

This week’s task is simple:

1. Since the boards you made 2 weeks ago are perfect
and are still in perfect shape and are totally
programmable...

2. And since you already know how to code in C...

3. Write some custom code to test a function on your
board!... You did make sure that you can
programmatically change the button and/or LED
right (aka they are connected to PAx)?

This week’s task is simple:
1. Since the boards you made 2 weeks ago are perfect

and ar g 35 | said two weeks 'l
Progra

5> And <i @80... if you are feeling ;..

3. Write like... tion on your
board!... YOU did make sure that you can

programmatically change the button and/or LED
right (aka they are connected to PAx)?

= REIAX
t = - |

WE L THIS

One quick aside on boards before we talk

about coding... T

10K 1uF
.8 .V YCC GND CTS

5 (bll)

PRC PAD
<V iz opy 64 P vce

PB3 p2 | J2 FTDI
=\EBZ t#4 pug Tx
A7 PA4
- A6 PAS Rx

2
7
Ji
'SP
o
=

Now onto coding in AVR-C!

So if your first thought is: “What are codes”

Now onto coding in AVR-C!

So if your first thought is: “What are codes”

In short,
. The beauty of coding languages is

that someone else wrote a compiler which translates the human
readable words into 1s and Os for the computer. The rules of a
coding language are the assumptions the compiler makes during
translation to ensure it gets it right!

Now onto coding in AVR-C!

So if your first thought is: “What is AVR-C? | feel like | should
start with A...”

C is at this point the foundational language upon which most

modern languages are based (or designed to be
improvements on). AVR-C is a set of specific extensions to C
to allow you to program your Attinys.

There are 5 basic datatypes you can use in C
c types 4 Q

All Shopping MNews Videas Images Maore Settings Tools

About 2,040,000,000 resulis (0.49 seconds) Remember for a” thlngs
coding Google and

There are five basic data types associated with variables:
Stackoverflow have

« int - integer: a whole number. MOST of the answers
float - floating point value: ie a number with a fractional part.
double - a double-precision floating point value.

char - a single character.

void - valueless special purpose type which we will examine closely in later
sections.

@ Data Types

https://www.le.ac.uk/users/rjm1/cotter/page_19.htm

@ Aboutthisresult @ Feedback

You assign Variables (aka specific named
instances of a type) to hold data

iInt my_age =27;

char first_initial = 'B’;
char last_initial = 'P’;

You assign Variables (aka specific named
instances of a type) to hold data

Almost everything
ends in semicolons
in C!

iInt my_age =27;
char first_initial = 'B'; Don’t forget them!
char last_initial = 'P’;

You can then use conditional statements to
make decisions about what to do with data

Test expression is true Test expression is false
int test = 5; int test = 5;
if (test < 10) if (test > 10)
> { {
/[codes // codes
} }
else else
{ =
[/ codes [/ codes
} }

- [/ codes after if...else - // codes after if...else

You can then use conditional statements to
make decisions about what to do with data
iInt my_age =27;
char first_initial = 'B’;
char last_initial = 'P’;
int above drinking_age;

If (age > 21){
above drinking _age = 1;
}else {
above_drinking age = 0;

J

You can then use conditional statements to
make decisions about what to do with data

int my_age = 27;
char first_initial = 'B’;
char last_initial ='P’;

int above_drinking_age; AINITARCIEISE

statements need the

If (age > 21){ {} around them!
above drinking _age = 1;

}else {
above_drinking age = 0;

J

You can create functions to encapsulate some
operate which you use a lot

int checkID(int age){ int my_age = 27;
If (age > 21){ char first_initial = 'B’;
return 1; char last_initial = 'P’;

} else { int above drinking _age = checklD(my_age);
return O;

}

}

You can create functions to encapsulate some
operate which you use a lot

int checklID(int age), int my_age = 27;
If (age < 21)4 char first_initial = 'B’;
return 1; char last_initial = 'P’;
} else { int above_drinking_age = checkID(my_age):

return O;

} When you call a
} function you need to
pass in the variables

which it will use

You can create functions to encapsulate some
operate which you use a lot e e

return type for the function
and then make sure to return

(int checklID(int age), int my_age = 27; the appropriate thing
ir (age < 214 char first_initial = 'B’;
return 1; char last_initial = 'P';
}einn Int above_drinking_age - checkID(my_age):
return O;

} When you call a
} function you need to
pass in the variables

which it will use

Finally you use loops to repetitively call the
same set of actions

This is an ARRAY which is a

int class_ages|3]; list of some type. In this
case it is 3 ints.

Finally you use loops to repetitively call the
same set of actions

This is an ARRAY which is a
list of some type. In this
case it is 3 ints.
It is zero-index!
int class_ages|3];
class_ages[0] =17; B —
class_ages[1] = 21; BEINERERF
class_ages[2] = 54; Y F 0 % 1

Element-1 Element-2 Element-3 Element-4 Element-5

N\

.‘

Finally you use loops to repetitively call the
same set of actions

int class_ages[3]; We can use a WHILE LOOP
class_ages[0] = 17; to iterate until we hit the
class_ages|[1] = 21; condition

class_ages|[2] = 54;

int index = 0;

while (index < 3){
if (checklID(class_ages[index])){
letintoBar();

}

index = index + 1;

)

Finally you use loops to repetitively call the
same set of actions

int class_ages[3];
class_ages[0] = 17;
class_ages|[1] = 21;
class_ages|[2] = 54;
int index = 0;

while (index < 3){
if (checklID(class_ages[index])){
letintoBar();

}

index++;

)

We can use a WHILE LOOP
to iterate until we hit the
condition

We can shorthand
index = index + 1;
to:

index+=1;

or:

Index++;

Finally you use loops to repetitively call the
same set of actions

DON’T
FORGET
THE ++

int class_ages[3];
class_ages[0] = 17;
class_ages|[1] = 21;
class_ages|[2] = 54;
int index = 0;
while (index < 3){

}

if (checklID(class_ages[index])){
letintoBar();

}

index++;

We can use a WHILE LOOP
to iterate until we hit the
condition

We can shorthand
index = index + 1;
to:

index+=1;

or:

Index++;

Finally you use loops to repetitively call the
same set of actions

We can use a FOR LOOP to
int class_ages|3]; shorthand the while loop
class_ages[0] = 17; and make sure we don’t

class_ages[1] = 21; forget the ++

class _ages[2] = 54;
for (int index = 0; index < 3; index++){
if (checklID(class_ages[index])){
letintoBar();

}

)

And that is
programming

INCin a
nutshell

s
s
s
s
s
s
s
s
s
s
s
s
s
s
s
//
//
//

hello.ftdi.44.echo.c

115200 baud FTDI character echo, with flash string

set lfuse to 0x5E for 20 MHz xtal

Neil Gershenfeld
12/8/10

(c) Massachusetts Institute of Tecl]
This work may be reproduced, modif

performed, and displayed for any p LetS Walk through Nel|'S he||0.ftdl.44.eChO.C
retained and must be preserved. Ths
- LoE B to explore AVR C code

as is; no warranty is provided, ang
liability.

