Linear Algebra and Applications

Benjamin Recht

February 28, 2005

The Gameplan

- Basics of linear algebra
- matrices as operators
- matrices as data
- matrices as costs/constraints

Basics of linear algebra

A vector is a collection of real numbers arranged in an array. Vectors can be multiplied by real numbers and added to one another.

Lowercase letters like $\mathbf{x}, \mathbf{y}, \mathbf{z}$ will denote arrays of size $n \times 1$. The set of all $n \times 1$ vectors is denoted \mathbb{R}^{n}. Capital letters like $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ will denote $m \times n$ dimensional arrays and are called matrices. The set of all $m \times n$ matrices is denoted $\mathbb{R}^{m \times n}$.

The entries of vectors and matrices are given by non-boldfaced letters. For example, the element in the i th row and j th column of the matrix \mathbf{A} is $A_{i j}$.

Bases

- If $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}$ are vectors, a linear combination is a sum $\sum_{k=1}^{N} a_{k} \mathbf{x}_{k}$ which is also a vector.
- A set of vectors $\mathrm{x}_{1}, \ldots, \mathrm{x}_{N}$ in linearly independent if $\sum_{k=1}^{N} a_{k} \mathbf{x}_{k}=$ 0 only when $a_{k}=0$ for all k.
- A basis is a linearly independent set of n-vectors $\mathbf{e}_{1}, \ldots, \mathbf{e}_{n}$ such that any n-vector \mathbf{v} can be written as a linear combination of the \mathbf{e}_{k}. That is, $\mathbf{v}=\sum_{k=1}^{n} a_{k} \mathbf{e}_{k}$ for some a_{k}.

Matrices as Operators (1)

- linearity: If \mathbf{x}, \mathbf{y} are vectors then $a x+b y$ is a vector for any scalars a and b.
- linearity (2): $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ is linear if $f(a \mathbf{x}+b \mathbf{y})=a f(\mathrm{x})+$ $b f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{m}$ and scalars a, b.
- fact: If f is linear, then there is an $n \times m$ matrix \mathbf{A} such that $f(\mathrm{x})=\mathrm{Ax}$.
- A $n \times m, \mathbf{B} m \times l$, then $\mathbf{A B}$ is $n \times l$.

Matrices as Operators (2)

- Let $\mathbb{1}$ denote the map where $\mathbb{1} x=x$ for all x.
- A $n \times n$, if there exists a matrix \mathbf{A}^{-1} such that $\mathbf{A}^{-1} \mathbf{A}=\mathbb{1}$ then \mathbf{A}^{-1} is called the inverse of \mathbf{A}.
- FACT: A is invertible (i.e., A has an inverse) if and only if the columns of \mathbf{A} are linearly independent (and hence form a basis).
- \mathbf{A}^{\top} is the transpose of \mathbf{A}. If $A_{i j}$ is the entry in the i th row and j th column of $\mathbf{A}, A_{j i}$ is the entry in the i th row and j th column of \mathbf{A}^{\top}. A matrix is symmetric if $\mathbf{A}^{\top}=\mathbf{A}$.

Matrices as operators (3)

- If \mathbf{x} and \mathbf{y} are vectors, $\mathbf{y}^{\top} \mathbf{x}$ is 1×1, a scalar. This is the inner product of \mathbf{x} and \mathbf{y}.
- If $\mathbf{y}^{\top} \mathbf{x}=0$ then \mathbf{x} and y are orthogonal. If furthermore $\mathrm{x}^{\top} \mathrm{x}=\mathrm{y}^{\top} \mathrm{x}=1$ then the vectors are orthonormal.
- xy^{\top} is $n \times n$. This is the outer product of \mathbf{x} and \mathbf{y}

Matrices and Systems

An $n \times n$ matrix A can map n-vectors over time. Continuous system:

