#include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 24 // bit delay for 38400 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define PWM_delay() _delay_us(1) // PWM unit delay #define PWM_period 100 #define serial_port PORTA #define serial_direction DDRA #define serial_pin_out (1 << PA1) #define in_port PORTA #define in_direction DDRA #define in_pins PINA #define x_pin (1 << PA7) #define bridge_port PORTA // H-bridge port #define bridge_direction DDRA // H-bridge direction #define IN1 (1 << PA3) // IN1 #define IN2 (1 << PA2) // IN2 #define ACCEL_SAMPLES 3 void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } void pwm_break(uint16_t iters, uint16_t PWM_duty) { static uint16_t PWM_count; static uint16_t i; for (i = 0; i <= iters; ++i){ // forward at given duty cycle clear(bridge_port, IN2); for (PWM_count = 0; PWM_count < PWM_duty; ++PWM_count) PWM_delay(); set(bridge_port, IN2); for (PWM_count = 0; PWM_count < PWM_period - PWM_duty; ++PWM_count) PWM_delay(); } } int main(void) { // // main // static uint16_t i; static uint16_t xoff,xon; static uint16_t PWM_duty = 50; // // set clock divider to /1 (8 MHz) // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize H-bridge pins // clear(bridge_port, IN1); output(bridge_direction, IN1); clear(bridge_port, IN2); output(bridge_direction, IN2); clear(bridge_port, IN1); set(bridge_port, IN2); // // initialize serial output pins // set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out); // // main loop // while (1) { // // read x (approximate loop timing) // xoff = 0; xon = 0; for (i = 0; i < ACCEL_SAMPLES; ++i) { // // wait for x high // while (0 == pin_test(in_pins,x_pin)) pwm_break(1, PWM_duty); // // wait for x low // while (0 != pin_test(in_pins,x_pin)) pwm_break(1, PWM_duty); // // time x low // while (0 == pin_test(in_pins,x_pin)){ xoff += 1; pwm_break(1, PWM_duty); } // // time x high // while (0 != pin_test(in_pins,x_pin)) { xon += 1; pwm_break(1, PWM_duty); } } // // send framing // put_char(&serial_port, serial_pin_out, 1); put_char(&serial_port, serial_pin_out, 2); put_char(&serial_port, serial_pin_out, 3); put_char(&serial_port, serial_pin_out, 4); // // send x // put_char(&serial_port, serial_pin_out, (xoff & 255)); put_char(&serial_port, serial_pin_out, ((xoff >> 8) & 255)); put_char(&serial_port, serial_pin_out, (xon & 255)); put_char(&serial_port, serial_pin_out, ((xon >> 8) & 255)); pwm_break(10, PWM_duty); } }