
Microcontroller Programming
How to make something almost do

something else

Raffi Krikorian
MAS.863

3 November 2003

What’s wrong with a P4?

Pentiums
• 50 million transistors
• $200
• Watts @ idle
• Complicated

instruction set and
usage model

Microcontrollers
• < 150,000

transistors
• $0.50 - $5.00
• 0.01s Watts while

active
• “Simple”

programming model

PIC16F876A

What is it?

• 8-bit processor that can be clocked from 50
kHz - 20 MHz

• 8K Flash program memory and 368 bytes
SRAM

• 22 I/O pins (5 of which could be ADCs)
• 35 Instructions
• Hardware USART
• 2 Comparators

Memory

• Flash memory is
where your
“program” is stored

• SRAM is general
purpose memory

• Registers can be
memory mapped

Instructions

• Processors work
with instructions
– Move, Add, Jump,

etc.

• Programs are just a
series of instructions
that the processor
“steps” through

Adding two numbers

• Numbers are defined in
locations in memory

• Move NUMBER1 to the
W registers (working
register)

• Add NUMBER2 to W
and store the result
back in W

• Move the value in W to
the NUMBER3’s
memory location

// NUMBER3 =
// NUMBER1 + NUMBER2

NUMBER1 EQU 0x20
NUMBER2 EQU 0x21
NUMBER3 EQU 0x22

MOVF NUMBER1, W
ADDWF NUMBER2, W
MOVWF NUMBER3

Counting down v1.0

• W <- 10
• COUNT <- W
• Do some stuff
• If the Z bit is set in

STATUS (the last
operation == 0), then
skip the next line

• If the GOTO is not
skipped, then jump
back to the do_loop

COUNT EQU 0x20

MOVLW d’10’
MOVWF COUNT

do_loop:
// do stuff
DECF COUNT, F
BTFSS STATUS, Z
GOTO do_loop

Counting down v2.0

• There are optimizations
for common operations

• DECFSZ decrements
the value in COUNT,
stores it into COUNT,
and if COUNT == 0 (if
the Z bit is set), it skips
the next instruction

COUNT EQU 0x20

MOVLW d’10’
MOVWF COUNT

do_loop:
// do stuff
DECFSZ COUNT, F
GOTO do_loop

Labels

• Labels allow you to
mark a place in the
code to GOTO or CALL

• GOTO jumps to a label
• CALL saves the current

position, then jumps to
a label
– Allows for a RETURN to

the current position

Simple Output

• Setup PORTC pin 0
(RC0) to be an
output

• Turn PORTC pin 0
on

• Turn PORTC pin 0
off

BSF STATUS, RP0
BCF TRISC, 0
BCF STATUS, RP0

BSF PORTC, 0
BCF PORTC, 0

Simple Input

• Setup PORTB pin 0
(RB0) to be an input

• If RB0 is “low” (reads
0), then skip
– this is the button press

• If RB0 is “high”, then do
next instruction
– Keeps us looping until

the button press

BCF STATUS, RP0
BSF TRISB, 0
BSF STATUS, RP0

button_test:
BTFSC PORTB, 0
GOTO button_test
// button pressed

Using the USART

• USART RX on RC7, TX on RC6
– Make sure that RC7 is an input, and RC6 is an

output in your code
• Load baud rate into SPBRG
• Receiver enable with CREN bit in RCSTA,

transmitter enable with TXEN bit in TXSTA
• Put value you want to transmit into TXREG
• Loop on PIR1 bit RCIF to wait for bytes
• See sample code!

Assembler is fast! But…

• Large programs are hard to manage
• Allocating memory locations in your

head is a pain
• Remembering the nuances of all the

instructions can get annoying
• “Porting” your code to a different

processor is almost impossible

Higher level languages

• C, Basic, Java, Lisp
• All “abstract” out the processor and let you

focus on code
– The compiler handles the conversion from the

high level language to the assembly instructions

• There is a penalty, however…
– Size of code
– Execution speed

C vs. Assembler

Assembler
MOVLW d’10’
MOVWF COUNT

flash:
BSF PORTC, 0
BCF PORTC, 0
DECFSZ COUNT, F
GOTO flash

C
count = 10;
while(count-- > 0) {

port_c = 1;
port_c = 0;

}

Raffi vs. CCS compiled

Raffi-written ASM
MOVLW d’10’

MOVWF COUNT
flash:
BSF PORTC, 0
BCF PORTC, 0
DECFSZ COUNT, F
GOTO flash

CCS generated ASM
MOVLW d’10’
MOVWF COUNT

flash:
MOVF COUNT, W
DECF COUNT, F
XORLW d’0’
BTFSC STATUS, Z
GOTO flash_done
MOVLW d’1’
MOVWF PORTC
CLRF PORTC
GOTO flash

flash_done:

Getting the job done

Software

• MPLAB IDE : Microchip’s integrated
development environment

• PICC : CCS C compiler for PICs
– Integrates into MPLAB

• gpasm : open source assembler

Hardware

• PICSTART Plus or
equivalent programmer

• Project ideas
– Program a “bootloader”

into the software and
then load code over the
serial port

– Build a PIC programmer
(you can easily do it with
another PIC and some
simple circuitry)

Attaching your board

• Pin 1 goes to 15V when
programming, pins 28
and 27 bidirectionally
talk to programmer

• Attach a header and
connect that to the
programmer

• Also connect power
(5V) and ground

Compiling your code (MPLAB)

Getting ready to program
(MPLAB)

Burn baby, burn (MPLAB)

MSP430F1232

What is it?

• 16-bit processor that can be clocked from 30
kHz - 8 MHz

• 8K Flash program memory and 256 bytes
RAM

• 22 I/O pins (8 of which could be ADCs)
• Hardware USART

Why would you want to use it?

• This is where we’re going
• GCC as the compiler/toolchain
• JTAG programming/debugging port
• 350 uA max current draw (PIC on avg.

draws 6 mA)
• Easy to bridge into much more powerful

micros

