// // sampler.c // based on hello.ftdi.44.echo.c // // 115200 baud FTDI character echo, with flash string // // set lfuse to 0x5E for 20 MHz xtal // // Neil Gershenfeld // 12/8/10 // Erik Strand // 11/6/2018 // // (c) Massachusetts Institute of Technology 2010 // This work may be reproduced, modified, distributed, // performed, and displayed for any purpose. Copyright is // retained and must be preserved. The work is provided // as is; no warranty is provided, and users accept all // liability. // #include #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 8.5 // bit delay for 115200 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define char_delay() _delay_ms(10) // char delay #define serial_port PORTA #define serial_direction DDRA #define serial_pins PINA #define serial_pin_in (1 << PA0) #define serial_pin_out (1 << PA1) #define led_pin (1 << PB2) #define input_pin (1 << PA5) void get_char(volatile unsigned char *pins, unsigned char pin, char *rxbyte) { // // read character into rxbyte on pins pin // assumes line driver (inverts bits) // *rxbyte = 0; while (pin_test(*pins,pin)) // // wait for start bit // ; // // delay to middle of first data bit // half_bit_delay(); bit_delay(); // // unrolled loop to read data bits // if pin_test(*pins,pin) *rxbyte |= (1 << 0); else *rxbyte |= (0 << 0); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 1); else *rxbyte |= (0 << 1); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 2); else *rxbyte |= (0 << 2); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 3); else *rxbyte |= (0 << 3); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 4); else *rxbyte |= (0 << 4); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 5); else *rxbyte |= (0 << 5); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 6); else *rxbyte |= (0 << 6); bit_delay(); if pin_test(*pins,pin) *rxbyte |= (1 << 7); else *rxbyte |= (0 << 7); // // wait for stop bit // bit_delay(); half_bit_delay(); } void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } void put_string(volatile unsigned char *port, unsigned char pin, char *str) { // // print a null-terminated string // static int index; index = 0; do { put_char(port, pin, str[index]); ++index; } while (str[index] != 0); } #define input_pin (1 << PA5) int main(void) { // Set clock divider to /1 CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // Initialize serial output pins set(serial_port, serial_pin_out); output(serial_direction, serial_pin_out); // Initialize the input pin. DDRA &= ~input_pin; // Make sure power is getting to the ADC. PRR &= ~1u; // Turn on the ADC. ADCSRA |= (1u << 7); // Use VCC as the reference voltage, and connect the ADC to PA5. ADMUX = 0u; ADMUX |= 0b00000101; // Make ADC samples "left adjusted" so that we only have to read one register // to get the 8 most significant bits. ADCSRB |= (1u << 4); // Note: I should configure the ADC's clock divider. // I don't bother here since neither sample rate nor accuracy is yet a concern. // We'll store audio samples here. uint8_t samples[256]; uint8_t n_samples = 0; while (1) { // Tell the ADC to record a value. ADCSRA |= (1u << 6); // Wait until the reading is finished. while (ADCSRA & (1u << 6)) {} // Read the result. samples[0] = ADCH; // Write the result (in binary). put_string(&serial_port, serial_pin_out, "hello.ftdi.44.echo.c: read sample \""); for (int i = 1u; i <= 8; ++i) { if (samples[0] & (1u << (8 - i))) { put_char(&serial_port, serial_pin_out, '1'); } else { put_char(&serial_port, serial_pin_out, '0'); } } put_char(&serial_port, serial_pin_out, 10); // new line } }