
In memory of Leo Szilard, who passed away on May 30,1964, we present 
an English translation of his classical paper ober die Enfropieuerminderung 
in einem thermodynamischen System bei Eingrifen intelligenter Wesen, 
which appeared in the Zeitschrift fur Physik, 1929,53,840-856. The publica- 
tion in this journal of this translation was approved by Dr. Szilard before he 
died, but he never saw the copy. At Mrs. Szilard’s request, Dr. Carl 
Eckart revised the translation. 

This is one of the earliest, if not the earliest paper, in which the relations 
of physical entropy to information (in the sense of modem mathematical 
theory of communication) were rigorously demonstrated and in which Max- 
well’s famous demon was successfully exorcised: a milestone in the integra- 
tion of physical and cognitive concepts. 
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The objective of the investigation is to 
find the conditions which apparently allow 
the construction of a perpetual-motion ma- 
chine of the second kind, if one permits an 
intelligent being to intervene in a thermo- 
dynamic system. When such beings make 
measurements, they make the system behave 
in a manner distinctly different from the way 
a mechanical system behaves when left to 
itself. We show that it is a sort of a memory 
faculty, manifested by a system where 
measurements occur, that might cause a 
permanent decrease of entropy and thus a 
violation of the Second Law of Thermody- 
namics, were it not for the fact that the 
measurements themselves are necessarily 
accompanied by a production of entropy. At 
first we calculate this production of entropy 
quite generally from the postulate that full 
compensation is made in the sense of the 
Second Law (Equation [l]). Second, by 
using an inanimate device able to make 
measurements-however under continual 
entropy production-we shall calculate the 
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resulting quantity of entropy. We find that 
it is exactly as great as is necessary for full 
compensation. The actual production of 
entropy in connection with the measure- 
ment, therefore, need not be greater than 
Equation (1) requires. 

HERE is an objection, already historical, T against the universal validity of the 
Second Law of Thermodynamics, which in- 
deed looks rather ominous. The objection is 
embodied in the notion of Maxwell’s demon, 
who in a different form appears even nowa- 
days again and again; perhaps not unreason- 
ably, inasmuch as behind the precisely 
formulated question quantitative connec- 
tions seem to be hidden which to date have 
not been clarified. The objection in its origi- 
nal formulation concerns a demon who 
catches the fast molecules and lets the slow 
ones pass. To be sure, the objection can be 
met with the reply that man cannot in prin- 
ciple foresee the value of a thermally fluc- 
tuating parameter. However, one cannot 
deny that we can very well measure the 
value of such a fluctuating parameter and 
therefore could certainly gain energy a t  the 
expense of heat by arranging our interven- 
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tiori according to the results of the ineasure- 
nients. Presently, of course, we do not know 
whether we commit an error by not includ- 
ing the intervening man into the system and 
by disregarding his biological phenomena. 

Apart froin this unresolved matter, it is 
known today that in a system left to itself no 
“perpetuuni mobile’’ (perpetual niotion ma- 
chine) of the second kind (more exactly, no 
“automatic machine of continual finite 
work-yield which uses heat a t  the lowest 
temperature”) can operate in spite of the 
fluctuation phenomena. A perpetuuni mobile 
would have to be a machine which in the 
long run could lift a weight a t  the expense of 
thc heat content of a reservoir. In  other 
words, if we want to use the fluctuation phe- 
noinena in order to gain energy at the ex- 
pense of heat, we are in the same position as 
playing a ganic of chance, in which we may 
win certain amounts now and then, although 
the expectation value of the winnings is zero 
or negat>ive. The same applies to a system 
where the intervention from outside is per- 
formed strictly periodically, say by periodi- 
cally moving machines. We consider this as 
established (Szilard, 1925) and intend here 
only to consider the difficulties that occur 
when intelligent beings intervene in a sys- 
tem. We shall try to discover the quantita- 
tive relations having to do with this inter- 
vention. 