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>

#define output (directions,pin) (directions |= pin) // set port direction for output

#define set (port,pin) (port |= pin) // set port pin

#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin

#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set

#define bit delay time 8.5 // bit delay for 115200 with overhead

#define bit delay() delay us(bit delay time) // RS232 bit delay

#define half bit delay() _delay us(bit delay time/2) // RS2Z32Z half bit delay
#define char delay() delay ms(10) // char delay

s

7/ 2 o - -

L helte ttaiae e o // this is a single line comment

/7 /*

// 115200 baud FTDI character echo, with flash string -ThiSiS a nTUlti

7/ :

// set 1lfuse to 0OxbE for 20 MHz xtal Ilne comment

/7 */

// Neil Gershenfeld

// 12/8/10

// Comments are for YOU and for other
// (c) Massachusetts Institute of Technology 2010 people Who W||| read your COde

// This work may be reproduced, modified, distributed,

// performed, and displayed for any purpose. Copyright is Iater- Trust me you want to comment
// retained and must be preserved. The work is provided A LOT. It makeS it mUCh easier to

// as is; no warranty is provided, and users accept all
// liability.

debug. You will be happy later!

tinelude <avr/io.he Note: as far as the program knows

#include <util/delay.h> these don’t exist.
#include <avr/pgmspace.h>

#define output (directions,pin) (directions |= pin) // set port direction for output
#define set (port,pin) (port |= pin) // set port pin
#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin

#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set

#define bit delay time 8.5 // bit delay for 115200 with overhead

#define bit delay() delay us(bit delay time) // RS232 bit delay

#define half bit delay() _delay us(bit delay time/2) // RS2Z32Z half bit delay
#define char delay() delay ms(10) // char delay

s
s

// hello.ftdi.44d.echo.c

s

// 115200 baud FTDI character echo, with flash string

s

// set lfuse to 0xLEE for 20

s
// Neil

Gershenfeld

// 12/8/10

s

// (c) Massachusetts Institute of Technology 2010

// This work may be reproduced, modified, distributed,

// performed, and displayed for any purpose. Copyright is
// retained and must be preserved. The work is provided
// as is; no warranty is provided, and users accept all

// liability.

#include <avr/io.h>

#include <util/delay.h>
#include <avr/pgmspace.h>

#define
#define
#define
#define
#define
#define
#define
#define
#define

output (directions,pin)

set (port,pin)

clear (port,pin)
pin_test (pins,pin)

(port |= pin)

bit test (byte,bit) (byte &
bit delay time 8.5 // bit delay for 115200 with overhead
bit delay() _delay us(bit delay time) // RS232 bit delay

half bit delay()

char delay()

_delay ms(10)

MHz xtal

_delay us(bit delay time/Z2)

(directions |= pin) // set port dired

// set port pin

(port &= (~pin)) // clear port pin
(pins & pin) // test for port pin

(1 << bit)) // test for bit set

// char delay

Includes are how you reuse code
that someone else wrote.

We include .h files as they describe
all the functions we need. Note: the
actual code implementing those
functions resides in a .c file.

As long as you are using only avr and
util and other basic c programming
stuff you won’t need to change your
makefile. If you end up using
random stuff from somewhere on
the internet you will need to update
your makefile to include that code.

// RS232 half bit delay

s

//

/e Includes are how you reuse code
// 115200 baud FTDI character echo, with flash string that someone else wrote.

//

// set lfuse to 0xLHE for 20 MHz xtal

We include .h files as they describe
all the functions we need. Note: the
actual code implementing those
functions resides in a .c file.

MAKE is one way to compile your code
(remember the translation step to full

computer 1s and Os | talked about in the
beginning) As long as you are using only avr and
util and other basic c programming
stuff you won’t need to change your
makefile. If you end up using
random stuff from somewhere on
the internet you will need to update

your makefile to include that code.

// liability.
//

#include <avr/io.h>
#include <util/delay.h>

#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin) // set port dired
#define set (port,pin) (port |= pin) // set port pin

#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin
#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set
#define bit delay time 8.5 // bit delay for 115200 with overhead
#define bit delay() delay us(bit delay time) // RS232 bit delay
#define half bit delay() _delay us(bit delay time/2) // RS2Z32Z half bit delay
#define char delay() delay ms(10) // char delay

s

//

/e Includes are how you reuse code
// 115200 baud FTDI character echo, with flash string that someone else wrote.

//

// set lfuse to 0xLHE for 20 MHz xtal

We include .h files as they describe
all the functions we need. Note: the
actual code implementing those
functions resides in a .c file.

MAKE is one way to compile your code
(remember the translation step to full

computer 1s and Os | talked about in the
beginning) As long as you are using only avr and
util and other basic c programming
stuff you won’t need to change your
makefile. If you end up using
random stuff from somewhere on
the internet you will need to update

your makefile to include that code.

// liability.
//

#include <avr/io.h>
#include <util/delay.h>

#include <avr/pgmspace.h>

#define output(directions,pin) (directions |= pin) // set port dired
#define set (port,pin) (port |= pin) // set port pin

#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin
#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set
#define bit delay time 8.5 // bit delay for 115200 with overhead
#define bit delay() delay us(bit delay time) // RS232 bit delay
#define half bit delay() _delay us(bit delay time/2) // RS2Z32Z half bit delay
#define char delay() delay ms(10) // char delay

Byte Code
(.0)

Compiler does this for you
automagically (by MAKE)!
So all you have to dois
write code that obeys the
rules of C (and AVR)!

