
Development Tools User Guide 4-1

Section 4

AVR Assembler User Guide

4.1 Introduction Welcome to the Atmel AVR Assembler. This manual describes the usage of the Assem-
bler. The Assembler covers the whole range of microcontrollers in the AT90S family.

The Assembler translates assembly source code into object code. The generated object
code can be used as input to a simulator or an emulator such as the Atmel AVR In-Cir-
cuit Emulator. The Assembler also generates a PROMable code and an optional
EEPROM file which can be programmed directly into the program memory and
EEPROM memory of an AVR microcontroller.

The Assembler generates fixed code allocations, consequently no linking is necessary.

The Assembler runs under Microsoft Windows 3.11, Microsoft Windows95 and
Microsoft Windows NT. In addition, there is an MS-DOS command line version. The
Windows version of the program contains an on-line help function covering most of this
document.

The instruction set of the AVR family of microcontrollers is only briefly described, refer to
the AVR Data Book (also available on CD-ROM) in order to get more detailed knowl-
edge of the instruction set for the different microcontrollers.

To get quickly started, the Quick-Start Tutorial is an easy way to get familiar with the
Atmel AVR Assembler.

Rev. 1022A-A–01/98

AVR Assembler User Guide

4-2 Development Tools User Guide

4.2 Assembler Quick
Start Tutorial

This tutorial assumes that the AVR Assembler and all program files that come with it are
properly installed on your computer. Please refer to the installation instructions

4.2.1 Getting Started Start the AVR Assembler. By selecting “File → Open” from the menu or by clicking
on the toolbar, open the file “tutor1.asm”. This loads the assembly file into the Editor
window. Read the program header and take a look at the program but do not make any
changes yet.

4.2.2 Assembling Your
First File

Once you have had a look at the program, select Assemble from the menu. A second
window (the Message window) appears, containing a lot of error messages. This win-
dow will overlap the editor window, so it is a good idea to clean up your work space on
the screen. Select the Editor window containing the program code, and select “Window
→ Tile Horizontal” from the menu. It is useful to have the Editor window larger than the
Message window, so move the top of the Message window down a bit, and follow with
the bottom of the Editor window. Your screen should look like this:

AVR Assembler User Guide

Development Tools User Guide 4-3

4.2.3 Finding and
Correcting Errors

From the looks of the Message window, it seems that you have attempted to assemble a
program with lots of bugs. To get any further, the errors must be found and corrected.
Point to the first error message in the Message window (the one reported to be on line
54) and press the left mouse button. Notice that in the Editor window, a red vertical bar
is displayed all over line 54. The error message says that only registers R0 to R31 can
be assigned variable names. That is true since the AVR has exactly 32 General Pur-
pose working registers numbered R0-R31, and “tutor1.asm” tries to assign a name to
register 32. See the figure below.

Double click on the error message in the Message window and observe that the Editor
window becomes active while the cursor is positioned at the start of the line containing
the error. Correct the mistake by changing “r32” to “r19” in the Editor window. One
down, five to go.

Now click on the next error in the list. The message “Illegal argument type or count”, tells
that something is wrong with the arguments following the compare (“cp”) instruction.
Notice that the register named “BH” is one of the arguments, which happens to be the
variable we just corrected. By clicking along on the remaining errors, it appears that the
first error generated all the messages.

4.2.4 Reassembling To find out whether all errors have been corrected, double click on any error (to activate
the Editor window) or click inside the Editor window before you assemble once more. If
you have done it all right up till now, the Message window will tell that you are crowned
with success.

AVR Assembler User Guide

4-4 Development Tools User Guide

4.3 Assembler
source

The Assembler works on source files containing instruction mnemonics, labels and
directives. The instruction mnemonics and the directives often take operands.

Code lines should be limited to 120 characters.

Every input line can be preceded by a label, which is an alphanumeric string terminated
by a colon. Labels are used as targets for jump and branch instructions and as variable
names in Program memory and RAM.

An input line may take one of the four following forms:

1. [label:] directive [operands] [Comment]

2. [label:] instruction [operands] [Comment]

3. Comment

4. Empty line

A comment has the following form:

; [Text]

Items placed in braces are optional. The text between the comment-delimiter (;) and the
end of line (EOL) is ignored by the Assembler. Labels, instructions and directives are
described in more detail later.

Examples:
label: .EQU var1=100 ; Set var1 to 100 (Directive)

.EQU var2=200 ; Set var2 to 200

test: rjmp test ; Infinite loop (Instruction)

; Pure comment line

; Another comment line

Note: There are no restrictions with respect to column placement of labels, directives,
comments or instructions.

AVR Assembler User Guide

Development Tools User Guide 4-5

4.4 Instruction
mnemonics

The Assembler accepts mnemonic instructions from the instruction set. A summary of
the instruction set mnemonics and their parameters is given here. For a detailed
description of the Instruction set, refer to the AVR Data Book.