Snioluchowski (1914, p. 89) writes: “As 
far as we know today, there is no automatic, 
permanently effective perpetual motion ma- 
chine, in spite of the molecular fluctuations, 
but such a device might, perhaps, function 
regularly if it were appropriately operated by 
intelligent beings.. . .” 

A perpetual motion machine therefore is 
possible if-according to the general method 
of physics-we view the experimenting man 
as a sort of deus ex machina, one who is con- 
tinuously and exactly informed of the exist- 
ing state of nature and who is able to start or 
interrupt the macroscopic course of nature 
a t  any rnornent without expenditure of work. 
Therefore he would definitely not have to 
possess the ability to catch single molecules 
like Maxwell’s demon, although he would 
definitely be different from real living beings 
in possessing the above abilities. In eliciting 
any physical effect by action of the sensory 

as well as the motor nervous systems a 
degradation of energy is always involved, 
quite apart from the fact that the very 
existence of a nervous system is dependent 
on continual dissipation of energy. 

Whether-considering these circuin- 
stances---real living beings could continually 
or at least regularly produce energy a t  the 
expense of heat of the lowest temperature ap- 
pears very doubtful, even though our ignor- 
ance of the biological phenomena does not 
allow a definite answer. However, the latter 
questions lead beyond the scope of physics 
in the strict sense. 

It appears that the ignorance of the bio- 
logical phenomena need not prevent us frorn 
understanding that which seems to us to be 
the essential thing. We may be sure that 
intelligent living beings-insofar as we are 
dealing with their intervention in a ther- 
niodynaniic systen-can be replaced by non- 
living devices whose “biological phenomena” 
one could follow and determine whether in 
fact a compensation of the entropy decrease 
takes place as a result of the intervention by 
such a device in a system. 

In  the first place, we wish to learn what 
circumstance conditions the decrease of 
entropy which takcs place when intelligent 
living beings intervene in a therniodynamic 
system. We shall see that this depends on a 
certain type of coupling between different 
parameters of the system. We shall consider 
an unusually simple type of these ominous 
coup1ings.l For brevity we shall talk about a 
“measurement,” if we succeed in coupling 
the value of a parameter y (for instance the 
position co-ordinate of a pointer of a meas- 
uring instrument) at one nioment with the 
simultaneous value of a fluctuating parame- 
ter x of the system, in such a way that, from 
the value y, we can draw conclusions about 
the value that x had a t  the moment of the 
“measurement.” Then let x and y be un- 
coupled after the measurement, so that 5 can 
change, while y retains its value for some 
time. Such measurements are not harmless 
interventions. A system in which such 
measurements occur shows a sort of memory 

’The  author evidently uses the word “omi- 
nous” in  the sense that the possibility of realizing 
the proposed arrangement threatens the validity 
of the Second Law.-Translator 
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faculty, in the sense that one can recognize 
by the state parameter y what value another 
state parameter z had a t  an earlier moment, 
and we shall see that simply because of such 
a memory the Second Law would be vio- 
lated, if the measurement could take place 
without compensation. We shall realize that 
the Second Law is not threatened as much 
by this entropy decrease as one would think, 
as soon as we see that the entropy decrease 
resulting from the intervention would be 
compensated completely in any event if the 
execution of such a measurement were, for 
instance, always accompanied by produc- 
tion of k log 2 units of entropy. In  that case 
it will be possible to  find a more general 
entropy law, which applies universally to all 
measurements. Finally we shall consider a 
very simple (of course, not living) device, 
that is able to make measurements con- 
tinually and whose “biological phenomena” 
we can easily follow. By direct calculation, 
one finds in fact a continual entropy produc- 
tion of the magnitude required by the above- 
mentioned more general entropy law de- 
rived from the validity of the Second Law. 