Byte Code
(.0)

Lets pause and take a look at the MAKEFILE
(aka the instructions to MAKE)

automagically (by MAKE)!
So all you have to dois
write code that obeys the
rules of C (and AVR)!

PROJECT=hello.ftdi.44.echo

The file to make

SOURCES=5 (PROJECT) .c
MMCU=attiny44
F CPU = 20000000

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF CPU=s (F_CPU)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo -
What board you are making it for

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF CPU=s (F_CPU)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo
SOQURCES=s5 (PROJECT) .cC
MMCU=attiny44

F CPU = 20000000

CFLAGS=-mmcu=5 (MMCU) -Wall -0s -DF CPU=S(F CPU) Compiler flags (don’t worry about it)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo
SOQURCES=s5 (PROJECT) .cC
MMCU=attiny44

F CPU = 20000000

Tells the compiler to make a
.0 and a .hex file using avr

(and automatically links in
the standard c library things)

CFLAGS=-mmcu=5 (MMCU) -Wall -Os -DF CPU=s (F_CPU)

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

PROJECT=hello.ftdi.44.echo
SOQURCES=s5 (PROJECT) .cC
MMCU=attiny44

F CPU = 20000000

Takes a .hex file and sends it

to the avr using with a

CFLAGS=-mmcu=5 (MMCU) -Wall -Os —-DF CPU=S (F CPU)
— — program or fuse command

S (PROJECT) .hex: 5 (PROJECT) .out
avr-cbjcopy -0 ihex 5 (PROJECT) .out 35 (PROJECT).c.hex;\
avr—-size —--mcu=35 (MMCU) —-—-format=avr 5 (PROJECT) .out

5 (PROJECT) .out: 35 (SOURCES)
avr-gcc 35 (CFLAGS) -I./ -o 5(PROJECT) .out 5 (SOURCES)

program-usbtiny: 5 (PROJECT) .hex
avrdude -p t44 -P usb -c usbtiny -U flash:w:5 (PROJECT) .c.hex

program-usbtiny-fuses: $(PROJECT) .hex
avrdude -p td44 -P usb -c usbtiny -U lfuse:w:0x5E:m

/7

/7

// hello.ftdi.44.echo.c

/7

// 115200 baud FTDI character echo, with flash string
/7

// set lfuse to 0x5E for 20 MHz xtal

/7

// Neil Gershenfeld

/74 12/8/10

/7

// (c) Massachusetts Institute of Technology 2010

// This work may be reproduced, modified, distributed,

Back to

// performed, and displayed for any purpose. Copyright is

// retained and must be preserved. The work is provided N - I’ I
// as is; no warranty is provided, and users accept all el S CO e °
// liability.
//

#include <avr/io.h>
#include <util/delay.h>
#include <avr/pgmspace.h>

#define output (directions,pin) (directions |= pin) // set port direction for output
#define set (port,pin) (port |= pin) // set port pin

#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin

#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set

#define bit delay time 8.5 // bit delay for 115200 with overhead

#define bit delay() delay us(bit delay time) // RS232 bit delay

#define half bit delay() _delay us(bit delay time/2) // RS2Z32Z half bit delay
#define char delay() delay ms(10) // char delay

s
s

// hello.ftdi.44.echo.c #define is used to make some word
/7 a shorthand thing. Neil uses them
// 115200 baud FTDI character echo, with flash string . . .

by here for a bunch of quick bitwise

// set 1fuse to O0x5E for 20 MHz xtal operations that we won’t have to
7/ .

) Neil Gershenfeld worry aTbout later. Think of them as
/4 12/8/10 super tlny funcitons.

7/

// (c) Massachusetts Institute of Technology 2010 . .

// This work may be reproduced, modified, distributed, Set(port,pm) Wl” be replaced

// performed, and displayed for any purpose. Copyright is everywhere in the code with (port
// retained and must be preserved. The work is provided D . .

// as is; no warranty is provided, and users accept all |_ pln) bUt WE can Slmply write the
// liability. easier to remember set(port,pin)

s

#include <avr/io.h> Why is this helpful — lets talk binary
#include <util/delay.h> numbers

#include <avr/pgmspace.h>

#define output (directions,pin) (directions |= pin) // set port direction for output
#define set (port,pin) (port |= pin) // set port pin
#define clear (port,pin) (port &= (~pin)) // clear port pin

#define pin test(pins,pin) (pins & pin) // test for port pin

#define bit test (byte,bit) (byte & (1 << bit)) // test for bit set

#define bit delay time 8.5 // bit delay for 115200 with overhead

#define bit delay() delay us(bit delay time) // RS232 bit delay

#define half bit delay() _delay us(bit delay time/2Z) // RS2Z32 half bit delay
#define char delavy() delay ms(10) // char delay

Decimal Einary
I o0

ool
glo
oll
100
101

110
111

=] | | [O3 M |

Decimal | Binary Binary | Hex [Binary | Hex

0 Q00 0000 0 1000 8
1 ool 0001 1 1001 9
z 0l0 0010 2 1010 A
£ Oll 0011 3 1011 B
4 100 0100 4 1100 C
g ﬂ; 0101 5 1101 D
- 111 0110 6 1110 E

0111 7 1111 F

]

Decimal Einary

Qoo

Expression

Symbaol

Venn diagram

Boolean
zlgebra

Values

ool

AND

m

Output

olo

oll

100

OR

V| ¢

A+BE

101

110

XOR

=] | | [O3 M |

111

NOT

A®B

e ooleplhrek,r oozl ooz

O = o|@, 0 o, o = O

2 [FIUIE

o |

o =

Boolean

Expression Symbol Venn diagram lgobis Values
Tl B
L o | o
AND D— A-B o 3
o 1 | o
1] 1
(Al B
X o | o
OR D— A+B 0o | 1
1 0
I 1
Als
0 0
XOR D AGB g | 2
1 0
= | 1
NOT —Do— A

#define set (port,pin) (port |= pin) // set port pin
$define clear (port,pin) (port &= (~pin)) // clear port pin

| is logical OR
& is logical AND
~is logical NOT

So if we pick a pin with a 1 then OR it we will set it.
And if we AND the NOT of it we will AND a 0 and
thus unset it!