Note: 1. Not available in base-line microcontrollers

Mnemonics Operands Description Operation Flags
#Clock
Note

ARITHMETIC AND LOGIC INSTRUCTIONS

ADD Rd, Rr Add without Carry Rd ← Rd + Rr Z,C,N,V,H 1

ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C Z,C,N,V,H 1

ADIW Rd, K Add Immediate to Word Rd+1:Rd ← Rd+1:Rd + K Z,C,N,V 2

SUB Rd, Rr Subtract without Carry Rd ← Rd - Rr Z,C,N,V,H 1

SUBI Rd, K Subtract Immediate Rd ← Rd - K Z,C,N,V,H 1

SBC Rd, Rr Subtract with Carry Rd ← Rd - Rr - C Z,C,N,V,H 1

SBCI Rd, K Subtract Immediate with Carry Rd ← Rd - K - C Z,C,N,V,H 1

SBIW Rd, K Subtract Immediate from Word Rd+1:Rd ← Rd+1:Rd - K Z,C,N,V 2

AND Rd, Rr Logical AND Rd ← Rd • Rr Z,N,V 1

ANDI Rd, K Logical AND with Immediate Rd ← Rd • K Z,N,V 1

OR Rd, Rr Logical OR Rd ← Rd v Rr Z,N,V 1

ORI Rd, K Logical OR with Immediate Rd ← Rd v K Z,N,V 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr Z,N,V 1

COM Rd One's Complement Rd ← $FF - Rd Z,C,N,V 1

NEG Rd Two's Complement Rd ← $00 - Rd Z,C,N,V,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FFh - K) Z,N,V 1

INC Rd Increment Rd ← Rd + 1 Z,N,V 1

DEC Rd Decrement Rd ← Rd - 1 Z,N,V 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd,Rr Multiply Unsigned R1, R0 ← Rd × Rr C 2 (1)

AVR Assembler User Guide

4-6 Development Tools User Guide

Mnemonics Operands Description Operation Flags
#Clock
Note

BRANCH INSTRUCTIONS

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC ← Z None 2

JMP k Jump PC ← k None 3

RCALL k Relative Call Subroutine PC ← PC + k + 1 None 3

ICALL Indirect Call to (Z) PC ← Z None 3

CALL k Call Subroutine PC ← k None 4

RET Subroutine Return PC ← STACK None 4

RETI Interrupt Return PC ← STACK I 4

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3

CP Rd,Rr Compare Rd - Rr Z,C,N,V,H 1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,H 1

CPI Rd,K Compare with Immediate Rd - K Z,C,N,V,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBRS Rr, b Skip if Bit in Register Set if (Rr(b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIC P, b Skip if Bit in I/O Register Cleared if(I/O(P,b)=0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIS P, b Skip if Bit in I/O Register Set if(I/O(P,b)=1) PC ← PC + 2 or 3 None 1 / 2 / 3

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC+k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC+k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC+ k + 1 None 1 / 2

BRLT k Branch if Less Than, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

AVR Assembler User Guide

Development Tools User Guide 4-7

Mnemonics Operands Description Operation Flags
#Clock
Note

DATA TRANSFER INSTRUCTIONS

MOV Rd, Rr Copy Register Rd ← Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LDS Rd, k Load Direct from SRAM Rd ← (k) None 3

