
A practical introduction to 
embedded programming

Brian Plancher

Brian_Plancher@g.harvard.edu

10/17/2018



This week’s task is simple:
1. Since the boards you made 2 weeks ago are perfect 

and are still in perfect shape and are totally 

programmable…

2. And since you already know how to code in C…

3. Write some custom code to test a function on your 

board!... You did make sure that you can 

programmatically change the button and/or LED 

right (aka they are connected to PAx)?



This week’s task is simple:
1. Since the boards you made 2 weeks ago are perfect 

and are still in perfect shape and are totally 

programmable…

2. And since you already know how to code in C…

3. Write some custom code to test a function on your 

board!... You did make sure that you can 

programmatically change the button and/or LED 

right (aka they are connected to PAx)?

So as I said two weeks 

ago… if you are feeling 

like…







One quick aside on boards before we talk 
about coding…

BUTTON

LED

R

If you are goin to end 

up re-doing your board 

this is a really solid way 

to do it:



Now onto coding in AVR-C!

So if your first thought is: “What are codes”



Now onto coding in AVR-C!

So if your first thought is: “What are codes”

In short, computer code is a human-readable language which 

tells the computer what to do. The beauty of coding languages is 

that someone else wrote a compiler which translates the human 

readable words into 1s and 0s for the computer. The rules of a 

coding language are the assumptions the compiler makes during 

translation to ensure it gets it right!



Now onto coding in AVR-C!

So if your first thought is: “What is AVR-C? I feel like I should 

start with A…”

C is at this point the foundational language upon which most 

modern languages are based (or designed to be 

improvements on). AVR-C is a set of specific extensions to C 

to allow you to program your Attinys.



There are 5 basic datatypes you can use in C

Remember for all things 

coding Google and 

Stackoverflow have 

MOST of the answers



You assign Variables (aka specific named 
instances of a type) to hold data

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';



You assign Variables (aka specific named 
instances of a type) to hold data

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

Almost everything 

ends in semicolons 

in C!

Don’t forget them!



You can then use conditional statements to 
make decisions about what to do with data



You can then use conditional statements to 
make decisions about what to do with data

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age;

If (age > 21){

above_drinking_age = 1;

} else {

above_drinking_age = 0;

}



You can then use conditional statements to 
make decisions about what to do with data

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age;

If (age > 21){

above_drinking_age = 1;

} else {

above_drinking_age = 0;

}

All if and else 

statements need the 

{} around them!



You can create functions to encapsulate some 
operate which you use a lot

int checkID(int age){

If (age > 21){

return 1;

} else {

return 0;

}

}

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age = checkID(my_age);



You can create functions to encapsulate some 
operate which you use a lot

int checkID(int age){

If (age < 21){

return 1;

} else {

return 0;

}

}

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age = checkID(my_age);

When you call a 

function you need to 

pass in the variables 

which it will use



You can create functions to encapsulate some 
operate which you use a lot

int checkID(int age){

If (age < 21){

return 1;

} else {

return 0;

}

}

int my_age = 27;

char first_initial = 'B';

char last_initial = 'P';

int above_drinking_age = checkID(my_age);

When you call a 

function you need to 

pass in the variables 

which it will use

You also need to specify the 

return type for the function 

and then make sure to return 

the appropriate thing



Finally you use loops to repetitively call the 
same set of actions

int class_ages[3];
This is an ARRAY which is a 

list of some type. In this 

case it is 3 ints.



Finally you use loops to repetitively call the 
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21; 

class_ages[2] = 54; 

This is an ARRAY which is a 

list of some type. In this 

case it is 3 ints.

It is zero-index!



Finally you use loops to repetitively call the 
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21; 

class_ages[2] = 54; 

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index = index + 1;

}

We can use a WHILE LOOP 

to iterate until we hit the 

condition



Finally you use loops to repetitively call the 
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21; 

class_ages[2] = 54; 

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index++;

}

We can use a WHILE LOOP 

to iterate until we hit the 

condition

We can shorthand

index = index + 1;

to:

index+=1;

or:

Index++;



Finally you use loops to repetitively call the 
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21; 

class_ages[2] = 54; 

int index = 0;

while (index < 3){

if (checkID(class_ages[index])){

letIntoBar();

}

index++;

}

We can use a WHILE LOOP 

to iterate until we hit the 

condition

We can shorthand

index = index + 1;

to:

index+=1;

or:

Index++;

DON’T 

FORGET 

THE ++



Finally you use loops to repetitively call the 
same set of actions

int class_ages[3];

class_ages[0] = 17;

class_ages[1] = 21; 

class_ages[2] = 54; 

for (int index = 0; index < 3; index++){

if (checkID(class_ages[index])){

letIntoBar();

}

}

We can use a FOR LOOP to 

shorthand the while loop 

and make sure we don’t 

forget the ++



And that is 

programming 

in C in a 

nutshell



And that is programming 

in C in a nutshell



Lets walk through Neil’s hello.ftdi.44.echo.c 

to explore AVR C code



// this is a single line comment

/* 

This is a multi 

line comment 

*/

Comments are for YOU and for other 

people who will read your code 

later. Trust me you want to comment 

A LOT. It makes it much easier to 

debug. You will be happy later!