The first example, which we are going to 
consider more closely as a typical one, is the 
following. A standing hollow cylinder, closed 
at both ends, can be separated into two 
possibly unequal sections of volumes V ,  and 
V ,  respectively by inserting a partition from 
the side at an arbitrarily fixed height. This 
partition forms a piston that can be moved 
up and down in the cylinder. An infinitely 
large heat reservoir of a given temperature T 
insures that any gas present in the cylinder 
undergoes isothermal expansion as the 
piston moves. This gas shall consist of a 
single molecule which, as long as the piston 
is not inserted into the cylinder, tumbles 
about in the whole cylinder by virtue of its 
thermal motion. 

Imagine, specifically, a man who a t  a given 
time inserts the piston into the cylinder and 
somehow notes whether the molecule is 
caught in the upper or lower part of the cyl- 
inder, that is, in volume V1 or V, .  If he 
should find that the former is the case, then 
he would move the piston slowly downward 
until it reaches the bottom of the cylinder. 
During this slow movement of the piston the 
molecule stays, of course, above the piston. 

However, it is no longer constraincd to the 
upper part of the cylinder but bounces inany 
times against the piston which is already 
moving in the lower part of the cylinder. In  
this way the molecule does a certain amount 
of work on the piston. This is the work that 
corresponds to the isothermal expansion of 
an ideal gas--consisting of one single mole- 
cule-from volume V ,  to the volume 
V1 + V2 . After some time, when the piston 
has reached the bottom of the container, the 
molecule has again the full volume V1 + Vz 
to move about in, and the piston is then re- 
moved. The procedure can be repeated as 
many times as desired. The man moves the 
piston up or down depending on whether the 
molecule is trapped in the upper or lower half 
of the piston. In  more detail, this motion 
may be caused by a weight, that is to be 
raised, through a mechanisni that transmits 
the force from the piston to the weight, in 
such a way that the latter is always dis- 
placed upwards. In  this way the potential 
energy of the weight certainly increases 
constantly. (The transmission of force to the 
weight is best arranged so that the force 
exerted by the weight on the piston a t  any 
position of the latter equals the average 
pressure of the gas.) It is clear that in this 
manner energy is constantly gained at the 
expense of heat, insofar as the biological 
phenomena of the intervening nian are ig- 
nored in the calculation. 

In  order to understand the essence of the 
man’s effect on the system, one best imagines 
that the movement of the piston is performed 
niechanically and that the man’s activity 
consists only in determining the altitude of 
the molecule and in pushing a lever (which 
steers the piston) to the right or left, depend- 
ing on whether the molecule’s height requires 
a down- or upward movement. This nieans 
that the intervention of the huniari being 
consists only in the coupling of two position 
co-ordinates, namely a co-ordinate x, which 
determines the altitude of the molecule, with 
another co-ordinate y, which determines the 
position of the lever and therefore also 
whether an upward or downward motion is 
imparted to the piston. It is best to imagine 
the mass of the piston as large and its speed 
sufficiently great, so that the thermal agita- 
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tion of the piston at the temperature in ques- 
tion can be neglected. 

In  the typical example presented here, we 
wish to distinguish two periods, namely: 

1. The period of measuTeinent when the 
piston has just been inserted in the middle of 
the cylinder and the niolecule is trapped 
either in the upper or lower part; so that if we 
choose the origin of co-ordinates appropri- 
ately, the r-co-ordinate of the molecule is 
restricted to either the interval x > 0 or 
x < 0; 

2 .  The period of utilization of the measure- 
ment, “the period of decrease of entropy,” 
during which the piston is moving up or 
down. During this period the x-co-ordinate 
of the molecule is certainly not restricted to  
the original interval x > 0 or x < 0. Rather, 
if the molecule was in the upper half of the 
cylinder during the period of measurement, 
i.e., when x > 0, the molecule must bounce 
on the downward-moving piston in the lower 
part of the cylinder, if it is to transmit 
energy to the piston; that is, the co-ordinate 
R: has to enter the interval x < 0. The lever, 
on the contrary, retains during the whole pe- 
riod its position toward the right, corre- 
sponding to downward motion. If the posi- 
tion of the lever toward the right is desig- 
nated by y = 1 (and correspondingly the 
position toward the left by y = - 1)  we see 
that during the period of measurement, the 
position x > 0 corresponds to y = 1;  but 
afterwards y = 1 stays on, even though x 
passes into the other interval x < 0. We see 
that in the utilization of the measurement 
the coupling of the two paraineters x and y 
disappears. 