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A x}(t)
$$

Discrete time system:

$$
\mathbf{x}[n]=\mathbf{A} \mathbf{x}[n-1]
$$

Continuous Time Solution

$$
\frac{d \mathbf{x}}{d t}=\mathbf{A x}(t) \quad \text { ANSATZ: } \mathbf{x}(t)=\exp (\mathbf{A} t) \mathbf{x}(0)
$$

Define:

$$
\exp (\mathbf{A} t)=\sum_{k=0}^{\infty} \frac{1}{k!}(\mathbf{A} t)^{k}=\mathbb{1}+\mathbf{A} t+\frac{1}{2} \mathbf{A}^{2} t^{2}+\frac{1}{6} \mathbf{A}^{3} t^{3}+\ldots
$$

taking $d / d t$ gives
$\frac{d}{d t} \exp (\mathbf{A} t)=\sum_{k=1}^{\infty} \frac{k}{k!} \mathbf{A}^{k} t^{k-1}=\mathbf{A} \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \mathbf{A}^{k-1} t^{k-1}=\mathbf{A} \exp (\mathbf{A} t)$
proving

$$
\frac{d}{d t} \exp (\mathbf{A} t) x(0)=\mathbf{A} \exp (\mathbf{A} t) x(0)
$$

Properites of the exponential map

- If S is invertible, $\exp \left(\mathbf{S A S}^{-1}\right)=\mathbf{S} \exp (\mathbf{A}) \mathbf{S}^{-1}$.
- If \mathbf{D} is diagonal, $\mathbf{E}=\exp (\mathbf{D})$ is diagonal and $E_{j j}=\exp \left(D_{j j}\right)$

Discrete Time Solution

$$
x[n]=A^{n} x[0]
$$

Here the proof is immediate.

Analysis

What can we say about linear systems without simulation?

- Does the system oscillate?
- Does the system converge to zero?
- Does the system diverge to infinity?

Eigenvalues

If \mathbf{A} is an $n \times n$ matrix, λ is an eigenvalue of \mathbf{A} if $\mathbf{A} \mathbf{v}=\lambda \mathbf{v}$ for some $\mathbf{v} \neq \mathbf{0} . \mathbf{v}$ is an eigenvector.

FACT: If \mathbf{v}_{1} and \mathbf{v}_{2} are both eigenvectors of \mathbf{A} with eigenvalues $\lambda_{1} \neq \lambda_{2}$, then \mathbf{v}_{1} and \mathbf{v}_{2} are linearly independent.

Proof By contradiction, assume there exist nonzero a and b such that

$$
a \mathbf{v}_{1}+b \mathbf{v}_{2}=\mathbf{0} \Longrightarrow A\left(a \mathbf{v}_{1}+b \mathbf{v}_{2}\right)=\mathbf{0} \Longrightarrow a \lambda_{1} \mathbf{v}_{1}+b \lambda_{2} \mathbf{v}_{2}=0
$$

Multiply the first equation by λ_{1} and subtract to find

$$
b\left(\lambda_{2}-\lambda_{1}\right) \mathbf{v}_{2}=\mathbf{0}
$$

which is a contradiction.

FACT: If A has n distinct eigenvalues then it's eigenvectors are linearly independent.

FACT: If $S=\left[x_{1}, \ldots, x_{n}\right]$ then $S^{-1} \mathbf{A S}$ is a diagonal matrix.
Proof

$$
\begin{aligned}
\mathbf{S}^{-1} \mathbf{A S} & =\mathbf{S}^{-1}\left[\lambda_{1} \mathbf{x}_{1}, \ldots, \lambda_{n} \mathbf{x}_{n}\right] \\
& =\mathbf{S}^{-1}\left[\mathbf{x}_{1}, \ldots, \mathbf{x}_{n}\right] \mathbf{D} \\
& =\mathbf{S}^{-1} \mathbf{S D}=\mathbf{D}
\end{aligned}
$$

FACT: If \mathbf{A} is symmetric, $\mathbf{A x}=\lambda_{1} \mathbf{x}$ and $\mathbf{A y}=\lambda_{2} \mathbf{y}$ then $\lambda_{1} \neq$ $\lambda_{2} \Longrightarrow y^{\top} \mathrm{x}=0$.

