
Johann C. Rocholl (Rostock) Style

Delta Robot Kinematics
by Steve Graves

PREFACE

First I would like to thank Johann Rocholl for his contributions. While I have not met him, much of
what is written here is thanks to him. For example, all of the Rostock images were generated using
modified versions of his OpenSCAD model for the Rostock. His Marlin code was also a source of
my verifying the concepts. And then of course I would like to thank him for creating the best DIY
3D printer in existence. When I wrote this I didn't own a delta printer. I am now working with the
Kossel Clear. I am using the principles discussed here to make improvements to the bed leveling
algorithms. Since my first version I have rewritten the forward kinematics to use trilateration as
recommended by Michael Paauwe from New Zealand. Thanks! Michael. I have also added
references to the Marlin variables to make this a more useful document when tuning your printer.
And I added some discussion of how the shape of the printing area is the intersection of the arcs of
the arms around the virtual columns. I have found this concept useful for graphically playing
around with arms of varying lengths and columns at positions other than the 120 degree spacing.

INTRODUCTION

This is my analysis of the style of delta robot used in the Rostock printer. I have yet to see a
published analysis of this style. There are a number analyzing the original delta robot, the Clavel. I
realize that the inverse kinematics for Rostock is already available in firmware and is probably
described some where on the Internet if I look long enough, but I like to understand things myself.
And it is my philosophy that if the problem appears to be something I can figure out myself, then I
want to do that before reading about it. It gives me more insight and my brain is not biased by the
accepted solution. I may come up with different way of looking at the problem than the accepted
solution.

Once you break it down, this is a reasonably simple geometry problem. In fact, I now find myself
saying to people that it is simply the Pythagorean theory applied to each column. And the math can
be simplified down to that very point. So it is important to describe the geometry and define the
formulas that are derived from that geometry. Part of describing the geometry is to also establish
naming conventions. The delta robot has three columns (The Rostock uses a pair of rods, gray in
the fig. 1).. We will call the three columns A, B, and C. Each column has a carriage (yellow in fig.
1) that runs up and down the column. Each carriage has two parallel arms (blue in the fig. 1) that
connect to the effector platform (green in the fig. 1). Each pair of arms are the same length and the
connections on each carriage are exactly parallel to the the bottom surface of the robot. The bottom
surface is called the bed (red in the fig. 1). To make the arms parallel, the connection points on each
carriage and the effector platform are the same distance apart.

Fig. 1
The first thing I see is that part of the geometry follows the principle of the pantograph. The
parallel arms are not only parallel to each other but they also force the edge of the effector platform
to be parallel to the connection points on the carriage. We can see this in Fig. 2 with a view directly
above the robot. Since there are three carriages and all three have connection points parallel to the
bed, the plane of the effector platform must always be parallel to the plane of the bed. To repeat, the
parallel arms from the carriages to the effector platform force its plane to be parallel to the
plane of the bed. I have seen posts questioning the parallel arms, here you have one reason why
they exist. To my thinking, making the effector platform be parallel to the bed is the main benefit of
the parallel arms.

And since the edge of the effector platform is parallel to the connection points on each carriage, the
distance between corresponding points on the effector platform and the carriage is the same. So for
the math we can choose the line that connects the point half way along the edge of the effector
platform and half way between the connection points of the corresponding carriage. For most
calculations we can use this line. We will call this our line of action. The end points of this line are
exactly between the pivot points on the effector platform and exactly between the pivot points on
the carriage. When we refer to the carriage or the effector platform these are the points of
reference. For example, the height of the carriage above the bed is the distance from the bed to this
point. And the height of the carriage above the effector platform is the vertical distance from the
point on the effector platform and the point on the carriage. To summarize, the math can be based
on a single line of action connecting the carriage and the effector platform with the knowledge that
the parallel arms maintain a geometric orientation around this line of action.