We shall say, quite generally, that a pa- 
rameter y “nieasures” a parameter x (which 
varies according to a probability law), if the 
value of y is directed by the value of param- 
eter x a t  a given moment. A measurement 
procedure underlies the entropy decrease 
effected by the intervention of intelligent 
beings. 

One may reasonably assuiiie that a meas- 
urement procedure is fundamentally asso- 
ciated with a certain definite average entropy 
production, and that this restores concord- 
ance with the Second Law. The amount of 
entropy generated by the measurenient may, 
of course, always be greater than this funda- 

mental amount, but not smaller. To put it 
precisely: we have to distinguish here be- 
tween two entropy values. One of them, & ,  
is produced when during t,he measurement y 
assumes the value 1, and the other, 8, , when 
y assunies the value - 1. We cannot expect 
to get general information about S1 or Sz 
separately, but we shall see that i f  the 
amount of entropy produced by the “meas- 
urement” is to compensate the entropy de- 
crease affected by utilization, the relation 
must always hold good. 

One sees from this formula that one can 
make one of the values, for instance 81, as 
small as one wishes, but then the other value 
A!?, becomes correspondingly greater. Fur- 
thermore, one can notice that the magnitude 
of the interval under consideration is of no 
consequence. One can also easily understand 
that it cannot be otherwise. 

Conversely, as long as the entropies 8, and 
, produced by the measurements, satisfy 

the inequality (l), we can be sure that the 
expected decrease of entropy caused by the 
later utilization of the measurement will be 
fully compensated. 

Before we proceed with the proof of in- 
equality (l), let us see in the light of the 
above mechanical example, how all this fits 
together. For the entropies & and & pro- 
duced by the measurements, we make the 
following Ansatz: 

8, = 8, = k log 2 ( 2 )  

This ansatz satisfies inequality (1) and 
the mean value of the quantity of entropy 
produced by a measurement is (of course in 
this special case independent of the fre- 
quencies w1 , w2 of the two events) : 

8 = k log 2 (3) 
In  this example one achieves a decrease of 
entropy by the isothermal expansion? 

v1 . - 31 = --klog ____ vl+ v2 ’ 
(4) 

The entropy generated is denoted by s,, ss. 
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depending on whether the molecule was 
found in volume Vl or VZ when the piston 
was inserted. (The decrease of entropy 
equals the ratio of the quantity of heat taken 
froin the heat reservoir during the isothermal 
expansion, to the temperature of the heat 
reservoir in question). Since in the above 
case the frequencies w1 , W P  are in the ratio of 
the volumes Vl , V z  , the mean value of the 
entropy generated is (a negative number) : 

3 =w1.(+31) + W Y ( +  s,) = 

k log ___ 
v l +  VP Vl+VZ 

V2 

v1 + ( 5 )  
“1 

V1 k log ____ VI+ vz Vl+VZ 
As one can see, we have, indeed 

v 1  V2 

Tr (6)  

klog ~ + ___ 
T’, + v, v1+ v2 v1+ vz 

v1 

+ klog2 2 0 aklog- v, + v2 
S + + g - Q .  (7) 

V P  

and therefore : 

In the special case considered, we would 
actually have a full compensation for the de- 
crease of entropy achieved by the utilization 
of the measurement. 

