ is bounded by 

Po < o(R + o) + e -~° 

where R - (1/n)log M. 
PROOF: For a given M and 0 consider the pairs (u, v) of input and 

output  words and define the set T to consist of those pairs for which 
log Pr(u, v) /P(u)Pr(v)  > n(R  + 0). When the u's are chosen with 
probabilities P(u),  then the probability tha t  the (u, v) pair will belong 
to the set T is, by definition of p, equal to 1 - p(R ÷ 0). 

Now consider the ensemble of codes obtained in the following manner. 
The integers 1, 2, 3, . . .  , M = e "R are associated independently with 
the different possible input words u l ,  u2, -- .  , uB with probabilities 
P(ul),  P(u2), .. • P(uB). This produces an ensemble of codes each using 
M (or less) input words. If there are B different input words u~, there 
will be exactly B M different codes in this ensemble corresponding to 
the B ~ different ways we can associate M integers with B input words. 
These codes have different probabilities. Thus the (highly degenerate) 
code in which all integers are mapped into input word u~ has probability 
P(ul) ~. A code in which dk of the integers are mapped into uk has prob- 
ability I IP (uk )  dk. We will be concerned with the average probability 

of error for this ensemble of codes. By this we mean the average prob- 
ability of error when these codes are weighted according to the prob- 
abilities we have lust defined. We imagine that  in using any one of these 
codes, each integer is used with probability 1/M. Note that,  for some 
particular selections, several integers may fall on the same input word. 
This input word is then used with higher probability than the others. 

In any particular code of the ensemble, our decoding procedure will 
be defined as follows. Any received v is decoded as the integer with 
greatest probability conditional on the received v. If several integers 
have the same conditional probability we decode (conventionally) as the 
smallest such integer. Since all integers have unconditional probability 
1/M,  this decoding procedure chooses one of those having the greatest 
probability of causing the received v. 
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We now wish to compute the average probability of error or "ambi-  
gui ty"  Pa in this ensemble of codes where we pessimistically include 
with the errors all cases where there are several equally probable causes 
of the received v. 

In any particular code of the ensemble an input word u or a pair 
(u, v) will not, in general, occur with the probabilities P(u) or Pr(u, v). 
In the ensemble average, however, each word u has probability P(u) 
and each (u, v) pair probabili ty Pr(u, v), since integers are mapped into 
u with lust this probability. Indeed, a particular message, say the integer 
1, will be mapped into u with probability P(u). A particular ease of 
integer 1, say, mapped into u and resulting in received v will result in an 
error or ambiguity if there are, in the code in question, one or more 
integers mapped into the set S~(u) of input of words which have a 
probabili ty of causing v higher than are qual to tha t  of u. Because of 
the independence in placing the other integers, it is easy to calculate the 
fraction of codes in which this occurs. In fact, let 

Qv(u) = ~ P(u ' )  
u'eSv(u) 

Thus Qv(u) is the probabili ty associated with all words more probable 
or as probable conditioned on the received word v as u is. The  fraction 
of codes in which integer 2 is not  in S,o(u) is (because of the independence 
of placing of the integers) equal to 1 - O~(u). The fraction of codes in 
which S~(u) is free of all other integers is (1 - Q~(u)) a-1. A similar 
argument applies to any other integer as well as 1. Thus, in the ensemble, 
the probability of error or ambiguity due to cases where the message is 
mapped into input word u and received as v is given exactly by 

Pr(u, v)[1 - (1 - Q~(u))~-l]. 

The average probability of error or ambiguity, then, is given by 

Pa = ~_,~.~er(u, v)[i - (1 - Q~(u))M-1]. (1) 

We now wish to place a bound on this in terms of the information 
distribution p. First, break the sum into two parts, a sum over the 
(u, v) set T defined above where log Pr(u, v)/P(u)Pr(v) > n(R -~ O) and 
over the complementary set T. 

Pa = ~_,~Pr(u, v)[1 -- (1 - Qv(u)) M-l] 

+ ~rPr(u,  v)[1 - (1 - Qv(u))M-~]. 

Since [1 -- (1 -- Q~,(u))] M-1 is a probability, we may replace it  by 1 in 
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the first sum, increasing the quanti ty.  This term becomes, then, 
~_,~Pr(u, v) which by  definition is p(/~ + 0). In the second sum, note 
first tha t  (1 - Qv(u)) ~-i  -> 1 - (M - 1)Q~(u) by  a well-known in- 
equality. Hence, the second sum is increased by replacing 

[1 - ( i  - Q ~ ( u ) )  ~ - 1 ]  

by (M - 1)Q~(u) and even more so by MQ~(u). 

P~ <= Pa <= p(R q- O) q- M ~ r P r ( u ,  v)Q~(u). 