Fig. 2
There are some simplifying assumptions to make. First we will assume that the columns form an
equilateral triangle. This is not necessary, one can have a non-equilateral triangle, but this
assumption simplifies the math by allowing us to use one variable for the distance between
columns. That is, the distance between any two columns is the same as any other two columns. We
will call that distance S (side of triangle). It also allows us to choose a coordinate system where the
columns are all at the same distance from the origin. Note that the columns can be represented by
points. In the case of the Rostock each column point is at the midpoint between the two rods. The
distance from the center to each column point is DELTA_SMOOTH_ROD_OFFSET in Marlin

Next we will assume that all three pairs of arms are the same length. We will call that length L
(DELTA_DIAGONAL_ROD in Marlin). I don't believe it is necessary that the distance between
columns be the same or that the arms are all the same length. The math can be worked out with
different lengths between columns and/or with one or more arms of different lengths. It changes the
shape of the area that can be covered. This might be beneficial for a robot that prints specialized
objects (a house?). The next assumption is that the head is mounted exactly in the center of the
effector platform. We will call the distance from where the line of action meets the edge of the
effector platform to the center of the effector platform E (DELTA_EFFECTOR_OFFSET). The
coordinates X, Y and Z are the coordinates of the extrusion point on the bottom of the hot head.
The center of the effector platform is exactly above the extrusion point and it has the same X, Y
coordinates as the head.

As discussed, we will measure the height of each carriage where the line of action terminates in
between the connection points. We will call the height of each carriage above the effector platform

Acz, Bcz and Ccz. We will call the height of the carriages above the bed Az, Bz and Cz. We
will call the distance the head extends below the effector Hez. The height of the head above the bed
is Z. So Az = Z + Acz + Hez, Bz = Z + Bcz + Hez and Cz = Z + Ccz + Hez. So
this leads us to another simplification of the problem. We can derive the formulas for a given X,Y
plane and remove Z from the equations. Then we can translate that plane to any Z location. All we
need to concern ourselves with is Acz, Bcz and Ccz. Since they are all relative to the effector
platform, we can calculate X,Y coordinates in the plane of the effector platform.

Az = Z + Acz + Hez
Bz = Z + Bcz + Hez
Cz = Z + Ccz + Hez

Solving for Z
Z = Az - Acz - Hez
Z = Bz - Bcz - Hez
Z = Cz - Ccz – Hez

This brings us to a discussion of the Z axis. One can see by the geometry that if one moves all the
carriages up by an equal amount then one will change only the Z component of the head. So the Z
component is directly related to the carriage heights (Az, Bz and Cz). This is also shown in the
above formula. Now implied by the observation about the Z component and the formula above is
that Acz, Bcz and Ccz are only dependent on X, Y. This leads to the following discussion for the
inverse kinematics.

INVERSE KINEMATICS

The inverse kinematics are the basis for the formulas used in software for controlling the printer.
They take the desired X,Y,Z coordinates and calculate the carriage positions (Az, Bz, Cz) that
will cause the robot to move to those coordinates.

We will review this below, but here are how the Marlin constants relate to the variables given here.
The variable L is represented in Marlin by DELTA_DIAGONAL_ROD. Ae, Be and Ce is
DELTA_EFFECTOR_OFFSET. Aco, Bco and Cco is DELTA_CARRIAGE_OFFSET. DR, Ad,
Bd and Cd are DELTA_RADIUS. The variable R is DELTA_SMOOTH_ROD_OFFSET.

Fig. 3

Now we need to define a coordinate system. We are going to choose a Cartesian system with the
origin at the center of the bed. We are going to place column A on the positive Y axis at a distance R
(DELTA_SMOOTH_ROD_OFFSET) from the origin. The other columns will lie on a circle at that
distance at 120 degrees. Column B will be 120 degrees clockwise when viewed from above.
Column C is another 120 clockwise from B or 120 counterclockwise from A.