Proof

$$
\begin{aligned}
\mathbf{y}^{\top} \mathbf{A} \mathbf{x} & =\mathbf{y}^{\top}(\mathbf{A x})=\lambda_{1} \mathbf{y}^{\top} \mathbf{x} \\
& =(\mathbf{A y})^{\top} \mathbf{x}=\lambda_{2} \mathbf{y}^{\top} \mathbf{x}
\end{aligned}
$$

Since $\lambda_{1} \neq \lambda_{2}$, we have $\mathbf{y}^{\top} \mathbf{x}=0$ -
Corollary: The eigenvectors of a symmetric matrix A may be chosen to be orthonormal. If $\mathbf{S}=\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ then $\mathbf{S}^{\top} \mathbf{S}=\mathbb{1}$ and $\mathbf{S}^{\top} \mathrm{AS}$ is a diagonal matrix.

Stability: Continuous Time

Suppose A has n distinct eigenvalues or is symmetric. Then

$$
\mathbf{x}(t)=\exp (\mathbf{A} t) x(0)=\mathbf{S}^{-1} \exp (\mathbf{D} t) \mathbf{S} x(0)
$$

- If $\operatorname{Re}\left(\lambda_{n}\right)<0$ for all $n, \lim _{t \rightarrow \infty} \mathbf{x}(t)=0$. The system is stable
- If $\operatorname{Re}\left(\lambda_{n}\right) \leq 0$ for all $n,\|\mathbf{x}(t)\|<\infty$ for all t. The system is oscillating.
- If $\operatorname{Re}\left(\lambda_{n}\right)>0$ for any n, then $\lim _{t \rightarrow \infty} \mathbf{x}(t)=\infty$. The system is unstable.

Stability: Discrete Time

Suppose A has n distinct eigenvalues or is symmetric. Then

$$
\mathbf{x}[k]=\mathbf{A}^{k} x[0]=\mathbf{S}^{-1} \mathbf{D}^{k} \mathbf{S} x(0)
$$

- If $\left|\lambda_{n}\right|<1$ for all $n, \lim _{k \rightarrow \infty} \mathrm{x}[k]=0$. The system is stable
- If $\left|\lambda_{n}\right| \leq 1$ for all $n,\|\mathrm{x}[k]\|<\infty$ for all k. The system is oscillating.
- If $\left|\lambda_{n}\right|>1$ for any n, then $\lim _{k \rightarrow \infty} \mathrm{x}[k]=\infty$. The system is unstable.

Random Vectors

Suppose we are observing a process described by a list of d numbers

$$
\mathbf{x}=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{d}
\end{array}\right]
$$

If each x_{i} are random variables x is a random vector.

The joint probability distribution is given by $p(\mathrm{x})$. We have

$$
\int_{-\infty}^{\infty} \ldots \int_{-\infty}^{\infty} p(\mathrm{x}) d x_{1} \ldots d x_{d}=1
$$

Moments and Expectations

- The expected value of a matrix valued function $\mathbf{A}(\mathrm{x})$ is a matrix $\mathbb{E}[\mathbf{A}]$ with entries $\int A_{j k}(\mathrm{x}) p(\mathrm{x}) d \mathrm{x}$.
- The mean: $\overline{\mathrm{x}}=\mathbb{E}[\mathrm{x}]$.
- The correlation: $\mathbf{R}_{\mathbf{x}}=\mathbb{E}\left[\mathrm{xx}^{\top}\right]$.
- The covariance: $\Lambda_{\mathrm{x}}=\mathrm{R}_{\mathrm{x}}-\overline{\mathrm{x}} \overline{\mathbf{x}}^{\top}$

Positive Semidefinite Matrices

A matrix Q is positive semidefinite (psd) if $\mathrm{Q}=\mathrm{Q}^{\top}$ and for all $\mathbf{x}, \mathbf{x}^{\top} \mathbf{Q x} \geq 0$. This is denoted $\mathbf{Q} \succeq 0$

