

http://academy.cba.mit.edu/classes/embedded programming/doc8183.pdf

Features

- High Performance, Low Power AVR[®] 8-bit Microcontroller
- Advanced RISC Architecture - 120 Powerful Instructions - Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- Fully Static Operation
- High Endurance, Non-volatile Memory Segments
- 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory Endurance: 10.000 Write/Erase Cycles
- 128/256/512 Bytes of In-System Programmable EEPROM
- + Endurance: 100,000 Write/Erase Cycles
- 128/256/512 Bytes of Internal SRAM
- Data Retention: 20 years at 85°C / 100 years at 25°C - Programming Lock for Self-programming Flash & EEPROM Data Security
- · Peripheral Features
- One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each - 10-bit ADC
- . 8 Single-ended Channels + 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Universal Serial Interface
- Special Microcontroller Features
- debugWIRE On-chip Debug System
- In-System Programmable via SPI Port
- Internal and External Interrupt Sources
- · Pin Change Interrupt on 12 Pins
- Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes
- Enhanced Power-on Reset Circuit
- Programmable Brown-out Detection Circuit with Software Disable Function
- Internal Calibrated Oscillator
- On-chip Temperature Sensor
- VO and Packages
- Available in 20-pin QFN/MLF/VQFN, 14-pin SOIC, 14-pin PDIP and 15-ball UFBGA
- Twelve Programmable I/O Lines
- Operating Voltage:
- 1.8 5.5V
- · Speed Grade:
- 0 4 MHz @ 1.8 5.5V
- 0 10 MHz @ 2.7 5.5V
- = 0 = 20 MHz @ 4.5 = 5.5V
- Industrial Temperature Range: -40°C to +85°C
- . Low Power Consumption
- Active Morie:
- · 210 µA at 1.8V and 1 MHz
- Itie Mode:
- * 33 µA at 1.8V and 1 MHz
- Power-down Mode:
- · 0.1 µA at 1.8V and 25°C

8-bit AVR Microcontroller with 2K/4K/8K Bytes In-System Programmable Flash

ATtiny24A ATtiny44A ATtiny84A

We're going to end up basing our circuit around using an ATtiny44 or 45 so lets take a quick look at the specs for the 44 to see what we can have it do....

Rev. 81639-AVR-06/12

http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

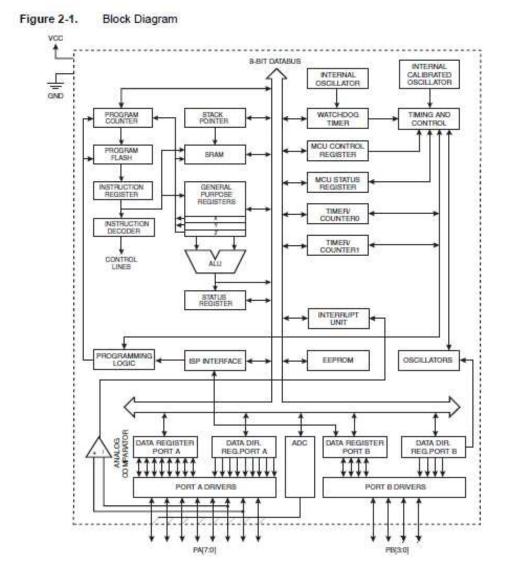
Features

- . High Performance, Low Power AVR[®] 8-bit Microcontroller
- Advanced RISC Architecture - 120 Powerful Instructions - Most Single Clock Cycle Execution
- 32 x 8 General Purpose Working Registers
- Fully Static Operation
- High Endurance, Non-volatile Memory Segments
- 2K/4K/8K Bytes of In-System, Self-programmable Flash Program Memory . Endurance: 10,000 Write/Erase Cycles
- 128/256/512 Bytes of In-System Programmable EEPROM
- + Endurance: 100,000 Write/Erase Cycles
- 128/256/512 Bytes of Internal SRAM
- Data Retention: 20 years at 85°C / 100 years at 25°C - Programming Lock for Self-programming Flash & EEPROM Data Security
- · Peripheral Features - One 8-bit and One 16-bit Timer/Counter with Two PWM Channels, Each
- 10-bit ADC
- 8 Single-ended Channels
 12 Differential ADC Channel Pairs with Programmable Gain (1x / 20x)
- Programmable Watchdog Timer with Separate On-chip Oscillator
- On-chip Analog Comparator
- Universal Serial Interface
- Special Microcontroller Features
- debugWIRE On-chip Debug System - In-System Programmable via SPI Port
- Internal and External Interrupt Sources
- · Pin Change Interrupt on 12 Pins
- Low Power Idle, ADC Noise Reduction, Standby and Power-down Modes - Enhanced Power-on Reset Circuit
- Programmable Brown-out Detection Circuit with Software Disable Function
- Internal Calibrated Oscillator
- On-chip Temperature Sensor
- · VO and Packages
 - Available in 20-pin QFN/MLF/VQFN, 14-pin SOIC, 14-pin PDIP and 15-ball UFBGA
- Twelve Programmable I/O Lines
- Operating Voltage:
- 1.8 5.5V
- · Speed Grade:
- 0 4 MHz @ 1.8 5.5V
- 0 10 MHz @ 2.7 5.5V
- = 0 = 20 MHz @ 4.5 = 5.5V
- Industrial Temperature Range: -40°C to +85°C
- . Low Power Consumption
 - Active Mode:
 - · 210 µA at 1.8V and 1 MHz
 - idle Mode:
 - + 33 µA at 1.8V and 1 MHz
 - Power-down Mode:
 - · 0.1 µA at 1.8V and 25°C