One important set of formulas can be derived by observing that the arms and the vertical rise form a
right angle triangle where the third leg is in the plane of the effector platform. Now we need to
understand how the the third leg relates to our X, Y point in the middle of the effector platform.
My first thought was that our line of action passes through the center of the effector platform. But
this is not true. The line from the center of the effector platform to edge of the effector platform
where the line of action meets the effector platform is perpendicular to the edge. Since the edge is
parallel to connection points on the carriage the line on the effector platform will maintain the same
orientation in the X,Y plane. It is a fixed vector. We will call these vectors Ae, Be and Ce. By our
definition, they are all the same length and the direction is determined by the orientation of the
corresponding column. Since vector addition is commutative, we will show that these vectors can
be moved from the end of the arc and applied to the column positions. This changes the pivot point
to a virtual column position that the points of interest form an arc around, simplifying the math
when doing kinematic calculations. So the distance from the edges to the center of the effector
platform become a constant (DELTA_EFFECTOR_OFFSET) applied once when initializing the
software.

Fig. 4

Now to determine what formulas we can derive from the right angle triangles formed by each arm,
the vertical rise (virtual column) and leg in the X-Y plane. We will call the distances of the triangle
legs (effector platform edge to the point below the carriage pivot point) in the XY plane Ad, Bd,
and Cd. Using the Pythagorean theorem we get the formulas

Ad^2 + Acz^2 = L^2
Bd^2 + Bcz^2 = L^2
Cd^2 + Ccz^2 = L^2

Now let's relate our columns to the X, Y plane. First important thing is to describe the locations of
the base of the columns A, B and C in the X, Y plane. We will call the physical locations Ax,
Ay; Bx, By and Cx, Cy. By observation we can see that the actual pivot points are the points
exactly below where each line of action terminates on its carriage. We can calculate these locations
by subtracting a vector from each column which represents the carriage offset. We will call these
pivot locations Apx, Apy; Bpx, Bpy and Cpx, Cpy. We will use these values for now, but later
we can reduce the number of unknowns by moving these locations to virtual column positions. For
this analysis we hold Z constant, so we are restricting our effector platform to a given XY plane.
The line of action for each column pivots around the point on the carriage. When the carriage is at
a given height above the effector platform, the possible locations in the XY plane where the edge of
a effector platform meets a given line of action is an arc around the pivot point. If the vector Ae,
Be and Ce were zero and the lines of action met at the center of the effector platform our X, Y
coordinates would be the intersection between these arcs. But since Ae, Be and Ce are not zero,
the problem is a little more complicated.

Let's make some equations to relate Ae, Be and Ce to our X, Y coordinates. Let's call the
coordinates where the lines of action meet the effector platform Acx, Acy ; Bcx, Bcy and
Ccx, Ccy. We know that a vector can be represented by a delta X and delta Y, so we will break the
vectors down to Aex, Aey; Bex, Bey and Cex, Cey. We will define the vectors as pointing
from the edge to the center of the effector platform. So we have the following

X = Acx - Aex = Bcx - Bex = Ccx - Cex
Y = Acy - Aey = Bcy - Bey = Ccy - Cey

Based on our discussion above the line of action travels on an arc. The formula for a circle is (X -
CX)^2 + (Y - CY)^2 = CR^2. Where CX, CY is the center of the circle and CR is the radius.
We should be able to solve the equations for one column and determine the other two by similarity.
So looking at column A.
(Acx - Apx)^2 + (Acy - Apy)^2 = Ad^2
Solving for Acx and Acy above and substituting we get
Acx = X + Aex
Acy = Y + Aey

(X + Aex - Apx)^2 + (Y + Aey - Apy)^2 = Ad^2

We see a simplification, we can treat the pivot points of the circle as Apx - Aex, Apy - Aey.
We will call this point Avx, Avy. We will define the following:
Avx = Apx - Aex
Avy = Apy - Aey

Bvx = Bpx - Bex
Bvy = Bpy - Bey

Cvx = Cpx - Cex
Cvy = Cpy - Cey

These are the locations of our "virtual" columns. These locations can be calculated in software at
initialization and then used for all subsequent calculations. These are at radius DELTA_RADIUS in
the Marlin firmware written by Johann. The virtual columns are the DELTA_TOWER variables in
Marlin. We show the virtual columns in fig. 5 & 6. We also show single arms on the lines of
action. So fig. 6 is a physical representation of our mathematical model. The arms meet at the
X,Y coordinates and travel on virtual columns at locations at a distance of the carriage offset plus
the effector offset away from the physical column locations. This is the model we will use in
firmware.