We now show that  for u, v in T, Q~(u) <= e -~('+°). In fact, with" u, v in T 

Pr(v]u) 
og P-7~(v) > n(R + o), 

Pr(v ] u) > Pr(v)e "(E+°~. 

If u' e &(u),  

Pr(v ] u') >= Pr(v I u ) > Pr(v)e n(R+°) 

Pr(u', v) > Pr(u')Pr(v)e n(a+°) 

Pr(u' [ v) > Pr(u')e ~('+°) 

Summing each side over u' e S~(u) gives 

1 > ~ P , (u ' l v )  > e ~('~+~) Q~(u) 
u'eSv(u) 

The left inequality holds because the sum of a set of disjoint probabilities 
cannot exceed 1. We obtain 

Q,(u) < e -'('+°) (u, v) e T 

Using this in our estimate of Pe we have 

Pe < p(R q- O) -~ e~%-n('+e)~rPr(u, v) 

<= p(g + o) + c -n° 

using again the fact tha t  the sum of a set of disjoint probabilities cannot 
exceed one. Since the average P~ over the ensemble of codes satisfies 
P~ <= p(R Jr O) + e -n°, there mus~ exist a particular code satisfying the 
same inequality. This concludes the proof. 

Theorem 1 is one of a number of results which show a close relation 
between the probability of error in codes for noisy channels and the 
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distribution of mutal  information p(x). Theorem 1 shows that  if, by 
associating probabilities P(u) with input words, a certain p(x) can be 
obtained, then codes can be constructed with a probability of error 
bounded in terms of this p(x). We now develop a kind of converse rela- 
tion: given a code, there will be a related p(x). I t  will be shown that  the 
probability of error for the code (with optimal decoding) is closely 
related to this p(x). 

TheOrEM 2: Suppose a particular code has M = e ~ messages and the 
distribution function for the mutual information I (per letter) between 
messages and received words is p(x) (the messages being used with equal 
probability). Then the optimal detection system for this code gives a prob- 
ability of error P~ satisfying the inequalities 

( R - - l l o g 2 ) < P ~ < =  = p ( R  - 1 1 o g 2 )  ½P n 

I t  should be noted tha t  p has a slightly different meaning here than in 
Theorem 1. Here it relates to mutual information between messages and 
received words--in Theorem 1, between input words and received words. 
If, as would usually be the case, M1 messages of a code are mapped into 
distinct input words, these reduce to the same quantity. 

PROOF: We first prove the lower bound. By definition of the function 
p, the probability is equal to p(R - ( l /n)  log 2), that  

1 1 Pr(u, v) 1 
n log Pr--~TPr(v) <-- R - n - log 2, 

where u is a message and v a received word. Equivalently, 

Pr(u [ v) <= Pr(u)eR~½ 

or (using the fact that  Pr(u) = e - ~ )  

Pr(u J v) <-_ ½ 

Now fix attention on these pairs (u, v) for which this inequality 

Pr(u l v ) <= ½ 

is true, and imagine the corresponding (u, v) lines to be marked in black 
and all other (u, v) connecting lines marked in red. We divide the v 
points into two classes: C1 consists of those v's which are decoded into 
u's connected by a red line (and also any v's which are decoded into u's 
not connected to the v's) : C2 consists of v's which are decoded into u's 



1 2  CLAUDE E. SH A N N O N 

connected by a black line. We have established tha t  with proba- 
bility p ( R  - -  ( l /n)  log 2) the (u, v) pair will be connected by a black 
line. The v's involved will fall into the two classes C1 and C2 with prob- 
ability m,  say and p2 = p(R - ( l /n)  log 2) - pl • Whenever the v is 
in C~ an error is produced since the actual u was one connected by a 
black line and the decoding is to a u connected by a red line (or to a dis- 
connected u). Thus these cases give rise to a probability p~ of error. 
When the v in question is in class C2, we have Pr(u I v) < 5. This means 
that  with at  least an equal probability these v's can be obtained through 
other u's than the one in question. If we sum for these v's the prob- 
abilities of all pairs Pr(u, v) except that  corresponding to the decoding 
system, then we will have a probability at  least p2/2 and all of these 
cases correspond to incorrect decoding. In total, then, we have a prob- 
ability of error given b y  

p~ > pl + p2/2 > ½p(R - -  (l/n) log 2) 

We now prove the upper bound. Consider the decoding system defined 
as follows. If  for any received v there exists a u such that  Pr(u I v) > 5, 
then the v is decoded into tha t  u. Obviously there cannot be more than 
one such u for a given v, since, if there were, the sum of these would 
imply a probability greater than one. If there is no such u for a given v, 
the decoding is irrelevant to our argument. We may, for example, let 
such u's all be decoded into the first message in the input code. The 
probability of error, with this decoding, is then less than or equal to the 
probability of all (u, v) pairs for which Pr(u Iv) -<__ ½. That  is, 

Po <-<_ ~ Pr(u, v) (where S is the set of pairs (u, v) with Pr(u ] v) < 5). 