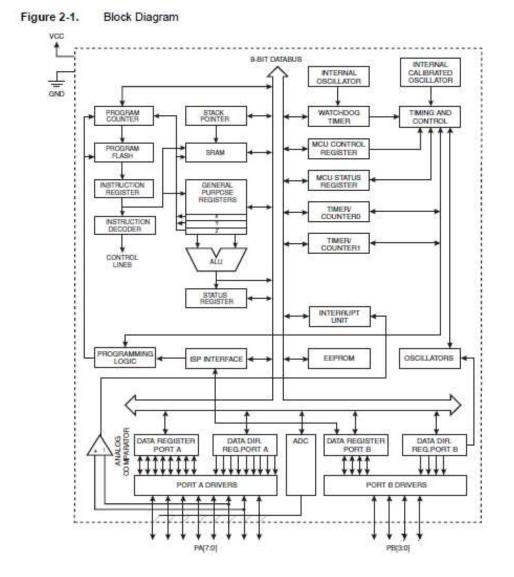
8-bit AVR Microcontroller with 2K/4K/8K **Bytes In-System** Programmable Flash

ATtiny24A ATtiny44A ATtiny84A

286 PAGES !!!!!!!



Rev. 8163F-AVR-06/12


22. Register Summary

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
Dx3F (DxSF)	SREG	1	T	н	8	V	N	Z	C	Fage 14
Dx3E (Dx5E)	SPH	-	-	2		-	-	SP9	SIPS	Page 13
Dx3D (Dx5D)	SPL	SP7	SPE	SP5	SP4	SP3	SP2	SP1	SPO	Page 13
Dx3C (Dx5C)	OCROB	1	S	Timer	Counter0 - Outp	ut Compare Re	gister B	90. 	3 3	Page 83
0x38 (0x58)	GIMSK	-	INTO	POET	PCIED	-	· •		2 2	Page 50
Dx3A (Dx5A)	OIFR	-	INTED	PGIF1	PCIFD	-	-	 	2-3	Page 51
Cx(39 (Cx(59)	TIMSKO		-			ç 🖃	OCIEDB	OCIEGA	TOIED	Page 83
0x38 (0x58)	TIFRO	-	-	-	-		OCF08	OCFEA	TOVE	Page 84
0x37 (0x57)	SPMCSR			RSIG	CTPB	RFLB	PGWRT	POERS	SPIMEN	Page 156
0x36 (0x56)	OCREA			Timer	Counter0 - Outp	ut Compare Re	gister A	the states	Second Second	Page 83
Dx35 (Dx55)	MOUCR.	BODS	PUD	SE	SM1	SMD	BOOSE	19001	ISCOD	Pages 36, 50, 66
0x34 (0x54)	MCUSR	-	-	-	-	WDRF	BORF	EXTRF	PORF	Page 44
0x33 (0x53)	TOCROB	FOCDA	FOCOS	-	-	WGM02	C802	C801	CS00	Page 82
0x32 (0x52)	TONTO		1	8 came	Timer/C	Oretnuck	R	Markes-	W. mart &	Page 83
0x31 (0x51)	OSCCAL	CAL7	CALS	CALS	CAL4	CAL3	CAL2	CAL1	CALD	Page 31
0x30 (0x50)	TOCREA	COMDA1	CONGAD	COM081	COMOBO	-	-	WGMEE	WGM00	Page 79
Dx2F (Dx4F)	TCCRIA	COMIAT	COMIAS	COM1B1	COMILBO	÷	-	WGM11	WGM1D	Page 106
Dx2E (Dx4E)	TCCR18	ICNC1	ICES1	-	WGM13	WGM12	C812	CS11	C810	Page 108
0x20 (0x40)	TONTSH			Timer	Counter1 - Cour	nter Register Hi	gh Byte			Page 110
Dx2C (Dx4C)	TONTIL	8		Timer	Counter1 - Cou	nter Register Lo	w Byte			Page 110
Dx28 (Dx48)	OCR1AH			Timer/C	Counter1 - Comp	are Register A H	ligh Byte		1	Page 110
Dx2A (Dx4A)	OCRIAL			Timer/C	Counteri - Comp	are Register Al	low Byte		1	Page 110
0x29 (0x49)	OCR18H				Counter1 - Comp				8	Page 110
0x28 (0x48)	OCR1EL			Timer/C	Counter1 - Comp	are Register B I	low Byte			Page 110
0x27 (0x47)	DWDR			1111111	DWD				3	Page 151
0x26 (0x46)	CLICPR	CLICPCE	~	-	-	CLKP83	CLKP82	CLKPS1	CLKPSD	Page 31
0x25 (0x45)	ICR1H			TimeriC	ounter1 - Input Ca		High Byte		10 10	Page 111
0x24 (0x44)	ICR1L		a		ounter1 - Input C			98.	13 8	Page 111
0x23 (0x43)	GTCCR	TSM	-	-	-	-	-	-	PSR10	Page 154
Bx22 (Dx42)	TCCRIC	FOC1A	FOC18	-			-	-	-	Page 109
0x21 (0x41)	WOTCSR	WDIF	WDIE	WDP3	WDCE	WDE	WDP2	WDP1	WDPD	Page 44
0x20 (0x40)	PCMSK1	-	-	-	-	PCINT11	PCINT10	PCINT9	POINTS	Page 51
Dx1F (Dx3F)	EEARH	-	-	-	-	-	-	-	EEARS	Page 20
Dx1E (Dx3E)	EEARL	EEAR7	EEAR6	EEARS	EEAR4	EEAR3	EEAR2	EEARI	EEARO	Fage 21
0x1D (0x3D)	EEDR	istings a		AL PROPERTY.	EEPROMID					Page 21
Ox1C (Dx3C)	EECR	-	-	EEPM1	EEPMD	EERIE	EEMPE	EEPE	EERE	Page 23
Dx18 (Dx38)	PORTA	PORTA7	PORTAS	PORTAS	PORTAL	PORTA3	PORTA2	PORTA1	PORTAD	Fage 66
Dx1A (Dx3A)	DDRA	DDA7	DDA6	DDA5	DOA4	DDA3	DDA2	DDA1	DOAD	Page 66
0x19 (0x39)	PINA	PINA7	PINAE	PINAS	PINAL	PINA3	PINAZ	PINAL	PINAD	Page 67
0x18 (0x38)	PORTB	-	-	-	-	PORTE3	PORTB2	PORTB1	PORTED	Page 67
Ox17 (Dx37)	DDRB	-	-	-	-	DDB3	DDB2	DDB1	DOBO	Page 67
Ox16 (0x36)	FINE	-	-	-	-	PINB3	PINB2	PINB1	PINEC	Page 67
0x15 (0x35)	GPIOR2	1	2	2	General Purpos		1		1	Page 22
0x14 (0x34)	GPIOR1				General Purpos					Page 23
Ox13 (Dx33)	GPIORD	1			General Purpos					Page 23
Ox12 (Dx32)	PCMSKD	PGINT7	PCINTS	PCINT5	PCINT4	PCINT3	PCINT2	PCINT1	PCINTO	Page 52
Dx11 (Dx31))	Reserved	1		1 1 41113						
Ox10 (0x30)	USIBR				USI Buffe	r Register				Page 127
DxDF (Dx2F)	USIDE					Register			0	Page 125
DKOE (DK2E)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNTD	Page 125
OxOD (Dx2D)	USICR	USISIE	USICIE	USIVMI	USIWMD	USICS1	USICSD	USICLK	USITC	Page 123
OxOC (Dx2C)	TIMSK1	-	-	ICIE1	-	-	OCIE1B	OCIE1A	TOIE1	Page 111
Dx08 (0x28)	TIFR1			ICF1			OCF18	OCFIA	TOV1	Page 112
DxDA (Dx2A)	Reserved	-				-				1.484
0x09 (0x29)	Reserved									
0x08 (0x28)	ACSR	ACD	ACBG	ACO	ACI	ACIE	ACIC	ACIST	ACISO	Page 129
0x06 (0x26) 0x07 (0x27)	ADARJX	REF81	REFSO	MUXS	MUX4	MUX3	MUX2	MUX1	MUXD	Page 144
0x06 (0x26)	ADCSRA	ADEN	ADSC	ADATE	ADIE	ADIE	ADPS2	ADPS1	ADPSG	Page 146
0x06 (0x26) 0x05 (0x25)	ADCSHA	- ALEN	- NDBU	ALC:		ADIE Ister High Byte		AUPSI		Page 146 Page 148
0x04 (0x24)	ADCL				ADC Data Reg				2	
0x04 (0x24) 0x03 (0x23)	ADCSRB	BIN	ACINE		ADC LIBIA HES	Ister Low Byte	ADTS2	ADTS1	ADTSD	Page 148 Pages 130, 148
0x03 (0x23) 0x02 (0x22)	Reserved	CUN	NUME		num		10102	Autol	Auriau	Pages 130, 148
		ADC7D	ADCED	ADCSD	ADC4D	ADC3D	ADC2D	ADC1D	ADCOD	Pages 131, 149
0x01 (0x21)	DIDRO									