Boolean

Expression Symbol Venn dizagram afabing Values
& B
] o |0
AND D— A-B o 3
o 1 | o
il i
A | B
—X 0} o]
OR D— A+B 0o |1
1. 0]
i & 1
A | B
(0] 4]
XOR D AGB 0o | 1
s]
1 1
NOT —D— A

#define set(port,pin) (port |= pin) // set port pin
$define clear (port,pin) (port &= (~pin)) // clear port pin

| is logical OR
& is logical AND
~is logical NOT

So if we pick a pin with a 1 then OR it we will set it.
And if we AND the NOT of it we will AND a 0 and
thus unset it!

But again Neil gives us this stuff so just remember to use it and

you won’t have to worry about it as much! :-)

fdefine
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

output (directions, pin)
|= pin)
(port &= (~pin))
pin test(pins,pin) (pins & pin) // test for por
bit test(byte,bit) (byte & (1 << bit)) // test

bit delay time 8.5 // bit delay for 115200 with
bit delay() _delay us(bit delay time) // RS23Z2

half bit delay() _delay us(bit delay time/2) //
// char delay

(directions |= pin) // s

set (port,pin) (port // set port pin

clear (port,pin) // clear port

char delay() delay ms(10)

serial port PORTA

serial direction DDRA
serial pins PINA

(1 << PAD)
(1 << PAl)

serial pin in

serial pin out

max buffer 25

Oh right this code was talking over serial
with the computer and that was it so it
only used two pins one for
communication in (PAO) and one for
communication out (PA1)

Neil #defined them to words that he
would remember up top so he didn’t have

to keep thinking “wait was it PAO or 1 for
in” he could just use “serial_pin_in”

But why is that format so weird? Well it
turns out that AVR.h came with a bunch of
shorthand so if you write it like that it
works automatically. Otherwise you would
have to consult the register table!

DREA AEGIETER MATA DHAL
REG.PCHATH

i

POAT B DRANERS

T

PR

PDIP/SOIC

VCe [1
(PCINTB/XTAL1/CLKI) PBO [2
(PCINTY/XTAL2) PB1 []3
(PCINT11/RESET/dW) P83 [] 4
(PCINT10/INTO/OCOA/CKOUT) PB2 []5
(PCINT7/ICP/OCOB/ADC7) PA7 |6
(PCINTE/QOC1A/SDA/MOSI/DI/ADCE) PAG [] 7

L)

14
13
12

|| GND

| PAO (ADCO/AREF/PCINTO)

1 PA1 (ADC1/AING/PCINT1)

| PA2 (ADC2/AINT/PCINTZ)

| PA3 (ADC3/TO/PCINT3)

|1 PA4 (ADC4/USCK/SCL/T1/PCINT4)
1 PAS (ADCS/DO/MISC/OC1B/PCINTS)

Remember from last time (electronics
design) that the data sheet describes
all of the ports and their names and

what pins they are etc.

fdefine
#define
#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

#define

output (directions,pin) (directions |= pin) // set port AR\ VAUEICRGEA RV N BINAIN
set (port,pin) |= pin) the shorthand mapping!

(port &= (~pin))
pin test(pins,pin) (pins & pin) // test for port pin
bit test (byte,bit) (byte & (1 << bit)) // test for bit
bit delay time 8.5 // bit delay for 115200 with overhead
bit delay() _delay us(bit delay time) // RS232 bit delay
half bit delay() delay us(bit delay time/2) // RS232 hs
// char delay

(port // set port pin

clear (port,pin) // clear port pin

Also the << is a bit shift but you don’t
really have to worry about it for now
and simply use it! :-)

char_delay() _delay ms{(10) (google bit masking if you are curious)
serial port PORTA

serial direction DDRA
serial pins PINA

(1 << PRO)
(1 << PAlL)

serial pin in

serial pin out

max buffer 25

void get char(velatile unsigned char *pins, unsigned char pin, char *rxbyte) {
/7

// read character into rxbyte on pins pin

v assumes line driver (inverts bits)
// Neil did a bunch of stuff for you so if you use
LOTS OF STUFF WENT HERE the baud rate 115200 (like from last week)

}

this stuff just works and you don’t have to
deal with synchronizing with the computer!

void put char(velatile unsigned char *port, unsigned char

/) Yay!

// send character in txchar on port pin

/7 assumes line driver (inverts bits) If you want at a later date we can talk about
/7 _ “bit-banging” but just know that this works
jj start bit and you can just use it to send characters. It
LOTS OF STUFF WENT HERE even will work between two different Attinys.

}

Note: these are helper functions as they take
void put string(velatile unsigned char *port, unsigned Ch-ininputsaruireUanoutputs
/f
// print a null-terminated string
/7
LOTS OF STUFEF WENT HERE

}

The “main” function is what is actually run by
the computer / Attiny. By standard it returns
an integer. Also it has no inputs thus the

int main(void) {

//

// main
// “void” keyword is used.
static char chr;

static char buffer[max buffer] = {0}
static int index; N Why is this last? —> C compiles top down
/7

// set clock divider to /1
/7

CLKPR = (! << CLKPCE) :
CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPS0):
/7

// initialize output pins

/7

set (serial port, serial pin out);

output (serial direction, serial pin out);

int main(void) {
!/

// main

static char chr;

static char buffer[max buffer] = {0}
static int index;

// set clock divider to /1

/'
CLKPR = (! << CLKPCE) ;

Variables that we will use in our function.
Think of them as named things which we can
assign values to in order to do things.

In the C language types MATTER. It will not
compile without correct types.

CLKPR = (0 << CLKPS3) | (0 << CLKPS2) | (0 << CLKPS1) | (0 << CLKPSO0);

//

// initialize output pins

/'

set (serial port, serial pin out);

output (serial direction, serial pin out);

int main(void) {

//
// main “Hmmm this looks scary and | don’t think this
/7 : : : o
static char chr: program is doing anything crazy with timing or
static char buffer[max buffer] = {0}; clocks so I’'m just going to leave that as is.”