The condition Pr(u]v)  <= ½ is equivalent to Pr(u, v)/Pr(v) <= ½, or, 
again, to Pr(u, v)/Pr(u) Pr(v) <= ½ P~(u) -1 = ½ O R. This is equivalent 
to the condition 

( l /n)  log Pr(u, v)/Pr(u)Pr(v) <= R -- ( l /n)  log 2. 

The sum ~ Pr(u, v) where this is true is, by definition, the distribution 

function of ( l /n)  log Pr(u, v)/Pr(u)P~(v) evaluated at R - ( l /n )  log 2, 
tha t  is, 

Re <= ~ Pr(u, v) = p(R - ( l /n )  log 2). 
s 
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PROBABILITY OF ERROR BOUND IN TERMS OF 
MOMENT GENERATING FUNCTION 

We will now develop from the bound of Theorem 1 another expression 
tha t  can be more easily evaluated in terms of the channel parameters. 
Suppose first tha t  the probabilities P(u) assigned to words in Theorem 1 
are equal to the product  of probabilities for letters making up the words. 
Thus, suppose u consists of the sequence of letters i l ,  i2, , . .  , i~ and 
P(u) is then Pil"Pi~'Pi~ " "  P~  • If v consists of letters j l ,  j~, " '"  , j~ 
then Pr(v) = Pr(jl). Pr ( j2 ) . . .  Pr(j,~) and Pr(u, v) = Pr(il ,  jl)" 
Pr(i2, j2) . . .  Pr(i~, jn). Also 

I(u, v) l [ l o g  Pr(i~j~) Pr(i2j2) 1 
= n Pr(il)Pr(j2~ -F log -F " '"  Pr(i2) Pr(j2) 

1 
- [ 1 1 + 1 2 +  " "  + I ~ ]  

n 

where Ik is the mutual  information between the kth letters of u and v. 
The different I ' s  are here independent random variables all with the 

same distribution. We therefore have a central limit theorem type of 
situation; nI(u, v) is the sum of n independent random variables with 
identical distributions, p(x) can be bounded by any of the inequalities 
which are known for the distribution of such a sum. In particular, we may 
use an inequality due to Chernov on the " ta i l "  of such a distribution 
(Chernov, 1952). He has shown, by a simple argument using the gen- 
eralized Chebycheff inequality, tha t  the distribution of such sums can 
be bounded in terms of the moment  generating function for a single one 
of the random variables, say ~(s). Thus let 

~(s) = E[e ~I1 

PdJ) -] 
= P p (j) exp log E PkPk(j)_l ~ g  

k 

p (J) 

k 

I t  is convenient for our purposes to use the log of the moment  generating 
function ~(s) = log ~(s), (sometimes called the semi-invariant generat- 
ing function). Chernov's result translated into our notation states tha t  

p(,'(s)) <_ e ~(~)-~''(~)1~ s < 0 

Thus by  choosing the parameter  s at  any negative value we obtain a 
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bound on the information distribution p of exponential form in n. I t  is 
easily shown, also, tha t  if the variance of the original distribution is 
positive then ~'(s) is a strictly monotone increasing function of s and 
so also is the coefficient of n in the exponent, ~(s) - stL'(s) (for negative 
s). Indeed the derivatives of these quantities exist and are S ( s )  and 

- s~" (s), respectively. , t  (s) is readily shown to be positive by a Schwartz 
inequality. 

THEOREM 3: I n  a memoryless channel with f inite input  and output 
alphabets, let ~(s) be the semi-invariant generating funct ion for mutual  
information with some assignment of input  letter probabilities, P i for  letter 
i, and with channel transition probabilities p~(j), that is: 

r 7 = log E.,. V,p,(5) L-E J 

Then there exists a code and decoding system of length n, rate R and prob- 
ability of error Pe satisfying the inequalities 

R _>- ~ ( s )  - ( s  - 1 ) ~ ' ( s )  

P~ -__ 2e (~(~)-~'(~))~ s < 0 

I f  as s ---+ -- ~ , it(s) -- (s -- 1)it'(s)--+ R* > 0 then for R < R* 

Pe ~ e (E*+R*-R)n 

where E* = lira (~(s) - st~'(s)) as s ~ - oo. 
PROOF: We have, from Theorem 1, tha t  

P~ "< p(R + O) + e -~° 

<= e E~(~)-~'(')~" + e - " °  s < 0 

where s is chosen so that  u'(s) = R q- 0. This will hold when 0 is such 
tha t  the resulting s is negative. We choose 0 (which is otherwise arbi- 
trary) to make the coefficients of n in the exponents equal. (Since the 
first term is monotone increasing in 0 and the second monotone de- 
creasing, it is easily seen that  this choice of 0 is quite good to minimize 
the bound. In fact, the bound can never be less than half its value for 
this particular 0.) This relation requires tha t  

~ ( s )  - s ~ ' ( s )  = - o 

= R - u ' ( s )  

R = u(s) q- (1 -- s)u'(s) 
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Since the exponents are now equal, the probabil i ty of error is bounded by  
twice the first term:  

Pe < 2e [~(~)-~#'(~)1 ~ 

These relations are true for all negative s and give the first results of the 
theorem. 