- If $\mathbf{P} \succeq 0$ and $\mathbf{Q} \succeq 0$ and $a>0$, then $a \mathbf{Q} \succeq 0$ and $\mathbf{Q}+\mathbf{P} \succeq 0$.
- If $\mathbf{Q} \succeq 0$, then Q is diagonalizable and has only nonnegative eigenvalues. Moreover, the eigenvectors can be chosen to be orthonormal.
- The outer product xx^{\top} is psd. The correlation and covariances matrices of a random vector are psd.

Matrices as Data

N data points $\mathrm{x}_{1}, \ldots \mathrm{x}_{N}$ each consisting of a list of d numbers $\mathrm{x}_{n}=\left\{x_{1 n}, \ldots, x_{d n}\right\}$

- Images (e.g., 640×480 pixels)
- Audio (e.g., samples)
- Diagnostics (e.g., lab results)

The data matrix is defined to be \mathbf{X} where $X_{i j}=x_{i j}$. It is $d \times N$.

Empirical Statistics

- mean $\overline{\mathbf{x}}_{N}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}$
- zero-mean data matrix $\hat{X}_{N, i j}=x_{i j}-\bar{x}_{N, i}$
- covariance $\wedge_{N}=\frac{1}{N} \widehat{\mathbf{X}}_{N} \hat{\mathbf{X}}_{N}^{\top} . \wedge_{N} \succeq 0$
- gram matrix $\mathbf{K}_{N}=\hat{\mathbf{X}}_{N}^{\top} \hat{\mathbf{X}}_{N} . \mathbf{K}_{N} \succeq 0$

Multivariate Gaussians

$$
p(\mathbf{x})=\frac{1}{\sqrt{|2 \pi \Lambda|}} \exp \left(-\frac{1}{2}(\mathbf{x}-\overline{\mathbf{x}})^{\top} \Lambda(\mathbf{x}-\overline{\mathbf{x}})\right)
$$

The mean of this random vector is $\overline{\mathbf{x}}$. The covariance is \wedge.

Since $\wedge \succeq 0$, there is a matrix C such that $\wedge=C^{\top} \Delta C$ with $\mathbf{C}^{\top} \mathbf{C}=\mathbb{1}$ and Δ is a diagonal matrix. The random vector $\mathbf{y}=$ $\mathbf{C}(\mathbf{x}-\overline{\mathrm{x}})$ has zero mean and covariance Δ. That means the components of \mathbf{y} are independent.

Marginal and Conditional Moments

- Let $\mathbf{y}=\mathbf{A x}+\mathbf{v}$ with \mathbf{v} constant. Then $\overline{\mathbf{y}}=\mathbf{A} \overline{\mathbf{x}}+\mathbf{v}$ and $\wedge_{y}=\mathbf{A} \wedge_{x} \mathbf{A}^{\top}$
- Let $z=[\mathrm{x}, \mathrm{y}]$ be gaussian. Then

$$
\bar{x}=\left[\begin{array}{c}
\overline{\mathbf{x}} \\
\overline{\mathbf{y}}
\end{array}\right] \quad \text { and } \quad \wedge_{z} \equiv\left[\begin{array}{cc}
\wedge_{x} & \Lambda_{x y} \\
\Lambda_{y x} & \Lambda_{y}
\end{array}\right]
$$

$$
\wedge_{x y}=\wedge_{y x}^{\top}
$$

- $p(\mathrm{x} \mid \mathbf{y})$ is a gaussian with mean $\bar{x}+\wedge_{x y} \wedge_{y}^{-1}(\mathbf{y}-\overline{\mathbf{y}})$ and variance $\wedge_{x}-\wedge_{x y} \wedge_{y}^{-1} \wedge_{x y}^{\top}$.