We shall not examine more special cases, 
but instead try to clarify the matter by a 
general argument, and to derive formula (1). 
We shall therefore imagine the whole sys- 
tem-in which the co-ordinate x, exposed to 
some kind of thermal fluctuations, can be 
measured by the parameter y in the way just 
explained-as a multitude of particles, all 
enclosed in one box. Every one of these par- 
ticles can move freely, so that they may be 
considered as the molecules of an ideal gas, 
which, because of thernml agitation, wander 
about in the common box independently of 
each other and exert a certain pressure on the 
walls of the box-the pressure being deter- 
mined by the temperature. We shall now 
consider two of these molecules as chemi- 
cally different and, in principle, separable by 
semipermeable walls, if the co-ordinate x for 
one molecule is in a preassigned interval 
while the corresponding co-ordinate of the 
other molecule falls outside that interval. We 

also shall look upon them as chemically dif- 
ferent, if they differ only in that the y co- 
ordinate is +1 for one and - 1 for the other. 

We should like to give the box in which the 
“molecules” are stored the form of a hollow 
cylinder containing four pistons. Pistons A 
and A’ are fixed while the other two are inov- 
able, so that the distance BB’ always equals 
the distance AA’, as is indicated in Figure 1 
by the two brackets. A‘, the bottom, and B, 
the cover of the container, are impermeable 
for all “molecules,” while A and B’ are semi- 
permeable; namely, A is permeable only for 
those “molecules” for which the parameter x 
is in the preassigned interval, i.e., (xl , x2), B’ 
is only permeable for the rest. 

A’ 
FIQ. 1 

In  the beginning the piston B is at  A and 
therefore B’ at A’, and all “molecules” are 
in the space between. A certain fraction of 
the molecules have their co-ordinate x in the 
preassigned interval. We shall designate by 
w1 the probability that this is the case for a 
randomly selected molecule and by wP the 
probability that x is outside the interval. 
Then w1+ WP = 1. 

Let the distribution of the parameter y be 
over the values + 1 and - 1 in any propor- 
tion but in any event independent of the 
x-values. We imagine an intervention by an 
intelligent being, who imparts to y the value 
1 for all “molecules” whose x at that moment 
is in the selected interval. Otherwise the 
value -1 is assigned. If then, because of 
thermal fluctuation, for any “molecule,” the 
parameter x should come out of the preas- 
signed interval or, as we also may put it, if 
the “molecule” suffers a monomolecular 
chemical reaction with regard to x (by which 
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it is transformed from a species that can pass 
the seniipernieable piston A into a species for 
which the piston is imperiiieable), then the 
parameter y retains its value 1 for the time 
being, so that the “molecule,” because of the 
value of the parameter y, “remembers” 
during the whole following process that x 
originally was in the preassigned interval. 
We shall see immediately what part this 
memory may play. After the intervention 
just discussed, we niove the piston, so that 
we separate the two kinds of inolecules with- 
out doing work. This results in two con- 
tainers, of which the first contains only the 
one modification and the second only the 
other. Each modification now occupies the 
same volume as the mixture did previously. 
In  one of these containers, if considered by 
itself, there is now no equilibrium with re- 
gard to the two “modifications in x.)’ Of 
course the ratio of the two modifications has 
remained w1 : wz . If we allow t,his equilibrium 
to be achieved in both containers independ- 
ently and at constant volume arid tempera- 
ture, then the entropy of the systeni cer- 
tainly has increased. For the total heat 
release is 0, since the ratio of the two “niodifi- 
cations in x’) w1:w2 does not change. If we 
acconiplish the equilibrium distribution in 
both containers in a reversible fashion then 
the entropy of the rest of the world will de- 
crease by the same amount. Thcrefore the 
entropy increases by a negative value, and, 
the value of the entropy increase per mole- 
cule is exactly: 

(9) 
(The entropy constants that we must as- 

sign to the two “modifications in 5’’ do not 
occur here explicitly, as the process leaves the 
total number of molecules belonging to the 
one or the other species unchanged.) 