However ,  in ome eases, as s -~  - ~ the rate R approaches a positive 
limiting value. In  fact, R --~ I~,~ -/- log Pr[[m~n] and the exponent in the 
P~ bound approaches log Pr[Im~,]. For  rates R lower than this limiting 
value the exponents cannot  be made equai by  any choice of s. We may,  
however, now choose 0 in such a way tha t  R -9 0 is just smaller than 
I ~ i . ,  say I ~ i .  - e. Since o(I~i~ - e) = 0 the probabil i ty of error is 
now bounded by  P~ N e -~e = e - ' ( r~ ' -R-° ) .  This being true for any  e 
we can construct  codes for which it is true with e = 0. T h a t  is 

P e  ~ e -n(Imln--R) 

for R < Irwin • Notice tha t  as R approaches its limiting value in the 
first bound, I ~ ,  + log Pr [Jrmi~], the exponents in both  bounds approach 
the same value, namely log Pr[I~i,]. The coefficient, however, improves 
f rom 2 to 1. 

These bounds can be writ ten in another  form tha t  is perhaps more 
revealing. Define a set of " t i l t ed"  probabilities Q,(I) for different values 
of information I b y  tile following: 

Pr(I)  e ~I 
Q (I) - E rr( r)  

I 

In  other words the original probabil i ty of a value I is increased or de- 
creased by  a factor e ~ and the resulting values normalized to sum to 
unity.  For  large positive values of s, this tilted set of probabilities 
Q~(I) tend to emphasize the probabilities Pr(I) for positive I and reduce 
those for negative I .  At s = 0 Qo(I) = Pr(I) .  At negative s the negative 
I values have  enhanced probabilities a t  the expense of positive I values. 
As s --+ ~ ,  Q~(I) ---> 0 except for I = Im~  the largest value of I with posi- 
t ive probabil i ty  (since the set of u, v pairs is finite, Im~ exists), and 
Q~(Im~x) --> 1. These tilted probabilities are convenient in evaluating 
the " ta i l s"  of distribution tha t  are sums of other distributions. In  terms 
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of Q,(I) we m a y  write 

, ( s )  = 

/ ( s )  = 

- 8 / ( 8 )  = 

- ( 8 -  1 ) / ( s )  = 

log ~ Pr(I) e ~I 

~_~v Q~(F) log ~--~ Pr(I)e ~ 

~-d Pr(I)e~II/ ~ ,  Pr(I) d~ 

~,~ Q.(I)I 

~_,~ Q.(I) log (Pr(I)/Q.(I)) 

~,~ Q.(I)[I + log Pr(I)/Q.(I)] 

The coefficients of n in these exponents are of some interest. They  
relate to the rapidi£y of approach of Pe to zero as n increases. Plot ted as 
a function of R, the behavior  is typically as shown in Fig. 1. Here  we 
have  assumed the Pi  for the letters to be the P i  which give channel 
capacity.  The coefficient E of n for the first bound in the theorem is a 
curve tangent  to the axis a t  C (here s = 0), convex downward and 
ending (s = - oo ) a t  R = /m~n -J- log Pr[Imil~] and E = log Pr[I~i,]. The 
second bound in the theorem gives an E curve which is a straight line 
of slope - 1  passing through this point and intersecting the axes a t  
Imi . ,  0 and O, Imln • In  the neighborhood of R = C the curve behaves as 

E -" ( C  - -  R )  2 

2/'(0) 

Here  ~" (0) is the variance of I .  These properties all follow directly f rom 
the formulas for the curves. 

The  limiting exponent (as n - *  oo) satisfies E = ~(s) - (s - 1)~'(s). 
We have 

d-R ds / ds 

8 

so the slope of the ER curve is monotone decreasing as s ranges f rom 0 
to -- oo, the slope going from 0 to - 1. Since the second bound corresponds 
to a straight  line of slope - 1  in the ER plot, the two bounds not  only 
join in value but  have the same slope as shown in Fig. 1. 
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The curve would be as indicated if the Pi  are those which maximize 
the rate at the channel capacity, for then 

R(0) = ~(0) - (0 - 1)~'(0) = it/(0) = C. 

