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The Gameplan

• Basics of linear algebra

• matrices as operators

• matrices as data

• matrices as costs/constraints

1



Basics of linear algebra

A vector is a collection of real numbers arranged in an array.

Vectors can be multiplied by real numbers and added to one

another.

Lowercase letters like x,y, z will denote arrays of size n×1. The

set of all n×1 vectors is denoted Rn. Capital letters like A,B,C,D

will denote m×n dimensional arrays and are called matrices. The

set of all m× n matrices is denoted Rm×n.

The entries of vectors and matrices are given by non-boldfaced

letters. For example, the element in the ith row and jth column

of the matrix A is Aij.
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Bases

• If x1, . . . ,xN are vectors, a linear combination is a sum
∑N

k=1 akxk

which is also a vector.

• A set of vectors x1, . . . ,xN in linearly independent if
∑N

k=1 akxk =

0 only when ak = 0 for all k.

• A basis is a linearly independent set of n-vectors e1, . . . , en

such that any n-vector v can be written as a linear combina-

tion of the ek. That is, v =
∑n

k=1 akek for some ak.
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Matrices as Operators (1)

• linearity : If x,y are vectors then ax + by is a vector for any

scalars a and b.

• linearity (2): f : Rm → Rn is linear if f(ax + by) = af(x) +

bf(y) for all x,y ∈ Rm and scalars a, b.

• fact: If f is linear, then there is an n×m matrix A such that

f(x) = Ax.

• A n×m, B m× l, then AB is n× l.
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Matrices as Operators (2)

• Let 11 denote the map where 11x = x for all x.

• A n × n, if there exists a matrix A−1 such that A−1A = 11
then A−1 is called the inverse of A.

• FACT : A is invertible (i.e., A has an inverse) if and only if
the columns of A are linearly independent (and hence form
a basis).

• A> is the transpose of A. If Aij is the entry in the ith row
and jth column of A, Aji is the entry in the ith row and jth
column of A>. A matrix is symmetric if A> = A.
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Matrices as operators (3)

• If x and y are vectors, y>x is 1×1, a scalar. This is the inner

product of x and y.

• If y>x = 0 then x and y are orthogonal. If furthermore

x>x = y>x = 1 then the vectors are orthonormal.

• xy> is n× n. This is the outer product of x and y
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Matrices and Systems

An n × n matrix A can map n-vectors over time. Continuous

system:

dx

dt
= Ax(t)

Discrete time system:

x[n] = Ax[n− 1]
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Continuous Time Solution

dx

dt
= Ax(t) ANSATZ: x(t) = exp(At)x(0)

Define:

exp(At) =
∞∑

k=0

1

k!
(At)k = 11 + At +

1

2
A2t2 +

1

6
A3t3 + . . .

taking d/dt gives

d

dt
exp(At) =

∞∑
k=1

k

k!
Aktk−1 = A

∞∑
k=1

1

(k − 1)!
Ak−1tk−1 = A exp(At)

proving

d

dt
exp(At)x(0) = A exp(At)x(0)
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Properites of the exponential map

• If S is invertible, exp(SAS−1) = S exp(A)S−1.

• If D is diagonal, E = exp(D) is diagonal and Ejj = exp(Djj)
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Discrete Time Solution

x[n] = Anx[0]

Here the proof is immediate.
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Analysis

What can we say about linear systems without simulation?

• Does the system oscillate?

• Does the system converge to zero?

• Does the system diverge to infinity?
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Eigenvalues

If A is an n × n matrix, λ is an eigenvalue of A if Av = λv for

some v 6= 0. v is an eigenvector.

FACT : If v1 and v2 are both eigenvectors of A with eigenvalues

λ1 6= λ2, then v1 and v2 are linearly independent.

Proof By contradiction, assume there exist nonzero a and b

such that

av1 + bv2 = 0 =⇒ A(av1 + bv2) = 0 =⇒ aλ1v1 + bλ2v2 = 0
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Multiply the first equation by λ1 and subtract to find

b(λ2 − λ1)v2 = 0

which is a contradiction.

FACT : If A has n distinct eigenvalues then it’s eigenvectors are
linearly independent.

FACT : If S = [x1, . . . ,xn] then S−1AS is a diagonal matrix.

Proof

S−1AS = S−1[λ1x1, . . . , λnxn]

= S−1[x1, . . . ,xn]D

= S−1SD = D

13



FACT : If A is symmetric, Ax = λ1x and Ay = λ2y then λ1 6=
λ2 =⇒ y>x = 0.

Proof

y>Ax = y>(Ax) = λ1y
>x

= (Ay)>x = λ2y
>x

Since λ1 6= λ2, we have y>x = 0

Corollary : The eigenvectors of a symmetric matrix A may be

chosen to be orthonormal. If S = [x1, . . . ,xn] then S>S = 11 and

S>AS is a diagonal matrix.
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Stability: Continuous Time

Suppose A has n distinct eigenvalues or is symmetric. Then

x(t) = exp(At)x(0) = S−1 exp(Dt)Sx(0)

• If Re(λn) < 0 for all n, limt→∞ x(t) = 0. The system is stable

• If Re(λn) ≤ 0 for all n, ‖x(t)‖ < ∞ for all t. The system is

oscillating.