This is good time to once again relate the other Marlin constants to the variables given here. The
variable L is represented in Marlin by DELTA_DIAGONAL_ROD. Ae, Be and Ce is
DELTA_EFFECTOR_OFFSET. Aco, Bco and Cco is DELTA_CARRIAGE_OFFSET. DR, Ad,
Bd and Cd are DELTA_RADIUS. The variable R is DELTA_SMOOTH_ROD_OFFSET.

Fig. 5

Fig. 6

Now with our simplified model we have the following formulas.

(X - Avx)^2 + (Y - Avy)^2 = Ad^2 = L^2 - Acz^2
solve for Acz
Acz^2 = L^2 - (X - Avx)^2 - (Y - Avy)^2
Acz = sqrt(L^2 - (X - Avx)^2 - (Y - Avy)^2)

By similarity the formulas for the carriage height above the effector platform Bcz and Ccz are:

Bcz = sqrt(L^2 - (X - Bvx)^2 - (Y - Bvy)^2)
Ccz = sqrt(L^2 - (X - Cvx)^2 - (Y – Cvy)^2)

The real values we want is the distance of each carriage above the bed. These formula were given
above. Here they are again:

Az = Z + Acz + Hcz
Bz = Z + Bcz + Hcz
Cz = Z + Ccz + Hcz

These are the formulas used for the inverse kinematics in software.

Now let us check our formulas for validity. If we have columns that are arranged on a circle so that
the virtual columns are at radius DR from the center 0, 0 and one leg (A) is on the Y axis we get the
following:

Avx, Avy => 0, DR
Bvx, Bvy => DR*cos(30), -DR*sin(30) = DR*sqrt(3)/2, -DR/2
Cvx, Cvy => -DR*cos(30), -DR*sin(30) = -DR*sqrt(3)/2, -DR/2
So
Acz = sqrt(L^2 - (X - Avx)^2 - (Y - Avy)^2) =
sqrt(L^2 - (X - 0)^2 - (Y - DR))^2)
Bcz = sqrt(L^2 - (X - Bvx)^2 - (Y - Bvy)^2) =
sqrt(L^2 - (X - DR*sqrt(3)/2)^2 - (Y + DR/2)^2)
Ccz = sqrt(L^2 - (X - Cvx)^2 - (Y - Cvy)^2) =
sqrt(L^2 - (X + DR*sqrt(3)/2)^2 - (Y + DR/2)^2)

L and DR are known constants, You plug in these and the desired X and Y and you get Acz, Bcz
and Ccz.

So let's determine the Acz, Bcz and Ccz for X,Y => 0,0 they should be equal

The only difference between the three equations is
-(X - Avx)^2 - (Y - Avy)^2
-(X - Bvx)^2 - (Y - Bvy)^2
-(X - Cvx)^2 - (Y - Cvy)^2

If we set X and Y to 0 and multiply by -1, these can be rewritten as
Avx^2 + Avy^2
Bvx^2 + Bvy^2
Cvx^2 + Cvy^2

If these terms are equal the equations are equal

Avx^2 + Avy^2 = 0 + DR^2 = DR^2

Bvx^2 + Bvy^2 = (DR*sqrt(3)/2)^2 + (-DR/2)^2 = (DR^2)/4 + (DR^2 * 3)/4
factor out the /4 and combine terms
(4*DR^2)/4 = DR^2

Cvx^2 + Cvy^2 = (-DR*sqrt(3)/2)^2 + (-DR/2)^2 = (DR^2)/4 + (DR^2 * 3)/4
=
factor out the /4 and combine terms
(4*DR^2)/4 = DR^2

The equations are equal, our formulas are valid for this scenario.

FORWARD KINEMATICS

Forward kinematics are the formulas which determine the X-Y-Z coordinates of the effector
platform when given the carriage positions. They are a little more difficult than the inverse
kinematics. Our mathematical model using the virtual column positions is still useful. If we use the
virtual column positions the center of the effector platform is the point that is L away from each
carriage position on the virtual column. This gives the following equations.