Yow of course we cannot bring the two 
gases back to the original volume without 
expenditure of work by simply moving the 
piston hack, as there are now in the con- 
tainer- which is bounded by the pistons 
BB’-also niolecules whose x-co-ordinate lies 
outside of the preassigned interval and for 
which the piston A is not permeable any 
longer. Thus one can see that the calculated 
decrease of entropy (Equation 191) does not 
mean a contradiction of the Second Law. As 

s = Ic(w1 log w1 + w2 log wp). 

long as we do not use the fact that the molecules 
in the container BB’, by virtue of their co- 
ordinate y, “remember” that the r-co-ordinate 
for the molecules of this container originally 
was in the preassigned inlerval, ful l  conapensa- 
tion existsfor the calculated decrease of entropy, 
by virtue of the fact that the partial pres- 
sures in the two containers are snialler than 
in the original mixture. 

B u t  now we can use the fact that all naole- 
cules in the container BB‘ hatie the y-co-ordi- 
nate I ,  and in the other accordingly -1,  to 
bring all molecules baclc again to the original 
volume. To accomplish this we only need to 
replace the seniipermeable wall -4 by a wall 
A *, which is seniipermeable not with regard 
to x but with regard to y, naniely so that it is 
permeable for the molecules with the y-co- 
ordinate 1 and impermeable for the others. 
Correspondingly we replace B’ by a piston 
B’*, which is impermeable for the molecules 
with y = -1 and permeable for the others. 
Then both containers can be put into each 
other again without expenditure of energy. 
The distribution of the y-co-ordinate with 
regard to 1 and -1 now has become sta- 
tistically independent of the r-values and be- 
sides we are able to re-establish the original 
distribution over 1 and - 1. Thus we would 
have gone through a coniplete cycle. The 
only change that we have to register is the 
resulting decrease of entropy given by (9) : 

3 = Ic(w1 log w1 + wt log wz). (10) 

If we do not wish to admit that the Second 
Law has been violated, we must conclude 
that the intervention which establishes the 
coupling between y and x, the iiieasurenzent of 
x by y, must be accompanied by a production 
of entropy. If a definite way of achieving this 
coupling is adopted and if the quantity of 
entropy that is inevitably produced is desig- 
nated by Sl and S z  , where S1 stands for the 
mean increase in entropy that occurs when y 
acquires the value 1, and accordingly S z  for 
the increase that occurs when y acquires the 
value - 1, we arrive at the equation: 

(11) 
In  order for the Second Law to remain in 
force, this quantity of entropy must be 
greater than the decrease of entropy s, which 
according to (9) is produced by the utiliza- 

W l S l  i- w2s2 = s“ 
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tioii of the measurement. Therefore the fol- 
lowing unequality must be valid : 

S + S l O  
W l S l  -I- WZS‘B (12) 

+ k(w, log w1 + w2 log WB) 2 0 

This equation must be valid for any values 
of w1 and w2 ,3 and of course the constraint 
w2 + wz = 1 cannot be violated. We ask, in 
particular, for which w1 and w2 and given 
8-values the expression becomes a minimum. 
For the two minimizing values w1 and wz the 
inequality (12) must still be valid. Under the 
above constraint, the minimum occurs when 
the following equation holds : 

This is easily seen if one introduces the no- 
tation 

81 SZ - + log w1 = - + log ~2 = X; 
k k (15) 

then : 
A - S i l k  w1 = e .e  ; w2 = eA.e--s2’k. (16) 

If one substitutes these values into the in- 
equality (12) one gets: 

(17) e-Sl’k + e--szik ) 20. 

Therefore the following also holds: 

X 2 0. (18) 
If one puts the values w1 and wz from (16) 
into the equation w1 + w2 = 1, one gets 

- e . (19) 

(20) 

e - S 1 / k  + e--Ss/k - -A 

And because X 2 0, the following holds: 

+ e-‘Zik 5 - .  1 e-Sl/k 

This equation must be universally valid, if 
thermodynamics is not to be violated. 