PCA

Given a zero-mean random vector x , let us suppose that we want to represent \mathbf{x} as a $\sum_{i} a_{i} \mathbf{y}_{i}$ with the \mathbf{y}_{i} uncorrelated. Then the best solution is to have $\mathrm{y}_{i}=\mathrm{C}_{i}, a_{i}=\Delta_{i i}$.

When we only have finitely many examples, Λ_{N} is the best estimate of the actual covariance. Given a matrix of data \mathbf{X}, $\wedge_{N}=\mathbf{C}_{N} \Delta_{N} \mathbf{C}_{N}^{\top}$. So we can use $\mathbf{y}_{i}=\mathbf{C}_{N, i}$ and $a_{i}=\Delta_{N, i i}$.

If we only have a small number of data points as compared to dimensions, diagonalizing Λ_{N} can be very computer intensive. The Singular Value Decomposition makes this tractable.

Singular Value Decomposition

If \mathbf{A} is a matrix of size $m \times n$ then there exists orthogonal matrices $\mathbf{V}(m \times m)$ and $\mathbf{W}(n \times n)$ such that

$$
\mathbf{V}^{\top} \mathbf{A W}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right)
$$

with $\sigma_{1} \geq \ldots \geq \sigma_{p} \geq 0, p=\min (m, n)$.

Proof Without loss of generality, assume $m \leq n$. Since $\mathbf{A}^{\top} \mathbf{A} \succeq$ 0 , the eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$ are equal to $\sigma_{1}^{2} \geq \sigma_{2}^{2} \geq \ldots \sigma_{n}^{2} \geq 0$ for some $\sigma_{k} \geq 0$. Let r be the largest number for which $\sigma_{r}>0$.

Let \mathbf{x}_{k} be norm 1 eigenvectors of $\mathbf{A}^{\top} \mathbf{A}$ corresponding to σ_{k}^{2} for $k=1, \ldots, r$. Let $\mathbf{y}_{k}=\mathbf{A x}_{k} / \sigma_{k}$. Since $\left\|\mathbf{A x}_{k}\right\|^{2}=\mathbf{x}_{k}^{\top} \mathbf{A}^{\top} \mathbf{A} \mathbf{x}_{k}=\sigma_{k}^{2}$, \mathbf{y}_{k} are norm 1. Furthermore, $\mathbf{y}_{j}^{\top} \mathbf{y}_{k}=\frac{1}{\sigma_{j} \sigma_{k}} \mathbf{x}_{j}^{\top} \mathbf{A}^{\top} \mathbf{A} x_{k}=0$ when $k \neq j$ so the \mathbf{y}_{k} are orthonormal.

Completing \mathbf{y}_{k} to an orthonormal basis for \mathbb{R}^{n} gives matrices $\mathbf{W} \equiv\left[\mathrm{x}_{1}, \ldots, \mathrm{x}_{n}\right]$ and $\mathrm{V} \equiv\left[\mathrm{y}_{1}, \ldots, \mathrm{y}_{r}, \mathrm{~V}_{2}\right]$. It is easy algebra to check that $\mathbf{V}^{\top} \mathbf{A W}$ has the desired form (See Problem 2).

SVD (A,0)

When A is a matrix of $m \times n$ with $m>n$, we would rather compute the eigenvalues of $\mathbf{A}^{\top} \mathbf{A}$ than of $\mathbf{A} \mathbf{A}^{\top}$. Furthermore, we need only compute the first n columns of \mathbf{V} for $\mathbf{A}=\mathbf{V S W}^{\top}$ to hold.

The matlab command:
$[\mathrm{V}, \mathrm{S}, \mathrm{W}]=\operatorname{svd}(\mathrm{A}, 0)$
performs this computation efficiently.