(X - Avx)^2 + (Y - Avy)^2 + Acz^2 = L^2
(X - Bvx)^2 + (Y - Bvy)^2 + Bcz^2 = L^2
(X - Cvx)^2 + (Y - Cvy)^2 + Ccz^2 = L^2

Where Acz, Bcz and Ccz are the height of each carriage above the plane of the effector platform
and relate to Z as follows

Acz = Az - Z - Hez
Bcz = Bz - Z - Hez
Ccz = Cz - Z - Hez

Az, Bz and Cz are the Z components of the given carriage positions.

Fig. 7

We have three equations and three unknowns but the squares make these difficult equations to
solve.

I had originally used a solution for the forward kinematics based on the circumcenter, but thanks to
Michael Paauwe from New Zealand I have now used a better method based on Trilateration. (see
Trilateration in Wikipedia to see the details).

Trilateration means finding a point in 3D space based on the distances from 3 known points. This is
exactly how GPS works.

Our three known points are the carriage positions. Below is code from the Java program I wrote to
do analysis of the delta kinematics. It shows how one can use the Wikipedia discussion to derive
code to do forward kinematics.

double[] forwardKinematics(double[] dZ)
{

double[][] dColP = new double[3][3];
for(int iIdx = 0; iIdx < 3; iIdx++)
{

dColP[iIdx][0] = dCol[iIdx][0];
dColP[iIdx][1] = dCol[iIdx][1];
dColP[iIdx][2] = dZ[iIdx];

}
//dColP has the three points on the columns
//As discussed in Wikipedia "Trilateration"

//we are establishing a new coordinate
//system in the plane of the three carriage points.
//This system will have the origin at dColP[0] and
//dColP[1] is on the x axis. dColP[2] is in the X-Y
//plane with a Z component of zero. We will define unit
//vectors in this coordinate system in our original
//coordinate system. Then when we calculate the
//Xnew, Ynew and Znew values, we can translate back into
//the original system by moving along those unit vectors
//by the corresponding values. We try to use the
//variable names from the Wikipedia article.

//Create a vector in old coords along x axis of new coord
double[] p12 = vectorSub(dColP[1], dColP[0]);

//Get the Magnitude of vector.
double d = vectorMag(p12);

//Create unit vector by dividing by magnitude.
double[] ex = vectorMult(p12, 1/d);

//Now find vector from the origin of the new system to
//the third point
double[] p13 = vectorSub(dColP[2], dColP[0]);

//Now use dot product to find the component of this
//vector on the X axis
double i = vectorDotProd(ex, p13);

//Now create a vector along the x axis that represents
//the x component of p13
double[] iex = vectorMult(ex, i);

//Now subtract the X component away from the original
//vector leaving only the Y component. We use the
//variable that will be the unit vector after we scale
//it.
double[] ey = vectorSub(p13, iex);

//The magnitude of Y component
double j = vectorMag(ey);

//Now make vector a unit vector
ey = vectorMult(ey, 1/j);

//The cross product of the unit x and y is the unit z
double[] ez = vectorCrossProd(ex, ey);

//Now we have the d, i and j values defined in Wikipedia.
//We can plug them into the equations defined in
//Wikipedia for Xnew, Ynew and Znew
//Xnew = (r1^2 - r2^2 – d^2)/2*d
// = (L^2 - L^2 - d^2)/2d = d/2;

double Xnew = d/2;

//Ynew = (r1^2 - r3^2 + i^2 + j^2)/2*j - i * Xnew/j
// = ((L^2 - L^2 + i^2 + j^2)/2 - i * Xnew)/j
// = ((i^2 + j^2)/2 - i * Xnew)/j
double Ynew = ((i * i + j * j)/2 - i * Xnew)/j;

//Znew = sqrt(r1^2 - Xnew^2 – Ynew^2)
// = sqrt(L^2 - Xnew^2 - Ynew^2)
double Znew =
 Math.sqrt(dArmSqrd - Xnew * Xnew - Ynew * Ynew);