Its not actually that scary I promise --- also we don't need to memorize all of it! In fact most of the TAs don't know all of it!

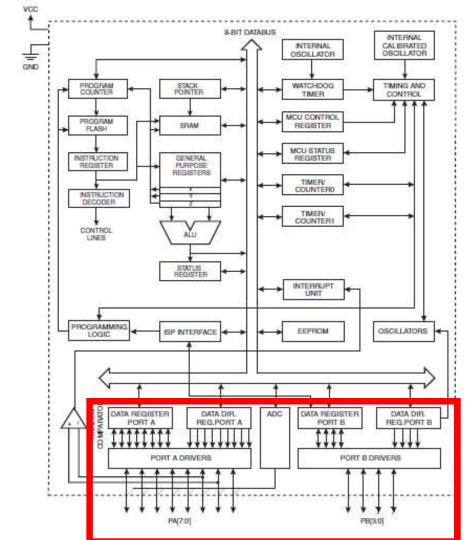
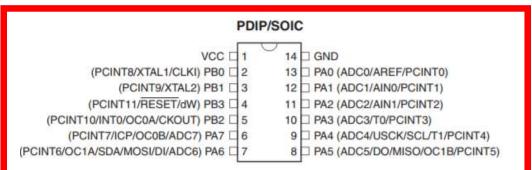
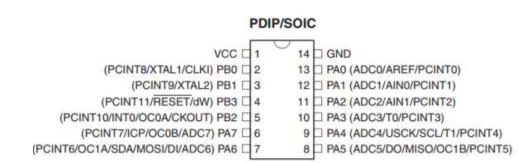
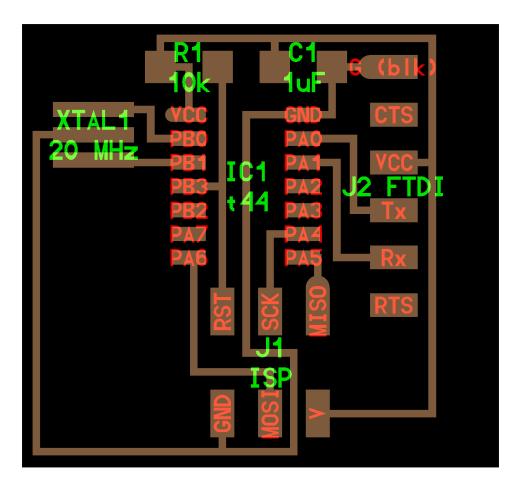