LD Rd, X Load Indirect Rd ← (X) None 2

LD Rd, X+ Load Indirect and Post-Increment Rd ← (X), X ← X + 1 None 2

LD Rd, -X Load Indirect and Pre-Decrement X ← X - 1, Rd ← (X) None 2

LD Rd, Y Load Indirect Rd ← (Y) None 2

LD Rd, Y+ Load Indirect and Post-Increment Rd ← (Y), Y ← Y + 1 None 2

LD Rd, -Y Load Indirect and Pre-Decrement Y ← Y - 1, Rd ← (Y) None 2

LDD Rd,Y+q Load Indirect with Displacement Rd ← (Y + q) None 2

LD Rd, Z Load Indirect Rd ← (Z) None 2

LD Rd, Z+ Load Indirect and Post-Increment Rd ← (Z), Z ← Z+1 None 2

LD Rd, -Z Load Indirect and Pre-Decrement Z ← Z - 1, Rd ← (Z) None 2

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2

STS k, Rr Store Direct to SRAM (k) ← Rr None 3

ST X, Rr Store Indirect (X) ← Rr None 2

ST X+, Rr Store Indirect and Post-Increment (X) ← Rr, X ← X + 1 None 2

ST -X, Rr Store Indirect and Pre-Decrement X ← X - 1, (X) ← Rr None 2

ST Y, Rr Store Indirect (Y) ← Rr None 2

ST Y+, Rr Store Indirect and Post-Increment (Y) ← Rr, Y ← Y + 1 None 2

ST -Y, Rr Store Indirect and Pre-Decrement Y ← Y - 1, (Y) ← Rr None 2

STD Y+q,Rr Store Indirect with Displacement (Y + q) ← Rr None 2

ST Z, Rr Store Indirect (Z) ← Rr None 2

ST Z+, Rr Store Indirect and Post-Increment (Z)← Rr, Z ← Z + 1 None 2

ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z - 1, (Z) ← Rr None 2

STD Z+q,Rr Store Indirect with Displacement (Z + q)← Rr None 2

LPM Load Program Memory R0 ← (Z) None 3

IN Rd, P In Port Rd ← P None 1

OUT P, Rr Out Port P ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 2

POP Rd Pop Register from Stack Rd ← STACK None 2

AVR Assembler User Guide

4-8 Development Tools User Guide

Mnemonics Operands Description Operation Flags
#Clock
Note

BIT AND BIT-TEST INSTRUCTIONS

LSL Rd Logical Shift Left Rd(n+1) ← Rd(n),Rd(0) ← 0,C ← Rd(7) Z,C,N,V,H 1

LSR Rd Logical Shift Right Rd(n) ← Rd(n+1),Rd(7) ← 0,C ← Rd(0) Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0) ← C,Rd(n+1) ← Rd(n),C ← Rd(7) Z,C,N,V,H 1

ROR Rd Rotate Right Through Carry Rd(7) ← C,Rd(n) ← Rd(n+1),C ← Rd(0) Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

SBI P, b Set Bit in I/O Register I/O(P, b) ← 1 None 2

CBI P, b Clear Bit in I/O Register I/O(P, b) ← 0 None 2

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Two's Complement Overflow V ← 1 V 1

CLV Clear Two's Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ←1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

NOP No Operation None 1

SLEEP Sleep None 1

WDR Watchdog Reset None 1

AVR Assembler User Guide

Development Tools User Guide 4-9

The Assembler is not case sensitive.

The operands have the following forms:

Rd: R0-R31 or R16-R31 (depending on instruction)

Rr: R0-R31

b: Constant (0-7), can be a constant expression

s: Constant (0-7), can be a constant expression

P: Constant (0-31/63), can be a constant expression

K: Constant (0-255), can be a constant expression

k: Constant, value range depending on instruction.
Can be a constant expression.

q: Constant (0-63), can be a constant expression

4.5 Assembler
directives

The Assembler supports a number of directives. The directives are not translated
directly into opcodes. Instead, they are used to adjust the location of the program in
memory, define macros, initialize memory and so on. An overview of the directives is
given in the following table.

Summary of directives:

Note: All directives must be preceded by a period.

Directive Description

BYTE Reserve byte to a variable

CSEG Code Segment

DB Define constant byte(s)

DEF Define a symbolic name on a register

DEVICE Define which device to assemble for

DSEG Data Segment

DW Define constant word(s)

ENDMACRO End macro

EQU Set a symbol equal to an expression

ESEG EEPROM Segment

EXIT Exit from file

INCLUDE Read source from another file

LIST Turn listfile generation on

LISTMAC Turn macro expansion on

MACRO Begin macro

NOLIST Turn listfile generation off

ORG Set program origin

SET Set a symbol to an expression

AVR Assembler User Guide

4-10 Development Tools User Guide

4.5.1 BYTE - Reserve
bytes to a variable

The BYTE directive reserves memory resources in the SRAM. In order to be able to
refer to the reserved location, the BYTE directive should be preceded by a label. The
directive takes one parameter, which is the number of bytes to reserve. The directive
can only be used within a Data Segment (see directives CSEG, DSEG and ESEG).
Note that a parameter must be given. The allocated bytes are not initialized.

Syntax:

LABEL: .BYTE expression

Example:

.DSEG

var1: .BYTE 1 ; reserve 1 byte to var1

table: .BYTE tab_size ; reserve tab_size bytes

.CSEG

ldi r30,low(var1) ; Load Z register low

ldi r31,high(var1) ; Load Z register high

ld r1,Z ; Load VAR1 into register 1

4.5.2 CSEG - Code
Segment

The CSEG directive defines the start of a Code Segment. An Assembler file can consist
of several Code Segments, which are concatenated into one Code Segment when
assembled. The BYTE directive can not be used within a Code Segment. The default
segment type is Code. The Code Segments have their own location counter which is a
word counter. The ORG directive (see description later in this document) can be used to
place code and constants at specific locations in the Program memory. The directive
does not take any parameters.

Syntax:

.CSEG

Example:

.DSEG ; Start data segment

vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.CSEG ; Start code segment

const: .DW 2 ; Write 0x0002 in prog.mem.

mov r1,r0 ; Do something

AVR Assembler User Guide

Development Tools User Guide 4-11

4.5.3 DB-Define constant
byte(s) in program
memory or E 2PROM
memory

The DB directive reserves memory resources in the program memory or the EEPROM
memory. In order to be able to refer to the reserved locations, the DB directive should be
preceded by a label.

The DB directive takes a list of expressions, and must contain at least one expression.
The DB directive must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expres-
sion must evaluate to a number between -128 and 255. If the expression evaluates to a
negative number, the 8 bits two's complement of the number will be placed in the pro-
gram memory or EEPROM memory location.