Note: as far as the program knows 

these don’t exist.



Includes are how you reuse code 

that someone else wrote.

We include .h files as they describe 

all the functions we need. Note: the 

actual code implementing those 

functions resides in a .c file.

As long as you are using only avr and 

util and other basic c programming 

stuff you won’t need to change your 

makefile. If you end up using 

random stuff from somewhere on 

the internet you will need to update 

your makefile to include that code.



Includes are how you reuse code 

that someone else wrote.

We include .h files as they describe 

all the functions we need. Note: the 

actual code implementing those 

functions resides in a .c file.

As long as you are using only avr and 

util and other basic c programming 

stuff you won’t need to change your 

makefile. If you end up using 

random stuff from somewhere on 

the internet you will need to update 

your makefile to include that code.

MAKE is one way to compile your code 

(remember the translation step to full 

computer 1s and 0s I talked about in the 

beginning)



Includes are how you reuse code 

that someone else wrote.

We include .h files as they describe 

all the functions we need. Note: the 

actual code implementing those 

functions resides in a .c file.

As long as you are using only avr and 

util and other basic c programming 

stuff you won’t need to change your 

makefile. If you end up using 

random stuff from somewhere on 

the internet you will need to update 

your makefile to include that code.

MAKE is one way to compile your code 

(remember the translation step to full 

computer 1s and 0s I talked about in the 

beginning)



C Code

(.c, .h)

Byte Code

(.o)

Hex Code

(.hex)

Compiler does this for you 

automagically (by MAKE)! 

So all you have to do is 

write code that obeys the 

rules of C (and AVR)!



C Code

(.c, .h)

Byte Code

(.o)

Hex Code

(.hex)

Compiler does this for you 

automagically (by MAKE)! 

So all you have to do is 

write code that obeys the 

rules of C (and AVR)!

Lets pause and take a look at the MAKEFILE 

(aka the instructions to MAKE)



The file to make



What board you are making it for



Compiler flags (don’t worry about it)



Tells the compiler to make a 

.o and a .hex file using avr

(and automatically links in 

the standard c library things)



Takes a .hex file and sends it 

to the avr using with a 

program or fuse command



Back to 

Neil’s code!



#define is used to make some word 

a shorthand thing. Neil uses them 

here for a bunch of quick bitwise 

operations that we won’t have to 

worry about later. Think of them as 

super tiny funcitons.

set(port,pin) will be replaced 

everywhere in the code with (port 

|= pin) but we can simply write the 

easier to remember set(port,pin)

Why is this helpful – lets talk binary 

numbers









| is logical OR

& is logical AND

~ is logical NOT

So if we pick a pin with a 1 then OR it we will set it. 

And if we AND the NOT of it we will AND a 0 and 

thus unset it!



| is logical OR

& is logical AND

~ is logical NOT

So if we pick a pin with a 1 then OR it we will set it. 

And if we AND the NOT of it we will AND a 0 and 

thus unset it!

But again Neil gives us this stuff so just remember to use it and 

you won’t have to worry about it as much! :-)



• Oh right this code was talking over serial 

with the computer and that was it so it 

only used two pins one for 

communication in (PA0) and one for 

communication out (PA1)

• Neil #defined them to words that he 

would remember up top so he didn’t have 

to keep thinking “wait was it PA0 or 1 for 

in” he could just use “serial_pin_in”

• But why is that format so weird? Well it 

turns out that AVR.h came with a bunch of 

shorthand so if you write it like that it 

works automatically. Otherwise you would 

have to consult the register table!



Remember from last time (electronics 

design) that the data sheet describes 

all of the ports and their names and 

what pins they are etc.



So now thanks to AVR.h we can just use 

the shorthand mapping!

Also the << is a bit shift but you don’t 

really have to worry about it for now 

and simply use it! :-)

(google bit masking if you are curious)



Neil did a bunch of stuff for you so if you use 

the baud rate 115200 (like from last week) 

this stuff just works and you don’t have to 

deal with synchronizing with the computer! 

Yay!

If you want at a later date we can talk about 

“bit-banging” but just know that this works 

and you can just use it to send characters. It 

even will work between two different Attinys.

Note: these are helper functions as they take 

in inputs and return outputs



The “main” function is what is actually run by 

the computer / Attiny. By standard it returns 

an integer. Also it has no inputs thus the 

“void” keyword is used.

Why is this last? –> C compiles top down



Variables that we will use in our function. 