The bound, however, of the theorem applies for any set of P~ when the 
corresponding ~(s) is used. To obtain the strongest result the bound 
should be optimized for each value of R under variation of P~. The same 
applies to the straight line portion where we maximize Imin. If this 
were done a curve would be obtained which is the envelope of all possible 
curves of this type with different values of P~. Since each individual 
curve is convex downward the envelope is also convex downward. The 
equations for this envelope may be found by the Lagrange method 
maximizing R + hE + ~}-~P~. I t  must be remembered, of course, 
tha t  the P~ must  be non-negative. The problem is similar to tha t  in- 
volved in calculating the channel capacity. The equations for the 
envelope will be 

E : ~ ( 8 )  - ~ ' ( s )  

R = .(s)  -- (8 -- 1). '(s) 

(i + x) 0r -- (1 + k)s 0 . '  Or' 
~p~ + ~F, + ~ = o  

and subject to: 

~ P ~  = 1 

for all i except a set for 

which P~ = O" 

Imln 
OPE : - I  . 

i 

R Imi n 0 

F i e .  i 
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The bound here should be maximized by choosing different subsets of 
the Pi  for the nonvanishing set. 

The upper bound obtained in Theorem 3 is by no means the strongest 
tha t  can be found. As n -+ ~ even the coefficients of n in the exponent 
can be, in genera], improved by more refined arguments. We hope in 
another paper to develop these further results, and also to give cor- 
responding lower bounds on the probability of error of the same exponen- 
tial type. The upper bound in Theorem 3 is, however, both simple and 
useful. I t  has a universality lacking in some of the stronger results 
(which only assume simple form when n is large). 

CAPACITY OF THE FINITE STATE CHANNEL WITH STATE 
CALCULABLE AT BOTH TERMINALS 

In certain channels with memory, the internal state of the channel 
can be calculated from the initial state (assumed known) at  the beginning 
of transmission and the sequence of transmitted letters. I t  may  also be 
possible to determine the state at  any time at the receiving terminal 
from the initial state and the sequence of received letters. For such 
channels we shall say the state is calculable at both terminals. 

To satisfy the first requirement it is clearly necessary tha t  for any 
(attainable) internal state s, the next state t must be a function of s and 
x, t = f(s,  x), where x is the transmitted letter. 

For the state to be calculable at the receiving point it is necessary 
that,  for all attainable states s, the next stage t must be a function of 8 
and the received letter y, t = g(s, y). 

For each possible 8, t pair we may find the subset A (s, t) of x's leading 
from 8 to t and the subset B(s, t) of y's which correspond to a state 
transition from s to t. For each input letter x in the set A (s, t) the out- 
put  letter y will necessarily be in the set B(s, t) and there will be a tran- 
sition probability, the probability (in state 8), if x is transmitted, tha t  
y will be received. For a particular s, t pair, the sets of letters A (s, t) 
and B(s, t) and the corresponding transition probabilities can be thought  
of as defining a memoryless discrete channel corresponding to the s, t 
pair. Namely, we consider the memoryless channel with input alphabet 
the letters from A(s,  t), output  letters from B(8, t) and the correspond- 
ing transition probabilities. 

This channel would be physically realized from the given channel as 
follows. The given channel is first placed in state 8, one letter is trans- 
mitted from set A (s, t) (resulting in state t), the channel is then returned 
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to state s and a second letter from set A (s, t) transmitted, etc. The ca- 
pacity of such a discrete memoryless channel can be found by the stand- 
ard methods. Let  the capacity from state s to state t be C~t (in natural  
units) and let N~t = e c~t. Thus Nat is the number of equivalent noiseless 
letters for the s, t sub-channel. If the set A(s, t) is empty,  we set N,t = 0. 

The states of such a channel can be grouped into equivalence classes 
as follows. States s and s ~ are in the same class if there is a sequence of 
input letters which, starting with state s, ends in s', and conversely a 
sequence leading from s' to s. The equivalence classes can be partially 
ordered as follows. If there is a sequence leading from a member of one 
class to a member of a second class, the first class is higher in the order- 
ing than the second class. 

Within an equivalence class one may consider various possible closed 
sequences of states; various possible ways, starting with a state, to 
choose a sequence of input letters which return to this state. The num- 
ber of states around such a cycle will be called the cycle length. The 
greatest common divisor of all cycle lengths in a particular equivalence 
class will be called the basic period of tha t  class. These structural prop- 
erties are analogous to those of finite state markoff processes, in which 
" t ransi t ion with positive probabil i ty" takes the place of a "possible 
transition for some input let ter ."  

We shall consider only channels in which there is just one equivalence 
class. Tha t  is, it is possible to go from any state s to any state t by some 
sequence of input letters (i.e., any state is accessible from any other). 
The  more general case of several equivalence classes is more complex 
without being significantly more difficult. 