If the DB directive is used in a Code Segment and the expressionlist contains more than
one expression, the expressions are packed so that two bytes are placed in each pro-
gram memory word. If the expressionlist contains an odd number of expressions, the
last expression will be placed in a program memory word of its own, even if the next line
in the assembly code contains a DB directive.

Syntax:

LABEL: .DB expressionlist

Example:

.CSEG

consts: .DB 0, 255, 0b01010101, -128, 0xaa

.ESEG

eeconst:.DB 0xff

4.5.4 DEF - Set a symbolic
name on a register

The DEF directive allows the registers to be referred to through symbols. A defined sym-
bol can be used in the rest of the program to refer to the register it is assigned to. A reg-
ister can have several symbolic names attached to it. A symbol can be redefined later in
the program.

Syntax:

.DEF Symbol=Register

Example:

.DEF temp=R16

.DEF ior=R0

.CSEG

ldi temp,0xf0 ; Load 0xf0 into temp register

in ior,0x3f ; Read SREG into ior register

eor temp,ior ; Exclusive or temp and ior

AVR Assembler User Guide

4-12 Development Tools User Guide

4.5.5 DEVICE - Define
which device to
assemble for

The DEVICE directive allows the user to tell the Assembler which device the code is to
be executed on. If this directive is used, a warning is issued if an instruction not sup-
ported by the specified device occurs in the code. If the size of the Code Segment or
EEPROM Segment is larger than supported by the specified device, a warning is
issued. If the DEVICE directive is not used, it is assumed that all instructions are sup-
ported and that there are no restrictions on memory sizes.

Syntax:

.DEVICE AT90S1200 | AT90S2313 | AT90S4414 | AT90S8515

Example:

.DEVICE AT90S1200 ; Use the AT90S1200

.CSEG

push r30 ; This statement will generate

; a warning since the

; specified device does not

; have this instruction

4.5.6 DSEG - Data
Segment

The DSEG directive defines the start of a Data Segment. An Assembler file can consist
of several Data Segments, which are concatenated into one Data Segment when
assembled. A Data Segment will normally only consist of BYTE directives (and labels).
The Data Segments have their own location counter which is a byte counter. The ORG
directive (see description later in this document) can be used to place the variables at
specific locations in the SRAM. The directive does not take any parameters.

Syntax:

.DSEG

Example:

.DSEG ; Start data segment

var1:.BYTE 1 ; reserve 1 byte to var1

table:.BYTE tab_size ; reserve tab_size bytes.

.CSEG

ldi r30,low(var1) ; Load Z register low

ldi r31,high(var1) ; Load Z register high

ld r1,Z ; Load var1 into register 1

AVR Assembler User Guide

Development Tools User Guide 4-13

4.5.7 DW-Define constant
word(s) in program
memory or E 2PROM
memory

The DW directive reserves memory resources in the program memory or EEPROM
memory. In order to be able to refer to the reserved locations, the DW directive should
be preceded by a label.

The DW directive takes a list of expressions, and must contain at least one expression.

The DB directive must be placed in a Code Segment or an EEPROM Segment.

The expression list is a sequence of expressions, delimited by commas. Each expres-
sion must evaluate to a number between -32768 and 65535. If the expression evaluates
to a negative number, the 16 bits two's complement of the number will be placed in the
program memory location.

Syntax:

LABEL: .DW expressionlist

Example:

.CSEG

varlist:.DW 0,0xffff,0b1001110001010101,-32768,65535

.ESEG

eevar: .DW 0xffff

4.5.8 ENDMACRO - End
macro

The ENDMACRO directive defines the end of a Macro definition. The directive does not
take any parameters. See the MACRO directive for more information on defining Mac-
ros.

Syntax:

.ENDMACRO

Example:

.MACRO SUBI16 ; Start macro definition

subi r16,low(@0) ; Subtract low byte

sbci r17,high(@0) ; Subtract high byte

.ENDMACRO ; End macro definition

4.5.9 EQU - Set a symbol
equal to an
expression

The EQU directive assigns a value to a label. This label can then be used in later
expressions. A label assigned to a value by the EQU directive is a constant and can not
be changed or redefined.

Syntax:

.EQU label = expression

Example:

.EQU io_offset = 0x23

.EQU porta = io_offset + 2

.CSEG ; Start code segment

clr r2 ; Clear register 2

out porta,r2 ; Write to Port A

AVR Assembler User Guide

4-14 Development Tools User Guide

4.5.10 ESEG - EEPROM
Segment

The ESEG directive defines the start of an EEPROM Segment. An Assembler file can
consist of several EEPROM Segments, which are concatenated into one EEPROM
Segment when assembled. The BYTE directive can not be used within an EEPROM
Segment. The EEPROM Segments have their own location counter which is a byte
counter. The ORG directive (see description later in this document) can be used to
place constants at specific locations in the EEPROM memory. The directive does not
take any parameters.

