// // // array.txrx.44.delta.ss.c // // Charlieplex LED array combined with txrx // If delta of pressure is higher than threshold, charlieplex LED array // // Shirin Shivaei // // #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define input(directions,pin) (directions &= (~pin)) // set port direction for input #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set // macros for txrx #define bit_delay_time 102 // bit delay for 9600 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define settle_delay() _delay_us(100) // settle delay #define char_delay() _delay_ms(10) // char delay #define nloop 100 // loops to accumulate // led macro #define led_delay() _delay_ms(1) // LED delay // port defintions for led #define led_port PORTA #define led_direction DDRA #define A (1 << PA2) // row 1 #define B (1 << PA3) // row 2 #define C (1 << PA4) // row 3 // port defintiions for txrx #define serial_port PORTB #define serial_direction DDRB // PB2 is RXD signal; rx pin on ftdi header #define serial_pin_out (1 << PB2) // PA0 is rx // PA1 is tx // in neil's board, #define transmit_port PORTA #define transmit_direction DDRA #define transmit_pin (1 << PA1) void flash(uint8_t from, uint8_t to, uint8_t delay) { // // charlieplex // source from, sink to, flash // static uint8_t i; set(led_port,from); clear(led_port,to); output(led_direction,from); output(led_direction,to); for (i = 0; i < delay; ++i) led_delay(); input(led_direction,from); input(led_direction,to); } void led_cycle(uint8_t number, uint8_t delay) { // // cycle through LEDs // uint8_t i; for (i = 0; i < number; ++i) { flash(B,A,delay); flash(C,A,delay); flash(A,B,delay); flash(C,B,delay); flash(B,C,delay); } } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } int main(void) { // // main // static unsigned char count; static uint16_t up,down; static int16_t lastup,lastdown; static int16_t deltaup,deltadown;// to track changes between loops static int16_t diff; static uint16_t upS,downS; // // set clock divider to /1 // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize output pins // set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out); clear(transmit_port, transmit_pin); output(transmit_direction, transmit_pin); // // init A/D // ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref as ADC voltage reference | (0 << ADLAR) // right adjust | (0 << MUX5) | (0 << MUX4) | (0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (0 << MUX0); // Selecting PA0 as input to ADC ADCSRA = (1 << ADEN) // enable | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // prescaler /128 // // main loop // while (1) { // // accumulate // // We measure 100 times to get sqrat(100) = 10 times resolution up = 0; down = 0; for (count = 0; count < nloop; ++count) { // // settle, charge // settle_delay(); set(transmit_port, transmit_pin); // // initiate conversion // ADCSRA |= (1 << ADSC); // // wait for completion // while (ADCSRA & (1 << ADSC)) ; // // save result // up += ADC; // // settle, discharge // settle_delay(); clear(transmit_port, transmit_pin); // // initiate conversion // ADCSRA |= (1 << ADSC); // // wait for completion // while (ADCSRA & (1 << ADSC)) ; // // save result // down += ADC; } // deltaup = up-down; diff = deltaup - lastup; if (diff<0) {upS = -diff;} else {upS = diff;} lastup = deltaup; if(diff>3000){ // send framing // put_char(&serial_port, serial_pin_out, 1); char_delay(); put_char(&serial_port, serial_pin_out, 2); char_delay(); put_char(&serial_port, serial_pin_out, 3); char_delay(); put_char(&serial_port, serial_pin_out, 4); // // send result // put_char(&serial_port, serial_pin_out, (upS & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((upS >> 8) & 255)); char_delay(); put_char(&serial_port, serial_pin_out, (down & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((down >> 8) & 255)); char_delay(); led_cycle(1,100); led_cycle(3,20); led_cycle(100,1); } else{ put_char(&serial_port, serial_pin_out, 1); char_delay(); put_char(&serial_port, serial_pin_out, 2); char_delay(); put_char(&serial_port, serial_pin_out, 3); char_delay(); put_char(&serial_port, serial_pin_out, 4); put_char(&serial_port, serial_pin_out, (0 & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((0 >> 8) & 255)); char_delay(); put_char(&serial_port, serial_pin_out, (down & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((down >> 8) & 255)); } } }