//
// set clock divider to /1 We can talk about it later

/'
CLKPR = (! << CLKPCE) ;
CLKPR = (0 << CLKPS3)

(0 << CLKPS2)

(0 << CLEPS1) |

(0 << CLKPS0) ;

// initialize output pins
//

set (serial port, serial pin out);

output (serial direction, serial pin out);

int main(void) {
//
// main Oh cool Neil used his shorthand #defines to

make things make sense!

!/

static char chr;

static char buffer[max buffer] = {0}
static int index;

We are defining that the out pin is an output

/7

// set clock divider to /1 in both direction and port!
!/

CLKPR = (| << CLKPCE) ;

CLEKPR = (U << CLEKPS3 [<< CLKPSZ2 [<< CLKPS1 [<< CLKPSO0) ;
//

// initialize output pins

//

set (serial port, serial pin out);

output (serial direction, serial pin out);

int main(void) {
!/
// main his shorthand #defines to

// !
static char chr; ings make sense!

static char buffer[max buff

static int index; For inputs it is a little more

" o complicated depending on if you
// set clock divider to /1

/) want pull-up resistors turned on
CLKPR (I << CLKPCE) ;
CLEKPR = (0 << CLEPS3
//
// initialize output pins
//

set (serial port, serial pi

1at the out pinis an output
irection and port!

output (serial direction, serial pin out);

Wir

Pullug
Fesistor

‘ ; Vo

Logic Sate
{Buffer)

O

Syaatch

G rownd

Remember from last time
if your input is a GND for
a signal you need the
pullup resistor!

cough button *cough*

// define the buttons
#define BOARD FLAG 0
#if BOARD FLAG

#define
#define
#define
#define
#define
#define
#define
#define
#else
#define
#define
#define
#define
#define
#define
#define
#define
#endif

#define input(directions,pin)

BUTTON 0 CHAR
BUTTON_ 1 CHAR
BUTTON 2 CHAR
BUTTON 3 CHAR
BUTTON_ 4 CHAR
BUTTON 5 CHAR
BUTTON 6 CHAR
BUTTON 7 CHAR

BUTTON 0 CHAR
BUTTON_ 1 CHAR
BUTTON 2 CHAR
BUTTON 3 CHAR
BUTTON 4 CHAR
BUTTON 5 CHAR
BUTTON 6 CHAR
BUTTON 7 CHAR

'll'l
121
'l3'|'
141
151
161'
'l?'l
181

rgr
i
o
g
g
"
‘o
-

//
//
//
//

An example from my final project (I had a lot
of buttons)

Also some fun short hand to reduce typing

(you can | all of you setting because you
want all of them to be a 1)

And you can set a conditional pound define
backspace (I had two Attiny’s on my button board)

menu
down arrow

enter

(directions &= (~pin)) // set port direction for input
set (input port, button 0|butten 1|button 2Z|button 3|button 4|button 5|button 6|button 7); // turn on pull-up for the buttons
input (input direction, button O|button 1|button 2|button 3|button 4|button 5|button &|button 7); // make button input

int main(void) {
!/
// main
/Y
static char chr;
static char buffer[max buffer] = {0}
static int index;

/f

// set clock divider to /1
//

CLKEPE = (| << CLEPCE) ;

CLEKPR = (U << CLEKPS3 [<< CLKPSZ2

//
// initialize output pins
//

set (serial port, serial pin out);

output (serial direction, serial pin out);

[<< CLKPS1

In this case the computer sends

us values so we don’t want the
pullup on and so we do nothing
(it is off by default)

But how do we tell what Ports /
Pins we are using?

Well we defined it before by
looking at the data sheet so we
can just use our #defined values

and not worry about it!

lint main(void) {
!
// main

//
static char chr; Once a variable is defined we can use it and

assign it values

ot - | camlmax buffer] = {0};

static int index;

MORE S5TUFF WAS HERE

/!

// main loop

| while (1) {
get char(&serial pins, serial pin in, &chr);

put string(&serial port, serlal pin out, "hello.ftdi.44.echo.c: you typed \"");

buffer[index++] = chr;
if (index == (max buffer-1))
: index = 0;

put string(&serial port, serial pin out, buffer);
put char(&serial port, serial pin out, "\"');
put char(&serial port, serial pin out, 10); // new line

}

l[int main(void) {

/7 “While” defines a LOOP (can also use “for”)
// main

!/ This i : tinC
static char chr; IS IS a core programming concept in L —we

static char buffer[max buffer] = {}; do things repetitively in loops and branch on
static int index; conditional statements “if” and “else”

MORE STUFF WAS HERE
“While” will run until the condition in the “()” is

// o .
// main loop FALSE so in this case it runs forever = thus our
// Attiny will repeat this action forever (one loop

| e this small can run thousands of times a second

A CESSCV STEMIESS PR STEt M SO it better run for a long time or it will be too

put string(&serial port, serlal pin o fast for us huma nS)
buffer[index++] = chr; .

if (index == (max buffer-1))

index = 0;

In general for AVR purposes we write all of the
code that we want the AVR to do inside the

iout_string(&serial_port, serial pin o
put char(&serial port, serial pin out
put char(&serial port, serial pin out Wh||e(1) |Oop
}

lint main(void) {
!

// main

Buffer is an ARRAY (list) of char

MORE S5TUFF WAS HERE

// «
:::: main loop num[0] num(i] num2] num(3] numid] :
index = 0; : : 2 - g
while (1) { T T T T T
get_cha?(&seria¥_pins, Segiiigiigzin;uEChfiéllo frdi. a4 Element-1 Element-2 Ehm;ﬂé Element-4 Element-5
- ; . . \\\

index = 0;

put string(&serial port, serial pin out, buffer);
put char(&serial port, serial pin out, "\"');
put char(&serial port, serial pin out, 10); // new line

}

lint main(void) {
!