THEOREM 4: Let K be a finite state channel with finite alphabets, with 
state calculable at both terminals, and any state accessible from any other 
state. Let Nat be the number of equivalent letters for the sub-channel relating 
to transitions from state s to state t. Let N be the (unique) positive real 
eigenvalue of the matrix N~t , that is, the positive real root of 

Then N is the equivalent number of letters for the given channel K; its ca- 
pacity is C = log N. 

PROOF: We will first show tha t  there exist block codes which transmit  
at any rate R < C and with probability of error arbitrarily small. Con- 
sider the matrix Nat.  If this is raised to the nth power we obtain a ma- 
trix with elements, say, N~t ~). The element N~t (~ can be thought  of as 
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a sum of products, each product corresponding to some path n steps 
long from state s to state t, the product being the product of the original 
matrix elements along this path, and the sum being the sum of such 
products for all such possible paths. This follows immediately by mathe- 
matical induction and the definition of matrix multiplication. 

Furthermore, N~t (~) can be interpreted as the equivalent number of 
letters for the memoryless channel defined as follows. Imagine starting 
the original channel in state s and using as input "let ters" sequences of 
length n of the original letters allowing just those sequences which will 
end in state t after the sequence of n. The output "let ters" are sequences 
of received letters of length n tha t  could be produced under these con- 
ditions. This channel can be thought of as a " sum"  of channels (corre- 
sponding to the different state sequences from s to t in n steps) each of 
which is a "product"  of channels (corresponding to simple transitions 
from one state to another). (The sum of two channels is a channel in 
which a letter from either of the two channels may be used; the product 
is the channel in which a letter from both given channels is used, this 
ordered pair being an input letter of the product channel). The equiva- 
lent number of noise free letters for the sum of channels is additive, and 
for the product, multiplicative. Consequently the channel we have just 
described, corresponding to sequences from state s to state t in n steps, 
has an equivalent number of letters equal to the matrix element Nst (~). 

Tile original matrix Nat is a matrix with non-negative elements. Con- 
sequently it has a positive real eigenvalue which is greater than or equal 
to all other eigenvalues in absolute value. Furthermore, under our as- 
sumption that  it be possible to pass from any state to any other state by 
some sequence of letters, there is only one positive real eigenvalue. If d 
is the greatest common divisor of closed path lengths (through sequences 
of states), then there will be d eigenvalues equal to the positive real root 
multiplied by the different dth roots of unity. When the matrix N~ is 
raised to the nth  power, a term Nst (') is either zero (if it is impossible to 
go from s to t in exactly n steps) or is asymptotic to a constant times 
N (n). 

In particular, for n congruent to zero, mod d, the diagonal terms 
Nt~ (~) are asymptotic to a constant times N ~, while if this congruence is 
not  satisfied the terms are zero. These statements are aI1 well known re- 
sults in the Frobenius theory of matrices with non-negative elements, 
and will not be justified here (Frobenius, 1912). 

If we take n a sufficiently large multiple of d we will have, then, 
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Nll (~) > k N ~ with k positive. By  taking n sufficiently large, then, the 
capacity of the channel whose input " le t ters"  are from state i to state 1 
in n steps can be made greater than (1/n)log/oN ~ = log N -4- ( l /n )  log/~. 
Since the latter term can be made arbitrarily small we obtain a capacity 
as close as we wish to log N. Since we may  certainly use the original 
channel in this restricted way (going from state 1 to state 1 in blocks of 
n) the original channel has a capacity at least equal to log N. 

To  show tha t  this capacity cannot be exceeded, consider the channel 
K~ defined as follows for sequences of length n. At the beginning of a 
block of length n the channel K~ can be put  into an arbi t rary state 
chosen from a set of states corresponding to the states of K.  This is 
done by choice of a " s ta te  let ter" at the transmitting point and this 
" s ta te  let ter"  is t ransmitted noiselessly to the receiving point. For the 
next n symbols the channel behaves as the given channel K with the 
same constraints and probabilities. At  the end of this block a new state 
can be freely chosen at the transmit ter  for the next block. Considering a 
block of length n (including its initial state information) as a single letter 
and the corresponding y block including the received "s ta te  letter," as a 
received letter we have a memoryless channel K~.  

For  any particular initial-final state pair s, t, the corresponding ca- 
pacity is equM to log Nst (~). Since we have the " sum"  of these channels 
available, the capacity of K~ is equal to log Es,tNst (n). Each term in this 
sum is bounded by a constant times N =, and since there are only a finite 
number of terms (because there are only a finite number of states) we 
may assume one constant for all the terms, tha t  is N~t (~) < /~N ~ (all 
n, s, t). By taking n sufficiently large we clearly have the capacity of K~ 
per letter, bounded by  log N d- ~ for any positive e. But  now any code 
that  can be used in the original channel can also be used in the K~ chan- 
nel for any n since the latter has identical constraints except at  the ends 
of n blocks at  which point all constraints are eliminated. Consequently 
the capacity of the original channel is less than or equal to tha t  of K~ 
for all n and therefore is less than or equal to log N. This completes the 
proof of the theorem. 