Syntax:

.ESEG

Example:

.DSEG ; Start data segment

vartab: .BYTE 4 ; Reserve 4 bytes in SRAM

.ESEG

eevar: .DW 0xff0f ; Initialize one word in

; EEPROM

.CSEG ; Start code segment

const: .DW 2 ; Write 0x0002 in prog.mem.

mov r1,r0 ; Do something

4.5.11 EXIT - Exit this file The EXIT directive tells the Assembler to stop assembling the file. Normally, the Assem-
bler runs until end of file (EOF). If an EXIT directive appears in an included file, the
Assembler continues from the line following the INCLUDE directive in the file containing
the INCLUDE directive.

Syntax:

.EXIT

Example:

.EXIT ; Exit this file

4.5.12 INCLUDE - Include
another file

The INCLUDE directive tells the Assembler to start reading from a specified file. The
Assembler then assembles the specified file until end of file (EOF) or an EXIT directive
is encountered. An included file may itself contain INCLUDE directives.

Syntax:

.INCLUDE “filename”

Example:

; iodefs.asm:

.EQU sreg=0x3f ; Status register

.EQU sphigh=0x3e ; Stack pointer high

.EQU splow=0x3d ; Stack pointer low

; incdemo.asm

.INCLUDE “iodefs.asm” ; Include I/O definitions

in r0,sreg ; Read status register

AVR Assembler User Guide

Development Tools User Guide 4-15

4.5.13 LIST - Turn the
listfile generation on

The LIST directive tells the Assembler to turn listfile generation on. The Assembler gen-
erates a listfile which is a combination of assembly source code, addresses and
opcodes. Listfile generation is turned on by default. The directive can also be used
together with the NOLIST directive in order to only generate listfile of selected parts of
an assembly source file.

Syntax:

.LIST

Example:

.NOLIST ; Disable listfile generation

.INCLUDE “macro.inc” ; The included files will not

.INCLUDE “const.def” ; be shown in the listfile

.LIST ; Reenable listfile generation

4.5.14 LISTMAC - Turn
macro expansion on

The LISTMAC directive tells the Assembler that when a macro is called, the expansion
of the macro is to be shown on the listfile generated by the Assembler. The default is
that only the macro-call with parameters is shown in the listfile.

Syntax:

.LISTMAC

Example:

.MACRO MACX ; Define an example macro

add r0,@0 ; Do something

eor r1,@1 ; Do something

.ENDMACRO ; End macro definition

.LISTMAC ; Enable macro expansion

MACX r2,r1 ; Call macro, show expansion

4.5.15 MACRO - Begin
macro

The MACRO directive tells the Assembler that this is the start of a Macro. The MACRO
directive takes the Macro name as parameter. When the name of the Macro is written
later in the program, the Macro definition is expanded at the place it was used. A Macro
can take up to 10 parameters. These parameters are referred to as @0-@9 within the
Macro definition. When issuing a Macro call, the parameters are given as a comma sep-
arated list. The Macro definition is terminated by an ENDMACRO directive.

By default, only the call to the Macro is shown on the listfile generated by the Assem-
bler. In order to include the macro expansion in the listfile, a LISTMAC directive must be
used. A macro is marked with a + in the opcode field of the listfile.

Syntax:

.MACRO macroname

Example:

.MACRO SUBI16 ; Start macro definition

subi @1,low(@0) ; Subtract low byte

sbci @2,high(@0) ; Subtract high byte

.ENDMACRO ; End macro definition

.CSEG ; Start code segment

SUBI16 0x1234,r16,r17; Sub.0x1234 from r17:r16

AVR Assembler User Guide

4-16 Development Tools User Guide

4.5.16 NOLIST - Turn listfile
generation off

The NOLIST directive tells the Assembler to turn listfile generation off. The Assembler
normally generates a listfile which is a combination of assembly source code, addresses
and opcodes. Listfile generation is turned on by default, but can be disabled by using
this directive. The directive can also be used together with the LIST directive in order to
only generate listfile of selected parts of an assembly source file.

Syntax:

.NOLIST ; Enable listfile generation

Example:

.NOLIST ; Disable listfile generation

.INCLUDE “macro.inc” ; The included files will not

.INCLUDE “const.def” ; be shown in the listfile

.LIST ; Reenable listfile generation

4.5.17 ORG - Set program
origin

The ORG directive sets the location counter to an absolute value. The value to set is
given as a parameter. If an ORG directive is given within a Data Segment, then it is the
SRAM location counter which is set, if the directive is given within a Code Segment,
then it is the Program memory counter which is set and if the directive is given within an
EEPROM Segment, then it is the EEPROM location counter which is set. If the directive
is preceded by a label (on the same source code line), the label will be given the value
of the parameter. The default values of the Code and EEPROM location counters are
zero, whereas the default value of the SRAM location counter is 32 (due to the registers
occupying addresses 0-31) when the assembling is started. Note that the EEPROM and
SRAM location counters count bytes whereas the Program memory location counter
counts words.