Matrices as cost/constraints

We will frequently encounter cost functions and constraints defined by matrices:

- linear equalities: $\mathbf{A x}=\mathrm{b}$
- linear inequalities: $\mathbf{A x} \leq \mathbf{b}$
- linear cost: $c(\mathbf{x})=\mathbf{c}^{\top} \mathbf{x}$
- quadratic cost: $c(\mathbf{x})=\mathbf{x}^{\top} \mathbf{A} \mathbf{x}+\mathbf{b}^{\top} \mathbf{x}$
- least squares: $c(\mathrm{x})=\|\mathbf{A x}-\mathbf{b}\|^{2}$

Linear Constraints

Note that linear equalities and linear inequalities are interchangeable by adding constraints or variables:

$$
\begin{aligned}
& \mathbf{A} \mathbf{x}=\mathbf{b} \Longleftrightarrow \mathbf{A} \mathbf{x} \leq \mathbf{b} \quad \text { and } \quad \mathbf{A} \mathbf{x} \geq \mathbf{b} \\
& \mathbf{A} \mathbf{x} \leq b \Longleftrightarrow \mathbf{A} \mathbf{x}=\mathbf{b}+\mathbf{s} \quad \text { and } \quad \mathbf{s} \geq 0
\end{aligned}
$$

Such s are called slack variables

Unconstrained Quadratic Programming

$$
\begin{gathered}
\min _{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}= \begin{cases}0 & A \succeq 0 \\
-\infty & \text { otherwise }\end{cases} \\
\min _{\mathbf{X}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x}-2 \mathbf{b}^{\top} \mathbf{x}+c
\end{gathered}
$$

Differentiate with respect to x to find that at the optimum

$$
A x=b
$$

If \mathbf{A} is invertible then the minimum is $-\mathbf{b}^{\top} \mathbf{A}^{-1} \mathbf{b}+c$

Schur Complements

Let

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B} \\
\mathbf{B}^{\top} & \mathbf{C}
\end{array}\right]
$$

The Schur complement of \mathbf{C} in \mathbf{A} is given by

$$
(\mathbf{M} \mid \mathbf{A})=\mathbf{C}-\mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B}
$$

Similarly

$$
(\mathbf{M} \mid \mathbf{C})=\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\top}
$$

Facts about Schur complements:

$$
\begin{gathered}
\mathrm{M} \succeq 0 \Longleftrightarrow \mathbf{C} \succeq 0 \quad \text { and } \quad(\mathrm{M} \mid \mathrm{C}) \succeq 0 \\
\mathbf{M}^{-1}=\left[\begin{array}{cc}
(\mathbf{M} \mid \mathbf{C})^{-1} & -\mathbf{A}^{-1} \mathbf{B}(\mathbf{M} \mid \mathbf{A})^{-1} \\
-\mathbf{C}^{-1} \mathbf{B}^{\top}(\mathbf{M} \mid \mathbf{C})^{-1} & (\mathbf{M} \mid \mathbf{A})^{-1}
\end{array}\right]
\end{gathered}
$$

More Quadratic Programming

For the quadratic minimization

$$
\begin{gathered}
\min _{\mathbf{x}_{2}}\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]^{\top}\left[\begin{array}{cc}
\mathbf{A} & \mathbf{B}^{\top} \\
\mathbf{B} & \mathbf{C}
\end{array}\right]\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right]-2\left[\begin{array}{l}
\mathbf{b}_{1} \\
\mathbf{b}_{2}
\end{array}\right]^{\top}\left[\begin{array}{l}
\mathbf{x}_{1} \\
\mathbf{x}_{2}
\end{array}\right] \\
\mathbf{x}_{2}^{*}=\mathbf{C}^{-1}\left(\mathbf{b}_{2}-\mathbf{B} \mathbf{x}_{1}\right)
\end{gathered}
$$

Plug that back into the cost function:

$$
\mathbf{x}_{1}^{\top}(\mathbf{M} \mid C) \mathbf{x}_{1}-2\left(\mathbf{b}_{1}-\mathbf{B C}^{-1} \mathbf{b}_{2}\right)^{\top} \mathbf{x}_{1}
$$

Matrix Inversion Lemma

$$
\left(\mathbf{A}-\mathbf{B C}^{-1} \mathbf{B}^{\top}\right)^{-1}=\mathbf{A}^{-1}+\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{C}-\mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{A}^{-1}
$$

To check this, apply the partitioned matrix formula twice and set the first blocks equal to each other.