// main

Buffer is an ARRAY (list) of char

: \

MORE STUEE WAS HERE num[0] num(l] num(2] n~uml3] numf4d) '
2 8 7]

// -

// main loop T T T ? T

/r -

. Element-1 Element-2 Element-3 Element-4 Element-5

index = 0;

while (!) { \\\

get char(&serial pins, serial pin in, &chr);

serial pin out, "hello.ftdi.44.ec

N ++ is shorthand for:
: index = 0;
iout_string(&serial_port, serial pin out, buffer); bUffer[indeX] = Chr;
put char(&serial port, serial pin out, "\"'); index = index + 1’
put char(&serial port, serial pin out, 10); // new line

}

lint main(void) {
!/
// main
/Y
static char chr;
static char buffer[max buffer] = {0U};
static int index;

MOERE STUFF WAS HERE

/7
// main loop
//

index = 0;

get char(&serial pins, serial pin in, &chr);

put string(&serial port, serial pin out, "hello.ftdi.44.echo.c

buffer[index++] = chr;
if (index == (max buffer-1))
' index = 0;

put string(&serial port, serial pin out, buffer);
put char (&serial port, serial pin out, "\"'"):
put char (&serial port, serial pin out, 10); // new line

}

Let’s use Neil’s helper
function to get a value from
the computer and save it in

our chr variable

What about the &s

Pointer FUN?!

high address

low address

)

AN

S initialized to
zero by exec

read from
» program file

by exec

command-line arguments
and environment variables

You don’t really need to
know this just understand
that the memory layout is
complex and sometimes it

is helpful to remember
where you stored things

and reference them
indirectly

var ->

ptr -> 10071

&var ->
*ptr ->

* (&var)

//
//
/7
//
//
/7

i

1001 2047

50 1001

var ptr
(normal variable) (pointer)

the wvariable itself has the wvalue 50

the wvalue of the ptr is the address of what it points
to and therefore since it points to wvar it is 1001

& operator gets us the adress of that wvariable

* poperator evaluates a polnter to get the walue

at this address

The wvalue at the address of var is Just 1ts wvalue

1001 2047 Hmm this is a

little complicated

do | need to
remember all of
this right now?

var ptr
(normal variable) (pointer)
wvar => S0 // the wvariable itself has the wvalue 50

ptr -> 1001 // the wvalue of the ptr is the address of what it peoints
é é f f // to and therefore since it points to wvar it is 1001
&var -> 1001 // & operator gets us the adress of that wariable
*ptr -> 50 // * operator evaluates a polnter to get the wvalue
f i é ; // at this address
*(&var) -> 50 // The wvalue at the address of wvar is jJust 1ts wvalue

void get char(volatile unsigned char *pins, unsigned char pin,jchar *rxbytel]] {

get_char (&serial pins, serial pin in, &chr); Looks like get_char wants a pointer
variable type for the char it recieves

char *pins means pointer to a char
(as a type)

void get char(volatile unsigned char *pins, unsigned char pin,jchar *rxbytef {

get_char (&serial_pins, serial pin_in So lets pass it the address of our local
chr variable so it can save it there

Remember a pointer is really just an
address!

void get char(volatile unsigned char *pins, unsigned char pin,jchar *rxbytef {

get_char (&serial_pins, serial pin_in So lets pass it the address of our local
chr variable so it can save it there

Remember a pointer is really just an
address!

Ok but this still seems scary —oh
wait we have Neil’s example code
and WE CAN JUST BASE OUR CODE
ON HIS FOR NOW UNTIL WE FULLY

UNDERSTAND IT!!!I

)

lint main(void) {
!/
// main
/Y
static char chr;
static char buffer[max buffer] = {0U};
static int index;

Ok so the & thing isn’t that
scary and the function
definitions tell us what to

MOERE STUFF WAS HERE

/! pass things

// main loop

// .

index = 0; We can use his examples for

now and think about it over
the next couple of weeks to

get char(&serial pins, serial pin in, &chr);

put string(&serial port, serial pin out, "hello.ftdi.44.echo.c

buffer [index++] = chr; understand it better
if (index == (max buffer-1))
: index = 0;

put string(&serial port, serial pin out, buffer);
put char (&serial port, serial pin out, "\"'"):
put char (&serial port, serial pin out, 10); // new line

}

l[int main(void) {
/7
// main
!/
static char chr;
static char buffer[max buffer] = {0}
static int index;

e

Again just using Neil’s

helpers with pointers
MORE STUFEF WAS HEERE

/!

// main loop

/!
index = 0
while (1) {

put string(&serial port, serlal pin out, "hello.ftdi.44.echo.c: you typed \"");

if (index == (max buffer-1))

index = 07
put string(&serial port, serial pin out, buffer);
put char(&serial port, serial pin out, "\"');
put char(&serial port, serial pin out, 10); // new line

}

l[int main(void) {
/7
// main
!/
static char chr;
static char buffer[max buffer] = {0}
static int index;

e

MORE S5TUFF WAS HERE

Here is our conditional IF ELSE

// statement (in this case just an if)

// main loop

//
index = 0;
while (1) {
get char(&serial pins, serial pin in, &chr);

put string(&serial port, serlal pin out, "hello.ftdi.44.echo.c: you typed \"");

if (index == (max buffer-1))
index = 07
put string(&serial port, serial pin out, buffer);
put char(&serial port, serial pin out, "\"');
put char(&serial port, serial pin out, 10); // new line

}

l[int main(void) {
/7
// main
!/
static char chr;
static char buffer[max buffer] = {U};

static int index; Neil is using this to say if you reach
MORE STUFF WAS HERE the end of the buffer go back to the
beginning and loop around!

/!
// main loop
// This means if the buffer was length
todex = U7 4 and we added the alphabet in we
while (1) {

get char(&serial pins, serial pin in, &chr); would get:

put string(&serial port, serial pin out, "hello.ftdi.4

[alololo] -> [a,b,0,0] -> [a,b,C,O] ->
[a,b,c,d] -> [e,b,c,d] -> [e,f,C,d]

if (index == (max buffer-1))

~ index = 0;
put string(&serial port, serial pin out, buffer);

put char(&serial port, serial pin out, "\"');
put char(&serial port, serial pin out, 10); // new line

}

l[int main(void) {
/7
// main
!/
static char chr:
static char
static int i

Neil is using this to say if you reach
the end of the buffer go back to the
beginning and loop around!

Neil doesn’t have {} because he only
MORE STUFF has one line after his IF (thisis a
shortcut) — | would suggest ALWAYS

// _
// main loop using {} to be safe!