Syntax:

.ORG expression

Example:

.DSEG ; Start data segment

.ORG 0x67 ; Set SRAM address to hex 67

variable:.BYTE 1 ; Reserve a byte at SRAM

; adr.67H

.ESEG ; Start EEPROM Segment

.ORG 0x20 ; Set EEPROM location

; counter

eevar: .DW 0xfeff ; Initialize one word

.CSEG

.ORG 0x10 ; Set Program Counter to hex

; 10

mov r0,r1 ; Do something

AVR Assembler User Guide

Development Tools User Guide 4-17

4.5.18 SET - Set a symbol
equal to an
expression

The SET directive assigns a value to a label. This label can then be used in later expres-
sions. A label assigned to a value by the SET directive can be changed later in the pro-
gram.

Syntax:

.SET label = expression

Example:

.SET io_offset = 0x23

.SET porta = io_offset + 2

.CSEG ; Start code segment

clr r2 ; Clear register 2

out porta,r2 ; Write to Port A

4.6 Expressions The Assembler incorporates expressions. Expressions can consist of operands, opera-
tors and functions. All expressions are internally 32 bits.

4.6.1 Operands The following operands can be used:

■ User defined labels which are given the value of the location counter at the place they
appear.

■ User defined variables defined by the SET directive

■ User defined constants defined by the EQU directive

■ Integer constants: constants can be given in several formats, including

a) Decimal (default): 10, 255

b) Hexadecimal (two notations): 0x0a, $0a, 0xff, $ff

c) Binary: 0b00001010, 0b11111111

■ PC - the current value of the Program memory location counter

4.6.2 Functions The following functions are defined:

■ LOW(expression) returns the low byte of an expression

■ HIGH(expression) returns the second byte of an expression

■ BYTE2(expression) is the same function as HIGH

■ BYTE3(expression) returns the third byte of an expression

■ BYTE4(expression) returns the fourth byte of an expression

■ LWRD(expression) returns bits 0-15 of an expression

■ HWRD(expression) returns bits 16-31 of an expression

■ PAGE(expression) returns bits 16-21 of an expression

■ EXP2(expression) returns 2^expression

■ LOG2(expression) returns the integer part of log2(expression)

4.6.3 Operators The Assembler supports a number of operators which are described here. The higher
the precedence, the higher the priority. Expressions may be enclosed in parentheses,
and such expressions are always evaluated before combined with anything outside the
parentheses.

AVR Assembler User Guide

4-18 Development Tools User Guide

4.6.3.1 Logical Not Symbol: !

Description: Unary operator which returns 1 if the expression was zero, and returns 0
if the expression was nonzero

Precedence: 14

Example: ldi r16,!0xf0 ; Load r16 with 0x00

4.6.3.2 Bitwise Not Symbol: ~

Description: Unary operator which returns the input expression with all bits inverted

Precedence: 14

Example: ldi r16,~0xf0 ; Load r16 with 0x0f

4.6.3.3 Unary Minus Symbol: -

Description: Unary operator which returns the arithmetic negation of an expression

Precedence: 14

Example: ldi r16,-2 ; Load -2(0xfe) in r16

4.6.3.4 Multiplication Symbol: *

Description: Binary operator which returns the product of two expressions

Precedence: 13

Example: ldi r30,label*2 ; Load r30 with label*2

4.6.3.5 Division Symbol: /

Description: Binary operator which returns the integer quotient of the left expression
divided by the right expression

Precedence: 13

Example: ldi r30,label/2 ; Load r30 with label/2

4.6.3.6 Addition Symbol: +

Description: Binary operator which returns the sum of two expressions

Precedence: 12

Example: ldi r30,c1+c2 ; Load r30 with c1+c2

4.6.3.7 Subtraction Symbol: -

Description: Binary operator which returns the left expression minus the right
expression

Precedence: 12

Example: ldi r17,c1-c2 ;Load r17 with c1-c2

4.6.3.8 Shift left Symbol: <<

Description: Binary operator which returns the left expression shifted left a number of
times given by the right expression

Precedence: 11

Example: ldi r17,1<<bitmask ;Load r17 with 1 shifted

;left bitmask times

AVR Assembler User Guide

Development Tools User Guide 4-19

4.6.3.9 Shift right Symbol: >>

Description: Binary operator which returns the left expression shifted right a number of
times given by the right expression.

Precedence: 11

Example: ldi r17,c1>>c2 ;Load r17 with c1 shifted

;right c2 times

4.6.3.10 Less than Symbol: <

Description: Binary operator which returns 1 if the signed expression to the left is Less
than the signed expression to the right, 0 otherwise

Precedence: 10

Example: ori r18,bitmask*(c1<c2)+1 ;Or r18 with

;an expression

4.6.3.11 Less or Equal Symbol: <=

Description: Binary operator which returns 1 if the signed expression to the left is Less
than or Equal to the signed expression to the right, 0 otherwise

Precedence: 10

Example: ori r18,bitmask*(c1<=c2)+1 ;Or r18 with

;an expression

4.6.3.12 Greater than Symbol: >

Description: Binary operator which returns 1 if the signed expression to the left is
Greater than the signed expression to the right, 0 otherwise