Figure 2-1.


Block Diagram

Hey look here's some port stuff seems like it has something to do with the inputs!


Table 10-3. Port A Pins Alternate Function	Table 10-3.	Port A Pins Alternate Functions
--	-------------	---------------------------------

Port Pin	Alternate Function				
PA0	ADC0: ADC Input Channel 0 AREF: External Analog Reference PCINT0: Pin Change Interrupt 0, Source 0				
PA1	ADC1: ADC Input Channel 1 AIN0: Analog Comparator, Positive Input PCINT1:Pin Change Interrupt 0, Source 1				
PA2	ADC2: ADC Input Channel 2 AIN1: Analog Comparator, Negative Input PCINT2: Pin Change Interrupt 0, Source 2				
PA3	ADC3: ADC Input Channel 3 T0: Timer/Counter0 Clock Source. PCINT3: Pin Change Interrupt 0, Source 3				
PA4	ADC4: ADC Input Channel 4 USCK: USI Clock (Three Wire Mode) SCL : USI Clock (Two Wire Mode) T1: Timer/Counter1 Clock Source PCINT4: Pin Change Interrupt 0, Source 4				
PA5	ADC5: ADC Input Channel 5 DO: USI Data Output (Three Wire Mode) MISO: SPI Master Data Input / Slave Data Output OC1B: Timer/Counter1 Compare Match B Output PCINT5: Pin Change Interrupt 0, Source 5				
PA6	ADC6: ADC Input Channel 6 DI: USI Data Input (Three Wire Mode) SDA: USI Data Input (Two Wire Mode) MOSI: SPI Master Data Output / Slave Data Input OC1A: Timer/Counter1 Compare Match A Output PCINT6: Pin Change Interrupt 0, Source 6				
PA7	ADC7: ADC Input Channel 7 OC0B:: Timer/Counter0 Compare Match B Output ICP1: Timer/Counter1 Input Capture Pin PCINT7: Pin Change Interrupt 0, Source 7				

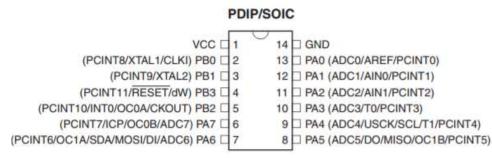
Ok so on the Attiny44 we have two ports one with 8 pins and one with 4 pins that logically are connected to different internal things so they can have different roles.

That wasn't so scary!

PDIP/SOIC 14 GND VCC (PCINT8/XTAL1/CLKI) PB0 2 13 PA0 (ADC0/AREF/PCINT0) (PCINT9/XTAL2) PB1 3 12 PA1 (ADC1/AIN0/PCINT1) (PCINT11/RESET/dW) PB3 4 PA2 (ADC2/AIN1/PCINT2) 11 (PCINT10/INT0/OC0A/CKOUT) PB2 5 10 PA3 (ADC3/T0/PCINT3) (PCINT7/ICP/OC0B/ADC7) PA7 C 6 9 PA4 (ADC4/USCK/SCL/T1/PCINT4) (PCINT6/OC1A/SDA/MOSI/DI/ADC6) PA6 7 8 PA5 (ADC5/DO/MISO/OC1B/PCINT5)

Oh hey look at Neil's hello world board – it looks like the programming 6 pin header has all of it's named things connected to the ports on the Attiny with those names!


Oh and the clock too (XTAL)!



P/SOIC

GND 14 PA0 (ADC0/AREF/PCINT0) 13 PA1 (ADC1/AIN0/PCINT1) PA2 (ADC2/AIN1/PCINT2) 10 PA3 (ADC3/T0/PCINT3) PA4 (ADC4/USCK/SCL/T1/PCINT4) 9 PA5 (ADC5/DO/MISO/OC1B/PCINT5) 8

Neil's hello world ke the programming s all of it's named to the ports on the those names!

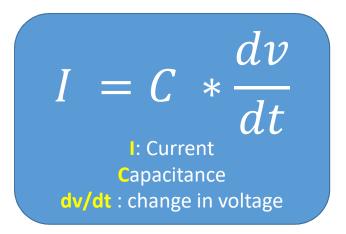
Yah but what about this stuff? What is it doing there? And what if I want to add things like buttons and LEDs? How do I even think about that?