//Now we can start from the origin in the old coords and
//add vectors in the old coords that represent the
//Xnew, Ynew and Znew to find the point in the old system
double[] cartesian =
 vectorAdd(dColP[0], vectorMult(ex, Xnew));
cartesian = vectorAdd(cartesian, vectorMult(ey, Ynew));
cartesian = vectorAdd(cartesian, vectorMult(ez, -Znew));
return cartesian;

}

More Delta Analysis

Now that we have the formula for forward and inverse kinematics, we can answer some often asked
questions. Two of the most common questions are: “What is the shape of the printing area?” and
“How do errors in the carriage positions affect the effector position?” To that end I have written a
program that creates a color topological map showing the print shape and the possible error. Based
on the above discussion, we can analyze an X-Y plane and the results can be translated to any other
X-Y plane.

I have written a program that steps through the X-Y space and uses the inverse kinematics to
calculate the carriage positions needed for that X-Y location. I then vary each column from the
target value by the error value. There are a couple of modes. In the multiple column mode I try all
combinations of error (+, 0, -) with all three columns (26 combinations, the 27th is all 0s) and look
for the maximum error. In single column mode I vary each column between – and + holding the
other two columns at 0 (6 combinations) and look for maximum error. I also have some other
modes they are: Error in X, error in Y, error in Z, error in X-Y and error in X-Y-Z. A note about Z.
Even though we are working in one given Z plane, the resulting carriage positions could cause the
effector to leave that plane. Hence Z error.

A further discussion of error is in order. I have tried to do some research on this but I haven't found
anything that makes me feel like I have a handle on the subject. So I don't feel qualified for this
discussion, but here goes. As an engineer, I take any case of making measurements and think about
a probability distribution. In many cases one would approximate a probability distribution with a
Gaussian function. But to my thinking, the type of mechanism determines the error. An acme
screw, for example, must have some backlash. One is almost sure to have some error. So the error
distribution is not necessarily centered on 0 and is probably not Gaussian. On the other hand, the
belt drives used in the DIY 3d printers probably have an error that is more distributed around 0 and
the distribution is more likely to be Gaussian. I mention this because when we are analyzing the
error in the delta, one must take into account that there are three sources contributing to the error.

One can calculate the maximum error at a given point based on the maximum error in all three
columns, but one must be aware that the error distribution has changed. For example, if there is a
10% probability for the maximum error in a given column, then the chances of the maximum error
in all three is 10% * 10% * 10% (0.1 * 0.1 * 0.1 * 100) or 0.1%. But in the case of the acme screw
where that error is more likely, then the multiple column error has more meaning. So I have created
two modes for measuring error. As always, the truth is somewhere in between.

Note that each image has its own color legend. For each set of calculations the range of errors is
divided into 10 regions and is assigned the colors shown in the legend at the bottom. This first set
of images uses the values I found in Johann's Marlin code. The virtual radius is 124mm and the arm
length is 250mm.

Following the first set of images which show various error modes are some images showing the
printing area for different arm and radius combinations. These patterns would scale based on the
ratio between arm and radius.

The printing area shown is based on the intersection of the circle around each virtual column. It
assumes that the arms can swing 180 degrees. There is a further discussion about this below.

The virtual columns make a lot of analysis simplier. This includes analysis of the print area. To
determine the print area one just takes the overlap of the possible reach for each arm. The
following pictures show an assumed 180 degree reach. In reality, most delta designs can not make a
180 degree swing, so these are theoretical shapes. In most designs (the Rostock can) it is possible
for the arms to go vertical, so the shape does include the virtual column. From there the shapes
would angle at the limits of the arm swing forming a pie shape at less than 180 degrees. These
intersect the circles around the other two columns. The cool thing here is that one can use graphic
methods to play around with different column positions and arm lengths.

	Johann C. Rocholl (Rostock) Style
	Delta Robot Kinematics
	PREFACE
	INTRODUCTION
	INVERSE KINEMATICS
	FORWARD KINEMATICS
	More Delta Analysis