This result can be generMized in a number of directions. In the first 
place, the finiteness of the alphabets is not essentiM to the argument. In 
effect, the channel from state s to t can be a general memoryless channel 
rather than a discrete finite alphabet channel. 

A second slight generalization is tha t  it is not necessary that  the state 
be calculable at the receiver after each received letter, provided it is 
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eventually possible a t  the receiver to determine all previous states. Thus,  
in place of requiring tha t  the next state be a function of the preceding 
s tate  and the received letter, we need only require tha t  there should not  
be two different sequences of states f rom any state s to any  state t com- 
patible with the same sequence of received letters. 

T H E  CAPACITY OF A F I N I T E  STATE C H A N N E L  W I T H  STATE 
CALCULABLE AT TRANSMITTER BUT NOT 

NECESSARILY AT RECEIVER 

Consider now a channel with a finite input  alphabet,  a finite ou tput  
alphabet,  and a finite number  of internal states with the further  prop- 
er ty tha t  the state is known at  the beginning and can be calculated a t  
the t ransmi t te r  for each possible sequence of input  letters. T h a t  is, the  
next state is a function of the current s tate and the current input  letter. 
Such a channel is defined by  this s tate transit ion function s~+l = 
f(s~, x~), (the n + 1 s tate  as a function of state s~ and n th  input sym- 
bol), and the conditional probabilities in state s, if letter x is t rans-  
mit ted,  tha t  the output  letter will be y, p~x(y). We do not  assume tha t  
the state is calculable a t  the receiving point. 

As before, the states of such a channel can be grouped into a part ial ly 
ordered set of equivalence classes. We shall consider again only channels 
in which there is iust one equivalence class. T h a t  is, i t  is possible to go 
f rom any  state s to any  state t by  some sequence of input  letters. 

We first define a capacity for a part icular  s tate s. Let  the channel be 
in s tate  s and let X1 = (xl ,  x2, • • -, x~) be a sequence of n input  letters 
which cause the channel to end in the same state s. I f  the channel is in 
s tate  s and the sequence X~ is used, we can calculate the conditional 
probabilities of the various possible output  sequences Y of length n. 
Thus,  if the  sequence X~ leads through states s, s2, s3, - - - ,  s~, s the  
conditional probabil i ty of ]71 = (yl ,  y2, " " ,  y~) will be Pr(Y~/X~) = 
Psx1(yl)Ps~x2(y~.) "'" Psnx~(y~). Consider the X ' s  (leading f rom s to s in 
n steps) as individual input  letters in a memoryless channel with the y 
sequences Y as output  letters and the conditional probabilities as the 
transit ion probabilities. Let  C(n, s) be the capacity of this channel. Let  
C(s) be the least upper  bound of (1/n)C(n, s) when n varies over the 
positive integers. We note the following properties: 

1. C(kn, s) >= kC(n, s). This follows since in choosing probabilities 
to assign the X letters of length kn to achieve channel capacity one 
m a y  at  least do as well as the product  probabilities for a sequence 
of kX's  each of length n. I t  folIows tha t  if we approximate  to C(s) 



CODING THEORY FOR NOISY CHANNELS 23 

within e a t  some particular n @.e. I C(s) - C(n ,  s) I < e) we will ap- 
proximate  equally well along the infinite sequence 2n, 3n, 4n, . - . .  

2. C(s)  = C is independent of the state s. This is proved as fol- 
lows. Select a sequence of input  letters U leading from state  s' to 
state s and a second sequence V leading from s to s'. Neither  of 
these need contain more than  m letters where m is the (finite) num- 
ber of states in the channel. Select an nl for which C(n~,  s) > 
C(s)  - e/2 and with n~ large enough so tha t :  

( C ( s )  - ~/2) nl _> C(s) - 
nl -~- 2m 

This is possible since by  the remark  1 above C(s)  is approximated 
as closely as desired with arbitrari ly large nl • A set of X sequences 
for the s' state is constructed by  using the sequences for the s state 
and annexing the U sequence a t  the beginning and the V sequence 
at  the end. If  each of these is given a probabil i ty equal to tha t  used 
for the X sequences in the s s tate to achieve C(n,  s), then this gives 
a rate for the s' sequences of exactly C(n ,  s) but  with sequences of 
length a t  most  nl q- 2m rather  than  n l .  I t  follows tha t  C(s ' )  >= 
(C(s)  - s/2)(nl /nl  "-k 2m) => C(s) - ~. Of course, interchanging s 
and s' gives the reverse result C(s) >= C(s ' )  --  E and consequently 
C(s) = C(s ' ) .  (Note that ,  if there were several equivalence classes, 
we would have  a C for each class, not  necessarily equal). 