V = I * RVoltage : Current Resistance

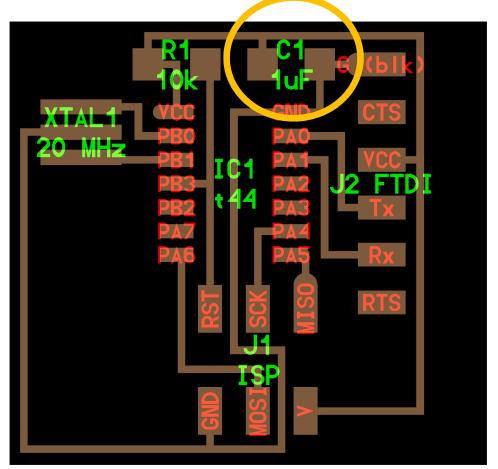
V = I * RVoltage I: Current Resistance

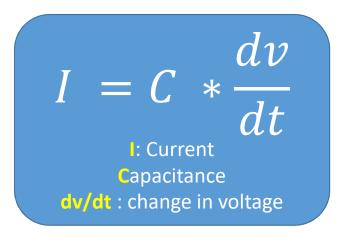
A Light Emitting Diode has nearly 0 resistance so if we connect it directly from power (+5V) to GND (0V) then it will have nearly infinite current = BOOM!

V = I * RVoltage I: Current Resistance

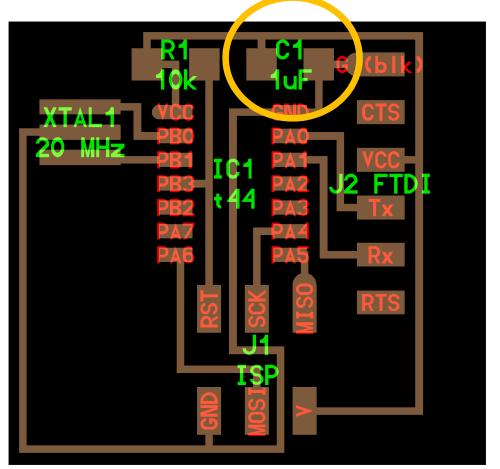

A Light Emitting Diode has nearly 0 resistance so if we connect it directly from power (+5V) to GND (0V) then it will have nearly infinite current = BOOM!

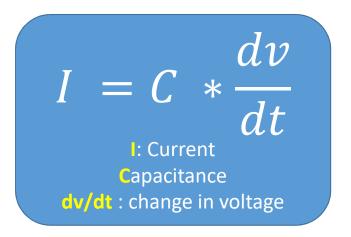
(well really it will just fail and melt but BOOM sounds cooler)

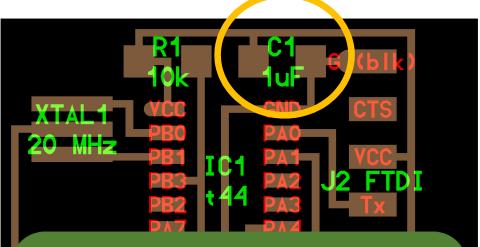

V = I * RVoltage : Current Resistance


So we use a *current limiting resistor* in series with the LED throughout our designs

15 R=Sour 2 Works

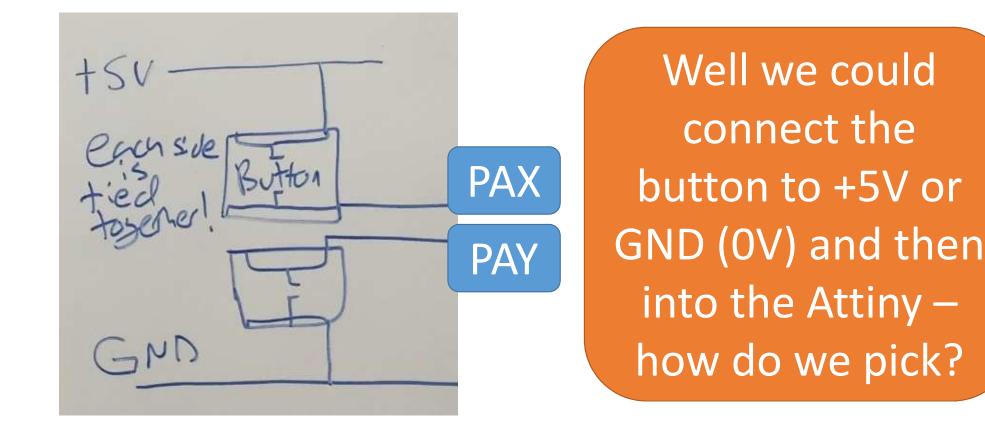


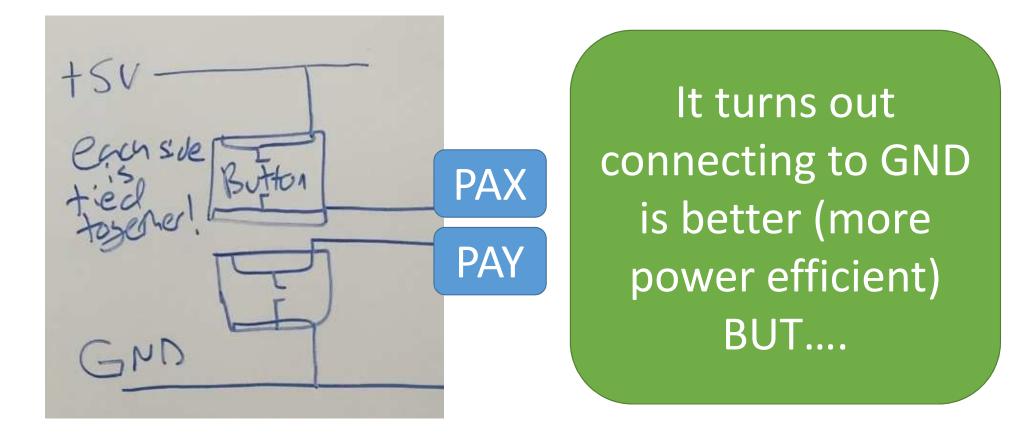

What is the capacitor doing sitting between GND (0V) and VCC (5V) on Neil's board?