Precedence: 10

Example: ori r18,bitmask*(c1>c2)+1 ;Or r18 with

;an expression

4.6.3.13 Greater or Equal Symbol: >=

Description: Binary operator which returns 1 if the signed expression to the left is
Greater than or Equal to the signed expression to the right, 0 otherwise

Precedence: 10

Example: ori r18,bitmask*(c1>=c2)+1 ;Or r18 with

;an expression

4.6.3.14 Equal Symbol: ==

Description: Binary operator which returns 1 if the signed expression to the left is
Equal to the signed expression to the right, 0 otherwise

Precedence: 9

Example: andi r19,bitmask*(c1==c2)+1 ;And r19 with

;an expression

AVR Assembler User Guide

4-20 Development Tools User Guide

4.6.3.15 Not Equal Symbol: !=

Description: Binary operator which returns 1 if the signed expression to the left is Not
Equal to the signed expression to the right, 0 otherwise

Precedence: 9

Example: .SET flag=(c1!=c2) ;Set flag to 1 or 0

4.6.3.16 Bitwise And Symbol: &

Description: Binary operator which returns the bitwise And between two expressions

Precedence: 8

Example: ldi r18,High(c1&c2) ;Load r18 with an expression

4.6.3.17 Bitwise Xor Symbol: ^

Description: Binary operator which returns the bitwise Exclusive Or between two
expressions

Precedence: 7

Example: ldi r18,Low(c1^c2) ;Load r18 with an expression

4.6.3.18 Bitwise Or Symbol: |

Description: Binary operator which returns the bitwise Or between two expressions

Precedence: 6

Example: ldi r18,Low(c1|c2) ;Load r18 with an expression

4.6.3.19 Logical And Symbol: &&

Description: Binary operator which returns 1 if the expressions are both nonzero, 0
otherwise

Precedence: 5

Example: ldi r18,Low(c1&&c2) ;Load r18 with an expression

4.6.3.20 Logical Or Symbol: ||

Description: Binary operator which returns 1 if one or both of the expressions are
nonzero, 0 otherwise

Precedence: 4

Example: ldi r18,Low(c1||c2) ;Load r18 with an expression

AVR Assembler User Guide

Development Tools User Guide 4-21

4.7 Microsoft
Windows
specifics

This section describes the features specific to WAVRASM. Only the menu items specific
to the Assembler are described. It is assumed that the user is familiar with the “Search”
and “Window” menu items. A typical editing session with the Assembler is shown in the
following figure.

4.7.1 Opening Assembly
Files

A new or existing assembly files can be opened in WAVRASM. Theoretically there is no
limit on how many assembly files which can be open at one time. The size of each file
must be less than about 28K bytes due to a limitation in MS-Windows. It is still possible
to assemble files larger than this, but they can not be edited in the integrated editor. A
new editor window is created for every assembly file which is opened.

To create a new assembly file click the button on the toolbar or choose “File → New”
(ALT-F N) from the menu. To open an existing file click the button on the toolbar or
choose “File → Open” (ALT-F O) from the menu.

4.7.2 The Integrated
Editor

When WAVRASM is finished loading a file, the text editor will be inactive. Refer to the
section on opening files on how to open a file. Right after a file is loaded into an editor
window of the Assembler, the insertion point appears in the upper left corner of the win-
dow.

4.7.3 Typing and
Formatting Text

The insertion point moves to the right when typing. If text is written beyond the right mar-
gin, the text automatically scrolls to the left so that the insertion point is always visible.

4.7.4 Moving the Insertion
Point

The insertion point can be moved anywhere by moving the mouse cursor to the point
where the insertion point is wanted and click the left button.

AVR Assembler User Guide

4-22 Development Tools User Guide

To move the insertion point with the keyboard, use the following keys or key combina-
tions:

4.7.5 Formatting Text The keys in the table below describes the necessary operations to type in the text
exactly as wanted.

To split a line, move the insertion point to the position where the break is wanted and
press Enter.

To join two lines, move the insertion point to the beginning of the line to move, and press
Backspace. The editor joins the line with the line above.

4.7.6 Scrolling If a line of text is longer or wider than can be shown at one time, the file can be scrolled
by using the scroll bars.

4.7.7 Editing Text The Edit-menu contains some functions which can be of much help in editing. Text can
be deleted, moved or copied to new locations. The Undo command can be used to
revert the last edit. Transferring text to and from other windows or applications can be
done via the clipboard. When text is deleted or copied with the commands Cut or Copy,
the text is placed in the Clipboard. The Paste command copies text from the Clipboard
to the editor.

4.7.8 Selecting Text Before a command is selected from the Edit-menu to edit text, the text to operate on
must first be selected.

Selecting text with the keyboard:

1. Use the arrow keys to move the insertion point to the beginning of the text to
select.

2. Press and hold the Shift-key while moving the insertion point to the end of the
text to select. Release the Shift-key. To cancel the selection, press one of the
arrow keys.