As long as we allow intelligent beings to 
perforni the intervention, a direct test is 

3 The increase in entropy can depend only on 
the types of measurement and their results but 
not on how many systems of one or the other type 
were present. 

not possible. But we can try to describe sini- 
ple nonliving devices that effect such cou- 
pling, and see if indeed entropy is generated 
and in what quantity. Having already recog- 
nized that the only important factor is a 
certain characteristic type of coupling, a 
“measurement,” we need not construct any 
complicated models which imitate the inter- 
vention of living beings in detail. We can be 
satisfied with t,he construction of this par- 
ticular type of coupling which is accoin- 
panied by memory. 

In our next example, the position co-or- 
dinate of an oscillating pointer is “measured” 
by the energy content of a body K. The 
pointer is supposed to connect, in a purely 
mechanical way, the body K-by whose 
energy content the position of the pointer is 
to be measured--by heat conduction with 
one of two intermediate pieces, A or B. The 
body is connected with A as long as the co- 
ordinate-which determines the position of 
the pointer-falls into a certain preassigned, 
but otherwise arbitrarily large or small inter- 
val a, and ot,herwise if the co-ordinate is in 
the interval b, with B. Up to a certain mo- 
ment, namely the moment of the “measure- 
ment,” both intermediate pieces will be 
thermally connected with a heat reservoir a t  
temperature To. At this moment the inser- 
tion A will be cooled reversibly to the tem- 
perature T A  , e.g., by a periodically function- 
ing mechanical device. That is, after 
successive contacts with heat reservoirs of 
intermediate temperatures, A will be brought 
into contact with a heat reservoir of the 
temperature Ta . At the same time the inser- 
tion B will be heated in the same way to 
temperature T g  . Then the intermediate 
pieces will again be isolated from the corre- 
sponding heat reservoirs. 

We assume that the position of the pointer 
changes so slowly that all the operations 
that we have sketched take place while the 
position of the pointer remains unchanged. 
If the position co-ordinate of the pointer fell 
in the preassigned interval, then the body 
was connected with the insertion A during 
the above-mentioned operation, and conse- 
quently is now cooled to temperature Ta . 

In  the opposite case, the body is now 
heated to temperature T ,  . Its energy con- 
tent becomes-according to the position of 
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the pointer at the time of “measurement”- 
small a t  temperature Ta or great a t  tempera- 
ture TB and will retain its value, even if the 
pointer eventually leaves the preassigned 
interval or enters into it. After some time, 
while the pointer is still oscillating, one can 
no longer draw any definite conclusion from 
the energy content of the body K with re- 
gard to the momentary position of the 
pointer but one can draw a definite conclu- 
sion with regard to the position of the pointer 
a t  the time of the measurement. Then the 
measurement is completed. 

After the measurement has been ac- 
complished, the above-mentioned periodic- 
ally functioning mechanical device should 
connect the thermally isolated insertions A 
and R with the heat reservoir To. This has 
the purpose of bringing the body K-which 
is now also connected with one of the two 
intermediate pieces-back into its original 
state. The direct connection of the intermedi- 
ate pieces and hence of the body K-which 
has been either cooled to  TA or heated to  
TB-to the reservoir To consequently causes 
an increase of entropy. This cannot possibly 
be avoided, because it would make no sense 
to heat the insertion A reversibly to the 
temperature To by successive contacts with 
the reservoirs of intermediate temperatures 
and to cool B in the same manner. After the 
measurement we do not know with which of 
the two insertions the body K is in contact 
at that moment; nor do we know whether it 
had been in connection with TA or TB in the 
end. Therefore neither do we know whether 
we should use intermediate temperatures be- 
tween TA and To or between To and Te. 