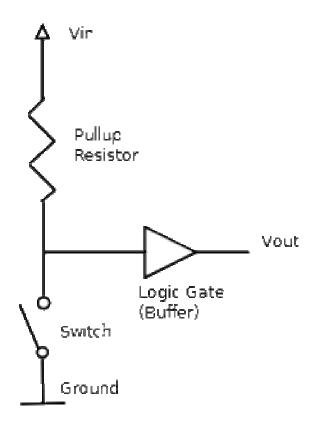


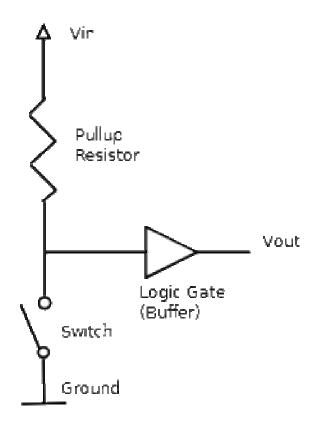
Think of it as a tiny **backup battery** for changing spikes down in voltage (it *filters* them out)!




Think of it as a tiny **backup battery** for changing spikes down in voltage (it *filters* them out)!




- Batteries and regulators are far worse than you think at their jobs!
- Put a capacitor AS CLOSE AS POSSIBLE to the VCC and GND terminals on every chip for consistent performance



You need a pullup resistor – the good news is that this pattern is so common there is a built-in pullup in the ATtiny you can turn on via software so no need to put it in your design!

Be careful though if you are connecting to a device that gives a HIGH (+5v) signal you will want the pullup turned off!

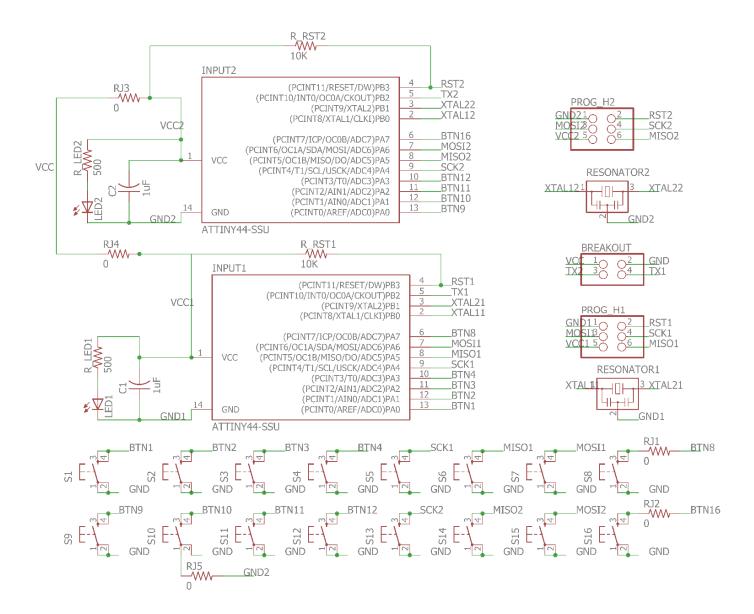
Remember this This is him kid? now!

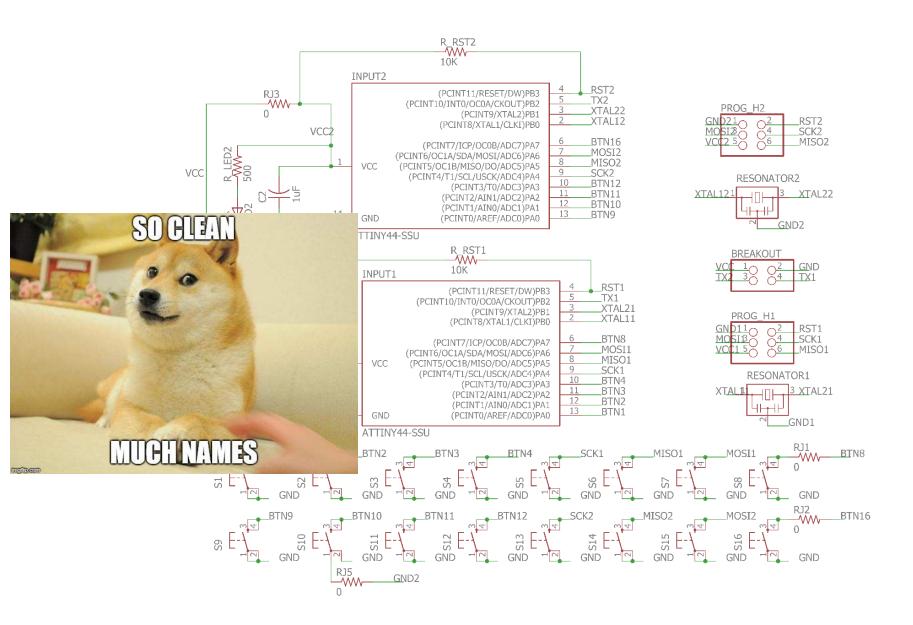
We got smarter! We know the basics now!