// This means if the buffer was length
:,Eiiz Tl?;{ 4 and we added the alphabet in we

get char(&serial pins, serial pin in, &chr); would get:
put string(&serial port, serial pin out, "hello.ftdi.4

[a)O;O)O] -> [a,b,0,0] -> [a,b,C,O] ->
[a,b,c,d] -> [e,b,c,d] -> [e,f,C,d]

if (index == (max buffer-1))
~ index = 0;
put string(&serial port, serial pin out, buffer);

put char(&serial port, serial pin out, "\"');
put char(&serial port, serial pin out, 10); // new line

}

l[int main(void) {

/7

// main

!/

static char chr;

static char buffer[max buffer] = {0}; More Neil functions and we are
static int index; done!

MORE S5TUFF WAS HERE

//
// main loop
//
index = 0;
while (1) {
get char(&serial pins, serial pin in, &chr);
put string(&serial port, serlal pin out, "hello.ftdi.44.echo.c: you typed \"");

buffer[index++] = chr;
if (index == (max buffer-1))
index = 0;

put string(&serial port, serial pin out, buffer);

put char(&serial port, serial pin out, "\"');

put char(&serial port, serial pin out, 10); // new line

l[int main(void) {

/7

// main

!/

static char chr;

static char buffer[max buffer] = {0}; More Neil functions and we are
static int index; done!

MORE STUFF WAS HERE

//
:::: main loop But wait why is new line a 10?!?
index = 0;

while (1) { (and why do windows computers not

get char(&serial pins, serial pin in, &chr);

put string(&serial port, serial pin out, "hello.] have the termlnal aCtua”y g0 toa
buffer [index++] = chr; new line when you were testing

;if (index == (max buffer-1)) term py two WeekS ago?)

index = 0;

put string(&serial port, serial pin out, buffer);
put char(&serial port, serial pin out, "\"');

put char(&serial port, serial pin out, 10); // new line

Dec Hex Oct Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr Dec Hex Oct HTML Chr

00 000 NULL 32 20 040 Space 6440 100 @ 96 60 140 `
11 001 Start of Header 3321 041 ! ! 65 41 101 A 97 61 141 a
22 002 Start of Text 34 22 042 " " 66 42 102 B 98 62 142 b
33 003 End of Text 3523 043 #, # 67 43 103 C 99 63 143 c
44 004 End of Transmission 36 24 044 $ $ 68 44 104 D 100 64 144 8d
55 005 Enquiry 37 25 045 % % 69 45 105 E 101 65 145 e
6 6 006 Acknowledgment 38 26 046 &, & 70 46 106 F 102 66 146 f
77 007 Bell 39 27 047 ' ' 71 47 107 G 103 67 147 g
8 8 010 Backspace 40 28 : H 104 68 150 h
9 0 (011 Horizontal I3 41 29 I 105 69 151 i
L 10A 012 Llinefeed _____________J 42 2A J 106 6A 152 j
B U Prical Tark 43 2B K 107 6B 153 k
014 Form feed 44 2C L 108 6C 154 l

M 109 6D 155 m

13 D 015 Carriage return 45 2D

>'—'/'—'N-<><§<C—|m;U,O'UOZZ'_K‘—'_'IG\'”“"U(\W:D@
TN Xg<Cc M O0TOSI TATTTQ 0 QN TO

0106 Ou 46 2E . N 110 6E 156 n
15 F 017 ShiftIn 47 2F 057 /, / 79 4F 117 O 111 6F 157 &¥#111;
16 10 020 Data Link Escape 48 30 060 0 0 80 50 120 P 112 70 160 p
17 11 021 Device Control 1 49 31 061 1 1 8151 121 Q 113 71 161 q
18 12 022 Device Control 2 50 32 062 2 2 8252 122 R 114 72 162 r
19 13 023 Device Control 3 5133 063 3 3 83 53 123 S 11573 163 s
20 14 024 Device Control 4 52 34 064 4, 4 84 54 124 T 116 74 164 &4#116;
21 15 025 Negative Ack. 53 35 065 5 5 8555 125 U 117 75 165 u
22 16 026 Synchronous idle 54 36 066 6 6 86 56 126 V 118 76 166 v
23 17 027 End of Trans. Block 5537 067 7, 7 87 57 127 W 119 77 167 w
24 18 030 Cancel 56 38 070 8 8 88 58 130 X 120 78 170 x
2519 031 End of Medium 57 39 071 9, 9 89 59 131 Y 12179 171 y
26 1A 032 Substitute 58 3A 072 : : 90 5A 132 Z 122 7A 172 z
27 1B 033 Escape 59 3B 073 ; ; 91 5B 133 [123 7B 173 {
28 1C 034 File Separator 60 3C 074 < < 92 5C 134 \ 124 7C 174 8#124;
29 1D 035 Group Separator 61 3D 075 =, = 93 5D 135] 125 7D 175 }
30 1E 036 Record Separator 62 3E 076 >, > 94 5E 136 ^ 126 7E 176 ~
31 1F 037 Unit Separator 63 3F 077 ? ? 95 5F 137 _, _ 127 7F 177 Del

asciichars.com

Key things to make sure you are doing in your
codell

« USE BRACKETS {}

e USE SEMICOLONS ;
* All helper things come before Main

* GOOGLE IS YOUR FRIEND!

So what else is in that

data sheet?

TCCROA - Timer/Counter Control Register A

Bit T 5] 5 4 3 2 1 0
0x30 (0x50) I COMDA1 [COMOAD [COMoB1 [COMOBOD - [- [WGMO1 [WGMoo I TCCROA
Read/Write RW RW RAW RW R R RN RW
Initial Value o 1] 0 o 0 0 0 0

« Bits 7:6 = COMOA[1:0]: Compare Match Output A Mode

These bits control the Output Compare pin (OCOA) behavior. If one or both of the COMOA[1:0]
bits are set, the OCOA output overrides the normal port functionality of the I/O pin it is connected
to. However, note that the Data Direction Register (DDR) bit corresponding to the OCOA pin
must be set in order to enable the output driver,

When OCOA is connected to the pin, the function of the COMOA[1:0] bits depends on the

WGMO[2:0] bit setting. Table 11-2 shows the COMOA[1:0] bit functionality when the WGMO[2:0] TI I I I e rS
bits are set to a normal or CTC mode (non-PWM).

