// // distance-led-io.c // // HC-SR04 Sonar RGB LED // 9600 baud FTDI interface // // Neil Gershenfeld & Ravi Tejwani // (c) Massachusetts Institute of Technology 2015 // // This work may be reproduced, modified, distributed, // performed, and displayed for any purpose. Copyright is // retained and must be preserved. The work is provided // as is; no warranty is provided, and users accept all // liability. // #include #include #define output(directions,pin) (directions |= pin) // set port direction for output #define set(port,pin) (port |= pin) // set port pin #define clear(port,pin) (port &= (~pin)) // clear port pin #define pin_test(pins,pin) (pins & pin) // test for port pin #define bit_test(byte,bit) (byte & (1 << bit)) // test for bit set #define bit_delay_time 102 // bit delay for 9600 with overhead #define bit_delay() _delay_us(bit_delay_time) // RS232 bit delay #define half_bit_delay() _delay_us(bit_delay_time/2) // RS232 half bit delay #define char_delay() _delay_ms(10) // char delay #define PWM_delay() _delay_ms(1000) // PWM delay #define serial_port PORTA #define serial_direction DDRA #define serial_pin_out (1 << PA1) #define trigger_port PORTA #define trigger_direction DDRA #define trigger_pin (1 << PA3) #define echo_pins PINA #define echo_direction DDRA #define echo_pin (1 << PA2) #define timeout 255 #define PWM_delay() _delay_ms(1000) // PWM delay #define led_port PORTB #define led_direction DDRB #define led_port0 PORTA #define led_direction0 DDRA #define red (1 << PB2) #define green (1 << PA6) #define blue (1 << PA7) void put_char(volatile unsigned char *port, unsigned char pin, char txchar) { // // send character in txchar on port pin // assumes line driver (inverts bits) // // start bit // clear(*port,pin); bit_delay(); // // unrolled loop to write data bits // if bit_test(txchar,0) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,1) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,2) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,3) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,4) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,5) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,6) set(*port,pin); else clear(*port,pin); bit_delay(); if bit_test(txchar,7) set(*port,pin); else clear(*port,pin); bit_delay(); // // stop bit // set(*port,pin); bit_delay(); // // char delay // bit_delay(); } int main(void) { // // main // static unsigned char high,low,pwm; float value,us,cm; float filt = 0; // // set clock divider to /1 // CLKPR = (1 << CLKPCE); CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0); // // initialize output pins // set(serial_port,serial_pin_out); output(serial_direction,serial_pin_out); clear(trigger_port,trigger_pin); output(trigger_direction,trigger_pin); set(led_port, red); output(led_direction, red); set(led_port0, green); output(led_direction0, green); set(led_port0, blue); output(led_direction0, blue); // // start counter // TCCR0B |= (1 << CS00); // prescale /1 // // main loop // while (1) { // // trigger pulse // set(trigger_port,trigger_pin); _delay_us(10); clear(trigger_port,trigger_pin); // // wait for echo rising edge // high = 0; TCNT0 = 0; TIFR0 |= (1 << TOV0); while (1) { if ((echo_pins & echo_pin) != 0) // check for rising edge break; if ((TIFR0 & (1 << TOV0)) != 0) { // check for counter overflow high += 1; if (high == timeout) break; TIFR0 |= (1 << TOV0); } } // // rising edge found, wait for falling edge // high = 0; TCNT0 = 0; TIFR0 |= (1 << TOV0); while (1) { if ((echo_pins & echo_pin) == 0) { // check for falling edge low = TCNT0; break; } if ((TIFR0 & (1 << TOV0)) != 0) { // check for counter overflow high += 1; if (high == timeout) break; TIFR0 |= (1 << TOV0); } } // // send count with framing // put_char(&serial_port,serial_pin_out,1); put_char(&serial_port,serial_pin_out,2); put_char(&serial_port,serial_pin_out,3); put_char(&serial_port,serial_pin_out,4); put_char(&serial_port,serial_pin_out,low); put_char(&serial_port,serial_pin_out,high); value = (256*high + low); filt = (1-0.1)*filt+0.1*value; us = filt/8.0; cm = us/58.0; if(cm<12){ set(led_port0, blue); clear(led_port,red); for (pwm = count; pwm < 255; ++pwm) PWM_delay(); } else { set(led_port, red); clear(led_port0, blue); } // // delay before next cycle // _delay_ms(10); } }