Ok so now how do we go about actually doing this...

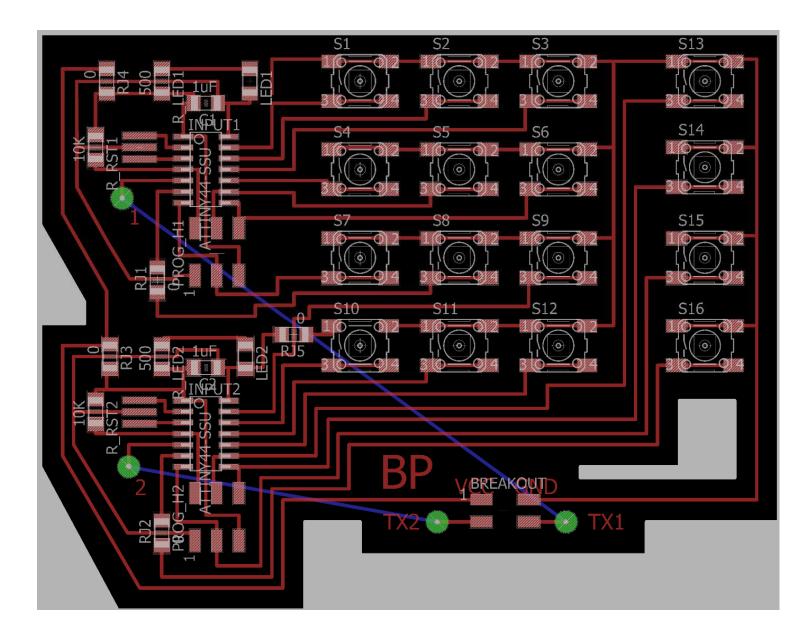
Ok so now how do we go about actually doing this...

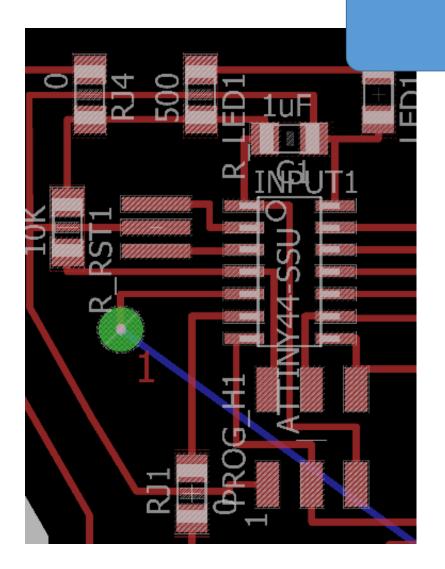
Sorry wrong eagle... but also I've heard good things about KiCad

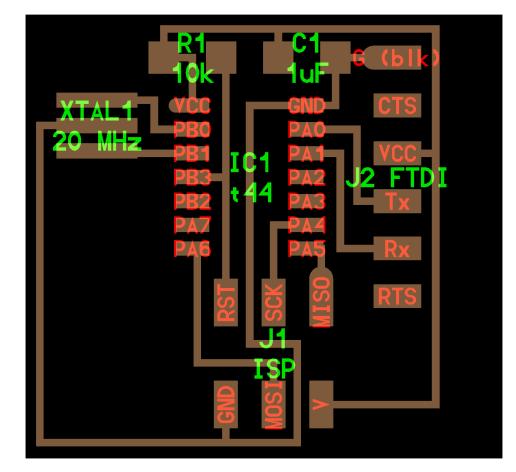



1. Do the schematic first (and finish it before moving on to routing)

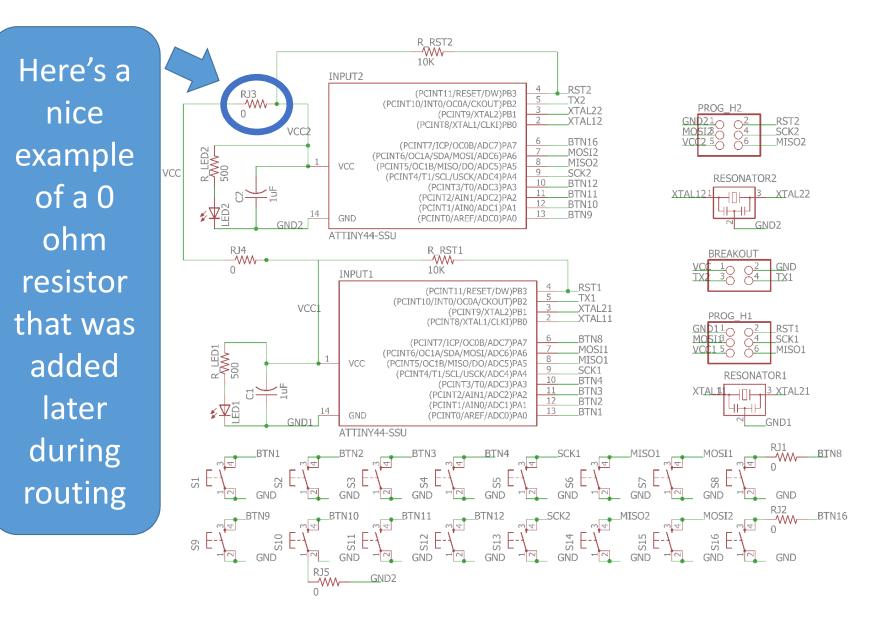
- 1. Do the schematic first (and finish it before moving on to routing)
- 2. Use lots of names to keep the schematic clean and readable