To move the insertion point: Press:

to the right in a line of text Right arrow key

to the left in a line of text Left arrow key

up in a body of text Up arrow key

down in a body of text Down arrow key

to the beginning of a line of text Home

to the end of a line of text End

to the beginning of the file Ctrl+Home

to the end of the file Ctrl+End

To: Press:

insert a space Spacebar

delete a character to the left Backspace

delete a character to the right Del

end a line Enter

indent a line Tab

insert a tab stop Tab

AVR Assembler User Guide

Development Tools User Guide 4-23

Selecting text with the mouse:

1. Move the mouse cursor to the beginning of the text to select.

2. Hold down the left mouse button while moving the cursor to the end of the text to
select. Release the mouse button.

3. To cancel the selection, press the left mouse button or one of the arrow keys.

4.7.9 Replacing Text When text is selected, it can be immediately replaced it by typing new text. The selected
text is deleted when the first new character is typed.

Replacing text:

1. Select the text to replace.

2. Type the new text.

Deleting Text:

1. Select the text to delete.

2. Press the Del key.

To restore the deleted text, press the key on the toolbar or choose “Edit → Undo”
(Alt+Backspace) from the menu immediately after deleting the text.

4.7.10 Moving Text Text can be moved from one location in the editor by first copy the text to the Clipboard
with the Cut command, and then pasting it to its new location using the Paste command.

To move text:

1. Select the text to move.

2. Press the button on the toolbar or choose “Edit → Cut” (Shift+Del) from the
menu. The text is placed in the Clipboard.

3. Move the insertion point to the new location.

4. Press the button on the toolbar or choose “Edit → Paste” (Shift+Ins) from the
menu.

4.7.11 Copying Text If some text will be used more than once, it need not be typed each time. The text can
be copied to the Clipboard with Copy, and can then be pasted in many places by using
the Paste command.

To copy text:

1. Select the text to copy.

2. Click the button on the toolbar or choose “Edit → Copy” (Ctrl+Ins) from the
menu. The text is placed in the Clipboard.

3. Move the insertion point to the location to place the text.

4. Click the button on the toolbar or choose “Edit → Paste” (Shift-Ins) from the
menu.

4.7.12 Undoing an Edit The Undo command can be used to cancel the last edit. For example, text may acciden-
tally have been deleted, or it has been copied to a wrong location. If the Undo command
is chosen immediately after the mistake was done, the text will be restored to what it
was before the mistake.

To undo the last edit click the button on the toolbar or choose “Edit → Undo”
(Alt+Backspace) from the menu.

4.7.13 Click On Errors The Assembler has a click on error function. When a program is assembled, a message
window appears on the screen. If errors are encountered, the errors are listed in this
message window. If one of the error lines in the message window is clicked, the source
line turns inverted red. If the error is in a included file, nothing happens.

AVR Assembler User Guide

4-24 Development Tools User Guide

This feature is demonstrated in the following figure:

If the message window line is doubleclicked, the file containing the error becomes the
active window, and the cursor is placed at the beginning of the line containing the error.
If the file containing the error is not opened (for instance an included file), then the file is
automatically opened.

Note that this function points to lines in the assembled file. This means that if lines are
added or removed in the source file, the file must be reassembled in order to get the line
numbers right.

4.7.14 Setting Program
Options

Some of the default values of WAVRASM can be changed in the options menu. If
“Options” is selected on the menu bar, the following dialog box pops up.

AVR Assembler User Guide

Development Tools User Guide 4-25

In the box labeled “List-file extension” the default extension on the list file(s) is written,
and in the box labeled “Output-file extension” the default extension of the output file is
written. In the box labeled “Output file format” the type of format wanted on the output
file can be selected. If the OK button is clicked, the values are remembered in subse-
quent runs of the Assembler. Note that the object file (used by the simulator) is not
affected by these options; the extension of the object file is always ‘OBJ’ and the format
is always the same. If an EEPROM Segment has been defined in the code, the assem-
bler will also generate a file with extension ‘EEP’ which is the initial values for the
EEPROM memory. This EEPROM initialization file is in the same format as the Output
file format selected.

The “Wrap relative jumps” option tells the Assembler to use wrapping of addresses. This
feature is only useful when assembling for devices with 4K words of program memory.
Using this option on such devices, the relative jump and call instructions will reach the
entire program memory.

The “Save before assemble” option makes the Assembler automatically save the con-
tents of the editor before assembling is done.

4.8 Command line
version

For the MS-DOS command line version the Assembler is invoked by the command

AVRASM [-m | -i | -g][-w] input.asm output.lst output.rom

AVRASM will now read source from input.asm, produce the listfile output.lst, output.rom
and the object file input.obj. The objectfile '*.obj' is used by the MS-Windows simulator.

The user can select which output format to generate by using one of the options -m
(Motorola S-record), -i (Intel Hex) or -g (Generic). The Generic file format is used by
default.

The -w option tells the Assembler to use wrapping of addresses. This feature is only
used when assembling for devices with 4K words of program memory. Using this switch
on these devices, the relative jump and call instructions will reach the entire program
memory.

AVR Assembler User Guide

4-26 Development Tools User Guide