11.8.3 TCNTO = Timer/Counter Register a n d C I O C k

Bit T 6 5 4 3 2 1 0

0x32 (0x52) | TCNTO[T:0]] Tonmo .

Read/Write RIW RIW RIW RW RIW RW RIW RIW R e I S t e r S
Initial Value i) 0 0 i 1] (i} i} 0 g

The Timer/Counter Register gives direct access, both for read and write operations, to the
Timer/Counter unit 8-bit counter. Writing to the TCNTO Register blocks (removes) the Compare
Match on the following timer clock. Modifying the counter (TCNTO) while the counter is running,
introduces a risk of missing a Compare Match between TCNTO and the OCROx Registers.

11.9.4 OCROA - Qutput Compare Register A

Bit 7 6 5 4 3 2 1 0

0x36 (0x56) | OCROA[7:0] | ocroa
Read/Writs RIW RIW RIW RIW RIW RIW RW RIW

Initial Value 0 0 0 0 0 0 0 0

The Output Compare Register A contains an 8-bit value that is continuously compared with the
counter value (TCNTO). A match can be used to generate an Output Compare interrupt, or to
generate a waveform output on the OCOA pin.

Table 9-1.

Reset and Interrupt Vectors

Vector No. Program Address | Label Interrupt Source
. Owia08 RESET E:;mniuﬁiga:::a&:tzhiﬁsmt
2 0x0001 INTO External Interrupt Request 0
3 0x0002 PCINTO Pin Change Interrupt Request 0
4 0x0003 PCINT1 Pin Change Interrupt Request 1
5 0x0004 wDT Watchdog Time-out
6 0x0005 TIM1_CAPT Timer/Counter1 Capture Event
7 0x0006 TiM1_COMPA Timer/Counter1 Compare Match A
8 0x0007 TIM1_COMPB Timer/Counter1 Compare Match B
9 0x0008 TIM1_OVF Timer/Counter1 Overflow
10 0x0009 TIMO_COMPA Timer/Counter0) Compare Match A
1 Ox000A TIMO_COMPB Timer/Counter0 Compare Match B
12 0x000B TIMO_OVF Timer/Counter0 Overflow
13 0x000C ANA_COMP Analog Comparator
14 0x000D ADC ADC Conversion Complete
15 0x000E EE_RDY EEPROM Ready
16 0x000F USI_STR USI START
17 0x0010 USI_OVF US| Overflow

Interrupts

http://academy.cba.mit.edu/classes/embedded_programming/doc8183.pdf

+ Endurance: 10,000 Write/Erasa Cycles

= 128/266/612 Bytes of In-System Programmabia EEPROM
+ Endurance: 100,000 Write/Erase Cycies

= 128/266/812 Byins of Internal SRAM

= Diain Retention: 20 years ot B5°C [108 yoars a8 25°C

|ATMEL

ol Lack for Salt.

Flash & EEPROM Data Security

with Two FAM Eachy

8-bit AVR"
Microcontroller
with 2K/4K/8K
Bytes In-System
Programmable

And so so so much

B Single-andad Channais
+ 12 Differential ADG Channai Pairs with Pragrammabie Gain (1x | 20z} Flash
-P i W Timar wiih 5 ‘On-chip Gecill
= Oinechip Analog Comparator
= Univarsal Sarial interiace
. ATtiny24A

- BabugWIRE On-chip Detiug Systom iny44A

= In-Sysiem Programmabie via SPI Part ATt ny

= Internal and Exismal Intermupt Sasrces ATtinyMA
» Pin Change Interrupt on 12 Pins

= Laow Power e, ADC Kolss Reduction, Standiy and Power-doen Modes

= Enhamced Power-on Reset Circuit

=P Brown-out Circut wish Disabbs Funciran

= Intermal Calibrated Oscillatar

= Dinechip Temporature Sensar

read up!

= Auailable in 20-pin GFNMLENVEEN, 14pin SOIE, 1d-pin POIP and 18-aall UFBGA s _)
[]

more (e.g. ADC) so

= 0= MHE @ 1.0 = 85V
= 0= 10 Mz) 2.7 = 5.6
= = 30 Mz 4.5 = 5.0
* indusirisi Tempersiune Range; 40°C jo +85°C
* Low Power Consumpticn
= dictive Mode:
* 210 A ut 18V e | Mbz
= lifle Mode:
+ 33t 1.0 amd 1 MHz
= Powar-aown Mode:
*I.IHI‘LI\I'-!“‘H- [Tt S

Embedded Programming

AVR Programming: Learning to Write Software for Hardware 1st Edition

by Elliot Williams ~ (Author)

Fdrdr il 75 customer reviews
Look inside ¥
HE Kindle Doo Paperback Other Sellers
_ Make: $6.80 - $14.04 $31.86 See all 3 versions
Buy new sprime $31.86
In Stock. List Price: $44:99 Save: $13.13 (29%)
Ships from and sold by Amazon.com. Gift-wrap available. 35 New from $23.21
sprime | P
Note: Available at a lower price from other sellers, potentially without free Prime shipping.
! Want it Wednesday, Oct. 182 Order within 9 hrs 58 mins and choose One-Day Shipping at ‘ Add to Cart
=, == = checkout. Details
i Turn on 1-Click ordering
Learning to Write Software for Hardware ship to:
Elliot Williams
e T — Brian Plancher- Somerville -

02144 ~

Download Buy News For Support

£ Sublime Text

sketch_oct18a | Arduino 1.6.5 - O ¥

File Edit Sketch Tools Help

sketch_oct! 8a

i.':i:i setup() { ~
// put your setup code here, to run once:

% Sublime Text

FOLDERS 4> basebd.cc

nsorflow

{

// put your main code here, to run repeatedly:

util
[gitignore
3 ACKNOWLEDGMENTS
> ADOPTERS.md
[AUTHORS
+ BUILD
[CODEOWNERS

[configure
¢ CONTRIBUTING.md
<> ISSUE_TEMPLATE.md

BUILD

/% models.

> README.md

¢> RELEASEmd CH1< ? data[src_idx + 1] : ©;
a > 4)]; W

sqlite3 . & SI(

2]

Everything is harder on

windows = Linux VM

And we’re done!

Questions?