The mean value of the quantity of en- 
tropy S1 and Sz, per measurement, can be 
calculated, if the heat capacity as a function 
of the temperature a ( T )  is known for the 
body I(, since the entropy can be calculated 
from the heat capacity. We have, of course, 
neglected the heat capacities of the inter- 
mediate pieces. If the position co-ordinate 
of the pointer was in the preassigned inter- 
val at the time of the “measurement,” and 
accordingly the body in connection with in- 
sertion A ,  then the entropy conveyed to the 
heat reservoirs during successive cooling was 

(21) 

However, following this, the entropy with- 
drawn from the reservoir T o  by direct con- 
tact with it was 

( 2 2 )  $To) - G(TA) 
TO 

All in all the entropy was increased by 
the amount 

Analogously, the entropy will increase by 
the following amount, if the body was in con- 
tact with the intermediate piece B a t  the 
time of the “measurenient”: 

We shall now evaluate Ihese expressions 
for the very simple case, where the body 
which we use has only two energy states, a 
lower and a higher state. If such a body is in 
thermal contact with a heat reservoir at any 
temperature T ,  the probability that it is in 
the lower or upper state is given by re- 
spectively: 

Here u stands for the difference of energy 
of the two states and g for the statistical 
weight. We can set the energy of the 
lower state equal to zero without loss of 
generality. Therefore :4 

Here p and p are the functions of T given 

See the Appendix. 
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hy equation (25 ) ,  which are here to be taken 
for the argu1iient.s TO , T A  , or T B  . 

If (as is necessitated by the above concept 
of a “measurement”) we wish to draw a 
dependable conclusion from the energy con- 
tent of the body K as to  the position co-or- 
dinate of the pointer, we have to see to it 
that the body surely gets into the lower 
energy state when it gets into contact with 
T B  . In  other words: 

This of course cannot be achieved, but may 
be arbitrarily approximated by allowing T A  

to approach absolute zero and the statis- 
tical weight g to approach infinity. (In 
this limiting process, To is also changed, in 
such a way that  TO) and q(To) remain 
constant.) The equation (26) then becomes: 

and if we form the expression e--sAJk + 

(29) 

e - S B l k  , we find: 

e - - S ~ / k  + e--SB/k - - 1. 

Our foregoing considerations have thus 
just realized the smallest permissible limiting 
care. The use of semipermeable walls ae- 
cording to Figure 1 allows a complete 
utilization of the measurement: inequality 
(1) certainly cannot be sharpened. 

As we have seen in this example, a simple 
inanimate device can achieve the same 
essential result as would be achieved by the 
intervention of intelligent beings. We have 
examined the “biological phenomena” of a 
nonliving device and have seen that it gen- 
erates exactly that quantity of entropy 
which is required by thermodynamics. 

APPENDIX 

In the case considered, when the frequency of 
the two states depends on the temperature ac- 
cording to the equations: 

and the mean energy of the body is given by: 

the following identity is valid: 

Therefore we can also write the equat’ion: 

a ( T A )  - “ ( T o )  +lT I dii 
- - dT (33) T d T  

B A  = 
TO 

as 

and by substituting the limits we obtain: 

If we write the latter equation according to 
(25) : 

1 
PO‘) (36) 1 + ge-tdkT = __ 

for T A  and T O ,  then we obtain: 

and if we then write according to (31): 

~ ( T A )  = u d T A )  (38) 

we obtain: 

If we finally write according to ( 2 5 ) :  

for T A  and TO , then we obtain: 

(40) 
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We obtain the corresponding equation for SB , expand and collect terms, then we get 

Formula (41) is identical with (26), given, for REFERENCES 
SA, in the text. 

what different form, if we write: 
We can bring the formula for S B  into a some- Smoluchowski, F. Vortraye UbeT die k ine lkhe  

Theorie der Materie u. Elektrizitat. Leipzig: 
1814. 

d T e )  = 1 - P V d ,  (43) Szilard, L. Zeitschrift fur Physik, 1925, 32, 753. 
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