// // hello.mag.45.c // // Hall effect magnetic sensing hello-world // 9600 baud FTDI interface // // Neil Gershenfeld 11/3/13 // (c) Massachusetts Institute of Technology 2013 // // This work may be reproduced, modified, distributed, // performed, and displayed for any purpose. Copyright is // retained and must be preserved. The work is provided // as is; no warranty is provided, and users accept all // liability. // #include #include // start of network #include #include // end of network #define output(directions,pin) (directions |= pin) // set port direction for output #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 102 // bit delay for 9600 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define char_delay() _delay_ms(10) // char delay #define sync_delay() _delay_ms(5000) // sync delay #define serial_port PORTB #define serial_direction DDRB #define serial_pin_out (1 << PB2) #define nsamples 100 // number of samples to accumulate // Start of network code #define input(directions,pin) (directions &= (~pin)) // set port direction for input #define led_delay() _delay_ms(100) // LED flash delay #define led_port PORTA #define led_direction DDRA #define led_pin_green (1 << PA1) #define led_pin_orange (1 << PA2) #define led_pin_red (1 << PA3) #define led_pin_blue (1 << PA7) #define serial_pins PINB #define serial_pin_in (1 << PB0) #define node_id '1' void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) { // // read character into rxbyte on pins pin // assumes line driver (inverts bits) // *rxbyte = 0; while (pin_test(*pins,pin)) // // wait for start bit // ; // // delay to middle of first data bit // half_bit_delay(); bit_delay(); // // unrolled loop to read data bits // if pin_test(*pins,pin) *rxbyte |= (1 << 0); else *rxbyte |= (0 << 0); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 1); else *rxbyte |= (0 << 1); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 2); else *rxbyte |= (0 << 2); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 3); else *rxbyte |= (0 << 3); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 4); else *rxbyte |= (0 << 4); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 5); else *rxbyte |= (0 << 5); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 6); else *rxbyte |= (0 << 6); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 7); else *rxbyte |= (0 << 7); // // wait for stop bit // bit_delay(); half_bit_delay(); } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } void put_string(volatile unsigned char *port, unsigned char pin, PGM_P str) { // // send character in txchar on port pin // assumes line driver (inverts bits) // static char chr; static int index; index = 0; do { chr = pgm_read_byte(&(str[index])); put_char(&serial_port, serial_pin_out, chr); ++index; } while (chr != 0); } void flash(led_pin) { // // LED flash delay // clear(led_port, led_pin); led_delay(); set(led_port, led_pin); } void LEDon(led_pin){ clear(led_port,led_pin); set(led_port,led_pin); } // end of network code int main(void) { // // main // static uint16_t count; static uint32_t accum; static uint32_t value; // network static char chr; // // set clock divider to /1 // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize output pins // set(serial_port, serial_pin_out); // network input(serial_direction, serial_pin_out); //output(serial_direction, serial_pin_out); // // init A/D // ADMUX = (0 << REFS1) | (0 << REFS0) // Vcc ref | (0 << MUX5) | (0 << MUX4) | (0 << MUX3) | (0 << MUX2) | (0 << MUX1) | (0 << MUX0); // PA0 ADCSRA = (1 << ADEN) // enable | (1 << ADPS2) | (1 << ADPS1) | (1 << ADPS0); // prescaler /128 // // main loop // while (1) { get_char(&serial_pins, serial_pin_in, &chr); //flash(); //led_delay(); //flash(); input(serial_direction, serial_pin_out); output(serial_direction, serial_pin_out); // // accumulate samples if(chr == node_id){ set(led_port, led_pin_blue); output(led_direction, led_pin_blue); flash(led_pin_blue); flash(led_pin_blue); flash(led_pin_blue); } while(1){ // accum = 0; for (count = 0; count < nsamples; ++count) { // // initiate conversion // ADCSRA |= (1 << ADSC); // // wait for completion // while (ADCSRA & (1 << ADSC)) ; // // add result // accum += ADC; } value = accum; if(value < 10000) { set(led_port, led_pin_green); output(led_direction, led_pin_green); flash(led_pin_green); } else if ((value > 10000) & (value < 50000)) { set(led_port, led_pin_orange); output(led_direction, led_pin_orange); flash(led_pin_orange); } else { set(led_port, led_pin_red); output(led_direction, led_pin_red); flash(led_pin_red); } // set(led_port, led_pin_red); // output(led_direction, led_pin_red); // flash(led_pin_red); // if(value < 10/256){ // set(led_port, led_pin_green); // output(led_direction, led_pin_green); // flash(led_pin_green); // } // if(value >= 4/256){ // set(led_port, led_pin_red); // output(led_direction, led_pin_red); // flash(led_pin_red); // } // if((value >= 10/256) & (value < 20/256)){ // set(led_port, led_pin_orange); // output(led_direction, led_pin_orange); // flash(led_pin_orange); // } // if(value > 2/256){ // set(led_port, led_pin_rede); // output(led_direction, led_pin_red); // flash(led_pin_red); // } // // static const char message[] PROGMEM = "node "; // put_string(&serial_port, serial_pin_out, (PGM_P) message); // put_char(&serial_port, serial_pin_out, chr); // put_char(&serial_port, serial_pin_out, 10); // new line // send framing //sync_delay(); // put_char(&serial_port, serial_pin_out, 1); char_delay(); put_char(&serial_port, serial_pin_out, 2); char_delay(); put_char(&serial_port, serial_pin_out, 3); char_delay(); put_char(&serial_port, serial_pin_out, 4); char_delay(); // // send result // put_char(&serial_port, serial_pin_out, (accum & 255)); //put_char(&serial_port, serial_pin_out, (accum)); char_delay(); put_char(&serial_port, serial_pin_out, ((accum >> 8) & 255)); char_delay(); put_char(&serial_port, serial_pin_out, ((accum >> 16) & 255)); char_delay(); } } }