• If Re(λn) > 0 for any n, then limt→∞ x(t) = ∞. The system

is unstable.
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Stability: Discrete Time

Suppose A has n distinct eigenvalues or is symmetric. Then

x[k] = Akx[0] = S−1DkSx(0)

• If |λn| < 1 for all n, limk→∞ x[k] = 0. The system is stable

• If |λn| ≤ 1 for all n, ‖x[k]‖ < ∞ for all k. The system is

oscillating.

• If |λn| > 1 for any n, then limk→∞ x[k] = ∞. The system is

unstable.
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Random Vectors

Suppose we are observing a process described by a list of d

numbers

x =

 x1
...

xd


If each xi are random variables x is a random vector.

The joint probability distribution is given by p(x). We have∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x)dx1 . . . dxd = 1
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Moments and Expectations

• The expected value of a matrix valued function A(x) is a

matrix E[A] with entries
∫

Ajk(x)p(x)dx.

• The mean: x̄ = E[x].

• The correlation: Rx = E[xx>].

• The covariance: Λx = Rx − x̄x̄>
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Positive Semidefinite Matrices

A matrix Q is positive semidefinite (psd) if Q = Q> and for all

x, x>Qx ≥ 0. This is denoted Q � 0

• If P � 0 and Q � 0 and a > 0, then aQ � 0 and Q + P � 0.

• If Q � 0, then Q is diagonalizable and has only nonnegative

eigenvalues. Moreover, the eigenvectors can be chosen to be

orthonormal.

• The outer product xx> is psd. The correlation and covari-

ances matrices of a random vector are psd.
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Matrices as Data

N data points x1, . . .xN each consisting of a list of d numbers

xn = {x1n, . . . , xdn}

• Images (e.g., 640x480 pixels)

• Audio (e.g., samples)

• Diagnostics (e.g., lab results)

The data matrix is defined to be X where Xij = xij. It is d×N .
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Empirical Statistics

• mean x̄N = 1
N

∑N
i=1 xi

• zero-mean data matrix X̂N,ij = xij − x̄N,i

• covariance ΛN = 1
N X̂NX̂>

N . ΛN � 0

• gram matrix KN = X̂>
NX̂N . KN � 0
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Multivariate Gaussians

p(x) =
1√
|2πΛ|

exp
(
−

1

2
(x− x̄)>Λ(x− x̄)

)
The mean of this random vector is x̄. The covariance is Λ.

Since Λ � 0, there is a matrix C such that Λ = C>∆C with

C>C = 11 and ∆ is a diagonal matrix. The random vector y =

C(x − x̄) has zero mean and covariance ∆. That means the

components of y are independent.
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Marginal and Conditional Moments

• Let y = Ax + v with v constant. Then ȳ = Ax̄ + v and

Λy = AΛxA>

• Let z = [x,y] be gaussian. Then

x̄ =

[
x̄
ȳ

]
and Λz ≡

[
Λx Λxy

Λyx Λy

]

Λxy = Λ>yx

• p(x|y) is a gaussian with mean x̄+ΛxyΛ−1
y (y−ȳ) and variance

Λx − ΛxyΛ−1
y Λ>xy.

23



PCA

Given a zero-mean random vector x, let us suppose that we want

to represent x as a
∑

i aiyi with the yi uncorrelated. Then the

best solution is to have yi = Ci, ai = ∆ii.

When we only have finitely many examples, ΛN is the best es-

timate of the actual covariance. Given a matrix of data X,

ΛN = CN∆NC>N . So we can use yi = CN,i and ai = ∆N,ii.

If we only have a small number of data points as compared to

dimensions, diagonalizing ΛN can be very computer intensive.

The Singular Value Decomposition makes this tractable.
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Singular Value Decomposition

If A is a matrix of size m×n then there exists orthogonal matrices

V (m×m) and W (n× n) such that

V>AW = diag(σ1, . . . , σp)

with σ1 ≥ . . . ≥ σp ≥ 0, p = min(m, n).

Proof Without loss of generality, assume m ≤ n. Since A>A �
0, the eigenvalues of A>A are equal to σ2

1 ≥ σ2
2 ≥ . . . σ2

n ≥ 0 for

some σk ≥ 0. Let r be the largest number for which σr > 0.
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Let xk be norm 1 eigenvectors of A>A corresponding to σ2
k for

k = 1, . . . , r. Let yk = Axk/σk. Since ‖Axk‖2 = x>k A>Axk = σ2
k ,

yk are norm 1. Furthermore, y>j yk = 1
σjσk

x>j A>Axk = 0 when

k 6= j so the yk are orthonormal.

Completing yk to an orthonormal basis for Rn gives matrices

W ≡ [x1, . . . ,xn] and V ≡ [y1, . . . ,yr,V2]. It is easy algebra to

check that V>AW has the desired form (See Problem 2).
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SVD(A,0)

When A is a matrix of m × n with m > n, we would rather

compute the eigenvalues of A>A than of AA>. Furthermore,

we need only compute the first n columns of V for A = VSW>

to hold.