Think of them as named things which we can 

assign values to in order to do things.

In the C language types MATTER. It will not 

compile without correct types.



“Hmmm this looks scary and I don’t think this 

program is doing anything crazy with timing or 

clocks so I’m just going to leave that as is.”

We can talk about it later



Oh cool Neil used his shorthand #defines to 

make things make sense!

We are defining that the out pin is an output 

in both direction and port!



Oh cool Neil used his shorthand #defines to 

make things make sense!

We are defining that the out pin is an output 

in both direction and port!

For inputs it is a little more 

complicated depending on if you 

want pull-up resistors turned on



Remember from last time 

if your input is a GND for 

a signal you need the 

pullup resistor!

*cough* button *cough*



An example from my final project (I had a lot 

of buttons)

Also some fun short hand to reduce typing 

(you can | all of you setting because you 

want all of them to be a 1)

And you can set a conditional pound define 

(I had two Attiny’s on my button board)



In this case the computer sends 

us values so we don’t want the 

pullup on and so we do nothing 

(it is off by default)

But how do we tell what Ports / 

Pins we are using?

Well we defined it before by 

looking at the data sheet so we 

can just use our #defined values 

and not worry about it!



Once a variable is defined we can use it and 

assign it values

Note: again types matter!!!!!



“While” defines a LOOP (can also use “for”)

This is a core programming concept in C – we 

do things repetitively in loops and branch on 

conditional statements “if” and “else”

“While” will run until the condition in the “()” is 

FALSE so in this case it runs forever  thus our 

Attiny will repeat this action forever (one loop 

this small can run thousands of times a second 

so it better run for a long time or it will be too 

fast for us humans).

In general for AVR purposes we write all of the 

code that we want the AVR to do inside the 

while(1) loop



Buffer is an ARRAY (list) of char



Buffer is an ARRAY (list) of char

++ is shorthand for:

buffer[index] = chr;

index = index + 1;



Let’s use Neil’s helper 

function to get a value from 

the computer and save it in 

our chr variable

What about the &s

Pointer FUN?!



You don’t really need to 

know this just understand 

that the memory layout is 

complex and sometimes it 

is helpful to remember 

where you stored things 

and reference them 

indirectly





Hmm this is a 

little complicated 

do I need to 

remember all of 

this right now?



Hmm this is a 

little complicated 

do I need to 

remember all of 

this right now?Not really just work off of the 

example code and copy the 

patterns but if you get confused 

later when you are doing some 

advanced code creation this slide 

is helpful!



Looks like get_char wants a pointer 

variable type for the char it recieves

char *pins means pointer to a char 

(as a type)



So lets pass it the address of our local 

chr variable so it can save it there

Remember a pointer is really just an 

address!



So lets pass it the address of our local 

chr variable so it can save it there

Remember a pointer is really just an 

address!

Ok but this still seems scary –oh 

wait we have Neil’s example code 

and WE CAN JUST BASE OUR CODE 

ON HIS FOR NOW UNTIL WE FULLY 

UNDERSTAND IT!!!!

:-)



Ok so the & thing isn’t that 

scary and the function 

definitions tell us what to 

pass things

We can use his examples for 

now and think about it over 

the next couple of weeks to 

understand it better



Again just using Neil’s 

helpers with pointers



Here is our conditional IF ELSE 

statement (in this case just an if)



Neil is using this to say if you reach 

the end of the buffer go back to the 

beginning and loop around!

This means if the buffer was length 

4 and we added the alphabet in we 

would get:

[a,0,0,0] -> [a,b,0,0] -> [a,b,c,0] ->

[a,b,c,d] -> [e,b,c,d] -> [e,f,c,d]



Neil is using this to say if you reach 

the end of the buffer go back to the 

beginning and loop around!

This means if the buffer was length 

4 and we added the alphabet in we 

would get:

[a,0,0,0] -> [a,b,0,0] -> [a,b,c,0] ->

[a,b,c,d] -> [e,b,c,d] -> [e,f,c,d]

Neil doesn’t have {} because he only 

has one line after his IF (this is a 

shortcut) – I would suggest ALWAYS 

using {} to be safe!



More Neil functions and we are 

done!



More Neil functions and we are 

done!

But wait why is new line a 10?!?

(and why do windows computers not 

have the terminal actually go to a 

new line when you were testing 

term.py two weeks ago?)



ASCII



Key things to make sure you are doing in your 
code!!

•USE BRACKETS {}

•USE SEMICOLONS ;

•All helper things come before Main

•GOOGLE IS YOUR FRIEND!



So what else is in that 

data sheet?



Timers 

and Clock 

Registers



Interrupts



http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

And so so so much 

more (e.g. ADC) so 

read up!

:-)



Embedded Programming



Possible Lightweight Editors to Use (IDE)

Everything is harder on 

windows  Linux VM



And we’re done!

Questions?