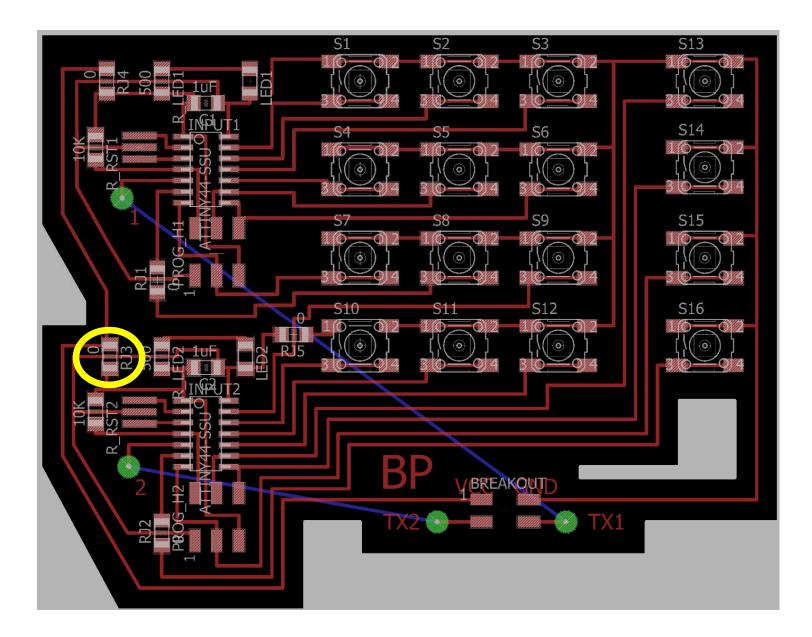

- 1. Do the schematic first (and finish it before moving on to routing)
- 2. Use lots of names to keep the schematic clean and readable
- Triple check the schematic before moving onto the board file (and have someone else check it if you are unsure)


- 1. Do the schematic first (and finish it before moving on to routing)
- 2. Use lots of names to keep the schematic clean and readable
- Triple check the schematic before moving onto the board file (and have someone else check it if you are unsure)
- 4. Add an LED from power to ground as a first sanity check when you are done with the board that it is "working"

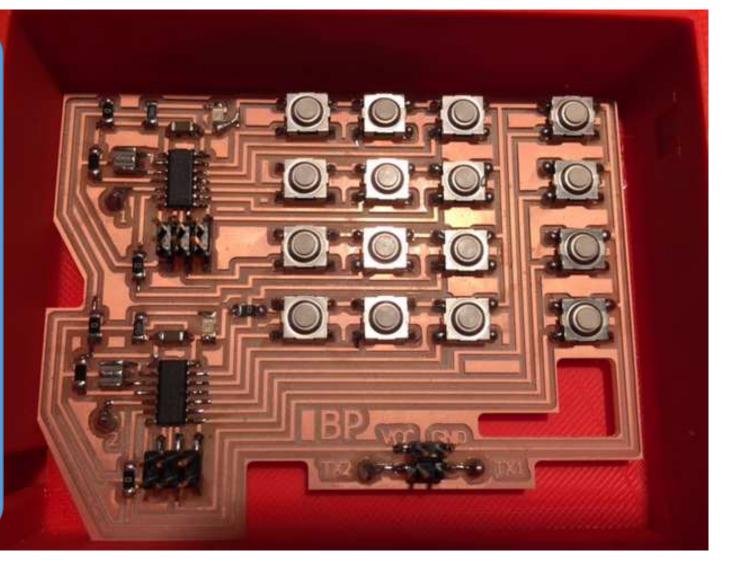


- 1. Do the schematic first (and finish it before moving on to routing)
- 2. Use lots of names to keep the schematic clean and readable
- 3. Triple check the schematic before moving onto the board file (and have someone else check it if you are unsure)
- 4. Add an LED from power to ground as a first sanity check when you are done with the board that it is "working"
- 5. When routing the board file copy the kinds of routing patterns Neil or other people have used





Not so different after all...


- 1. Do the schematic first (and finish it before moving on to routing)
- 2. Use lots of names to keep the schematic clean and readable
- 3. Triple check the schematic before moving onto the board file (and have someone else check it if you are unsure)
- 4. Add an LED from power to ground as a first sanity check when you are done with the board that it is "working"
- 5. When routing the board file copy the kinds of routing patterns Neil or other people have used
- 6. If you get super stuck routing add 0 ohm resistors!

- 1. Do the schematic first (and finish it before moving on to routing)
- 2. Use lots of names to keep the schematic clean and readable
- Triple check the schematic before moving onto the board file (and have someone else check it if you are unsure)
- 4. Add an LED from power to ground as a first sanity check when you are done with the board that it is "working"
- 5. When routing the board file copy the kinds of routing patterns Neil or other people have used
- 6. If you get super stuck routing add 0 ohm resistors!
- 7. I promise it gets way way easier after you do this a couple times.

And by your final project you too will be making crazy boards like this one!

Eagle Demo

http://fab.academany.org/2018/labs/fablaboshanghai/students/bobwu/Fabclass/week7_electronic_design/eagle_practice.html