The matlab command:

[V,S,W]=svd(A,0)

performs this computation efficiently.
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Matrices as cost/constraints

We will frequently encounter cost functions and constraints de-
fined by matrices:

• linear equalities: Ax = b

• linear inequalities: Ax ≤ b

• linear cost: c(x) = c>x

• quadratic cost: c(x) = x>Ax + b>x

• least squares: c(x) = ‖Ax− b‖2
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Linear Constraints

Note that linear equalities and linear inequalities are interchange-

able by adding constraints or variables:

Ax = b ⇐⇒ Ax ≤ b and Ax ≥ b

Ax ≤ b ⇐⇒ Ax = b + s and s ≥ 0

Such s are called slack variables

29



Unconstrained Quadratic Programming

min
x

x>Ax =

0 A � 0

−∞ otherwise

min
x

x>Ax− 2b>x + c

Differentiate with respect to x to find that at the optimum

Ax = b

If A is invertible then the minimum is −b>A−1b + c
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Schur Complements

Let

M =

[
A B
B> C

]
The Schur complement of C in A is given by

(M|A) = C−B>A−1B

Similarly

(M|C) = A−BC−1B>
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Facts about Schur complements:

M � 0 ⇐⇒ C � 0 and (M|C) � 0

M−1 =

[
(M|C)−1 −A−1B(M|A)−1

−C−1B>(M|C)−1 (M|A)−1

]
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More Quadratic Programming

For the quadratic minimization

min
x2

[
x1
x2

]> [
A B>

B C

] [
x1
x2

]
− 2

[
b1
b2

]> [
x1
x2

]

x∗2 = C−1(b2 −Bx1)

Plug that back into the cost function:

x>1 (M|C)x1 − 2(b1 −BC−1b2)
>x1
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Matrix Inversion Lemma

(A−BC−1B>)−1 = A−1 + A−1B(C−B>A−1B)−1B>A−1

To check this, apply the partitioned matrix formula twice and

set the first blocks equal to each other.

Standard form: C → −C−1

(A + BCB>)−1 = A−1 −A−1B(C−1 + B>A−1B)−1B>A−1
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Problem1: Emergence of thermodynamics

The following ODE describes the time evolution of a set of

coupled masses and springs called the Caldeira-Leggett (CL)

model

dxk

dt
= pk/mk for k = 0, . . . , N

dp0

dt
= −m0Ω

2x0 +
N∑

k=1

gk(ωkxk − gkx0/mk)

dpk

dt
= −mkω2

kxk + gkωkx0 for k = 1, . . . , N

xk and pk respectively denote the position and momenta of the

kth spring (see figure).
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• Let N = 200, Ω = 1, γ = 1, mk = 1, ωk = 10k/N , and gk =√
40γ/(Nπ). Is the system stable, oscillatory, or unstable?

How many oscillatory modes are there?
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• Write a program to compute x0(t) with the initial condition

x0(0) = 1, xk(0) = 0 for all k = 1, . . . , N . Plot x0(t) from

t = 0 to t = 100.

• Consider the system

dQ

dt
= P/m0

dP

dt
= −m0(Ω

2 + γ2)Q− 2γP

with the same parameter settings as above. Is this system

stable, oscillatory, or unstable? Analytically compute Q(t)

as a function of time. Plot Q(t) for t = 0 to t = 100 with

Q(0) = 1 and compare to the output of the CL model.
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Problem2: Eigenfaces

Download the database of faces off the class website.

• Finish the proof of the singular value decomposition. That

is, verify that

V>AW = diag(σ1, . . . , σp)

• Compute the SVD of the data matrix. What do the principle

components look like as images?
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• Generate 4 a1, a2, a3, a4 numbers drawn independently from

a gaussian and compute the image

a1σ1V1 + a2σ2V2 + a3σ3V3 + a4σ4V4

This is an eigenface

• Compute an eigensomething for a something of your choice.
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Problem 3: Networks of Resistors

Vout

V8 V7 V6 V5 V4 V3 V2 V1

R1R1R1R1R1R1

R2 Vc Vb VaVg Vf Ve VdR2 R2 R2 R2 R2 R2 R2 R2
Vh

R1 R1

Recall from electronics that the voltage drop across a resistor
(i.e., the difference of the voltages at either end) is equal to
the current across the resistor times the voltage. Furthermore,
remember that the sum of all currents into a node must equal
zero. In equations that is:

gV = I,
∑

Ii∈Na

Ii = 0
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where g = 1/R is the conductance of a resistor.

• Write down these two conditions as matrix constraints on

the resistor network. That is, find an 17× 18 matrix G and

an 8× 17 matrix K such that

GV = I and KI = 0

• If n is a number between 0 and 255, let b8b7b6b5b4b3b2b1 be

the binary expansion. If R1 = 20K and R2 = 10K, what is

Vout when Vi = bi for i = 1, . . .8?
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