3. Let  C(n ,  s, s') be the capacity calculated for sequences start ing 
at  s andending at s'  a f t e rn  steps. Let  C(s,  s') = ] i m ~ , ~ ( 1 / n ) C ( n ,  s, s'). 
Then C(s,  s') = C(s) = C. This is true since we can change se- 
quences from s to s ~ into sequences from s to s by  a sequence of 
length a t  most  m added at  the end. By taking n sufficiently large 
in the lira the effect of an added m can be made arbitrari ly small, 
(as in the above remark  2) so tha t  C(s,  s') >= C(s)  - ~. Likewise, 
the s to s sequences which approximate  C(s) and can be made ar- 
bitrari ly long can be translated into s to s' sequences with at  most  
m added letters. This implies C(s)  >= C(s,  s') - e. Hence C(s) = 
C(s, s'). 

We wish to show first tha t  s tart ing in state sl it is possible to sig- 
nal with arbitrari ly small probabil i ty of error at  any  rate R < C 
where C is the quant i ty  above in remark  3. More strongly, we will 
prove the following. 

I]I~EOREW 5" Given any  R < C there exists  E ( R )  > 0 such that for  any  
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n = k d (an integer multiple of d, the basic cycle length) there are block 
codes of length n having M words with ( l /n )  log M >= R and with proba- 
bility of error Pe < e -E(R) ~. There does not exist a sequence of codes of in- 
creasing block length with probability of error approaching zero and rate 
greater than C. 

PROOF: The affirmative part  of the result is proved as follows. Let  
R1 = (R + C)/2. Let st be the initial state of the channel and consider 
sequences of letters which take the state from sl to sl in n~ steps. Choose 
nl so tha t  C(n~, s~) > (3C + R)/4.  Use these sequences as input letters 
and construct codes for the rate R1. By Theorem 2 the probabili ty of 
error will go down exponentially in the length of the code. The codes 
here are of length n l ,  2nl ,  3ni ,  - . .  in terms of the original letters, but  
this merely changes the coefficient of n by  a factor 1/n~. Thus, for mul- 
tiples of n~ the  affirmative part  of the theorem is proved. To prove it for 
all multiples of d, first note tha t  it is true for all sufficiently large mul- 
tiples of d, since by going out to a sufficiently large multiple of n~ the 
effect of a suffix on the code words bringing the state back to s~ after 
multiples of d, can be made small (so that  the rate is not  substantially 
altered). But  now for smaller multiples of d one may use any desired 
code with a probability of error less than 1 (e.g., interpret any received 
word as message 1, with Pe = 1 - 1 /M < 1). We have then a finite set 
of codes up to some multiple of d at  which a uniform exponential bound 
takes over. Thus, one may  choose a coefficient E(R) such that  P ,  < 
e -E(R)" for n any integer multiple of d. 

The negative part  of our result, tha t  the capacity C cannot be ex- 
ceeded, is proved by an argument similar to tha t  used for the case where 
the state was calculable at  the receiver. Namely,  consider the channel 
K~ defined as follows. The given channel K may be put  at  the beginning 
into any state and the name of this state transmitted noiselessly to the 
receiving point. Then n letters are transmitted with the constraints and 
probabilities of the given channel K. The final state is then also trans- 
mit ted to the receiver point. This process is then repeated in blocks of n. 
We have here a memoryless channel which for any n "includes" the 
given channel. Any code for the given channel K could be used if desired 
in K .  with equally good probability of error. Hence the capacity of the 
given channel K must  be less than or equal to tha t  of K .  for every n. On 
the other hand K~ is actually the " sum"  of a set of channels correspond- 
ing to sequences from state s to state t in n steps; channels with ca- 
pacifies previously denoted by C(n, s, t). For all sufficiently large n, and 
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for all s, t, we have (1 /n)C(n,  s, t) < C + ~ as we have seen above. 
Hence for all n > no, say, the capacity of K~ is bounded by C + , + 
( l / n )  log m 2 where m is the number of states. It follows that the capacity 
of K is not greater than C. 

It is interesting to compare the results of this section where the state 
is calculable at the transmitter only with those of the preceding section 
where the state is calculable at both terminals. In the latter case, a 
fairly explicit formula is given for the capacity, involving only the cal- 
culation of capacities of memoryless channels and the solution of an 
algebraic equation. In the former case, the solution is far less explicit, 
involving as it does the evaluation of certain limits of a rather complex 
type. 

RECEIVED: April 22, 1957. 
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