Standard form: $\mathbf{C} \rightarrow-\mathbf{C}^{-1}$

$$
\left(\mathbf{A}+\mathrm{BCB}^{\top}\right)^{-1}=\mathrm{A}^{-1}-\mathbf{A}^{-1} \mathbf{B}\left(\mathbf{C}^{-1}+\mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B}\right)^{-1} \mathbf{B}^{\top} \mathbf{A}^{-1}
$$

Problem1: Emergence of thermodynamics

The following ODE describes the time evolution of a set of coupled masses and springs called the Caldeira-Leggett (CL) model

$$
\begin{aligned}
& \frac{d x_{k}}{d t}=p_{k} / m_{k} \quad \text { for } k=0, \ldots, N \\
& \frac{d p_{0}}{d t}=-m_{0} \Omega^{2} x_{0}+\sum_{k=1}^{N} g_{k}\left(\omega_{k} x_{k}-g_{k} x_{0} / m_{k}\right) \\
& \frac{d p_{k}}{d t}=-m_{k} \omega_{k}^{2} x_{k}+g_{k} \omega_{k} x_{0} \quad \text { for } k=1, \ldots, N
\end{aligned}
$$

x_{k} and p_{k} respectively denote the position and momenta of the k th spring (see figure).

- Let $N=200, \Omega=1, \gamma=1, m_{k}=1, \omega_{k}=10 k / N$, and $g_{k}=$ $\sqrt{40 \gamma /(N \pi)}$. Is the system stable, oscillatory, or unstable? How many oscillatory modes are there?
- Write a program to compute $x_{0}(t)$ with the initial condition $x_{0}(0)=1, x_{k}(0)=0$ for all $k=1, \ldots, N$. Plot $x_{0}(t)$ from $t=0$ to $t=100$.
- Consider the system

$$
\begin{aligned}
& \frac{d Q}{d t}=P / m_{0} \\
& \frac{d P}{d t}=-m_{0}\left(\Omega^{2}+\gamma^{2}\right) Q-2 \gamma P
\end{aligned}
$$

with the same parameter settings as above. Is this system stable, oscillatory, or unstable? Analytically compute $Q(t)$ as a function of time. Plot $Q(t)$ for $t=0$ to $t=100$ with $Q(0)=1$ and compare to the output of the CL model.

Problem2: Eigenfaces

Download the database of faces off the class website.

- Finish the proof of the singular value decomposition. That is, verify that

$$
\mathbf{V}^{\top} \mathbf{A W}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right)
$$

- Compute the SVD of the data matrix. What do the principle components look like as images?
- Generate $4 a_{1}, a_{2}, a_{3}, a_{4}$ numbers drawn independently from a gaussian and compute the image

$$
a_{1} \sigma_{1} \mathbf{V}_{1}+a_{2} \sigma_{2} \mathbf{V}_{2}+a_{3} \sigma_{3} \mathbf{V}_{3}+a_{4} \sigma_{4} \mathbf{V}_{4}
$$

This is an eigenface

- Compute an eigensomething for a something of your choice.

Problem 3: Networks of Resistors

Recall from electronics that the voltage drop across a resistor (i.e., the difference of the voltages at either end) is equal to the current across the resistor times the voltage. Furthermore, remember that the sum of all currents into a node must equal zero. In equations that is:

$$
g V=I, \quad \sum_{I_{i} \in \mathcal{N} a} I_{i}=0
$$

where $g=1 / R$ is the conductance of a resistor.

- Write down these two conditions as matrix constraints on the resistor network. That is, find an 17×18 matrix G and an 8×17 matrix K such that

$$
\mathbf{G V}=\mathbf{I} \quad \text { and } \quad \mathbf{K I}=\mathbf{0}
$$

- If n is a number between 0 and 255 , let $b_{8} b_{7} b_{6} b_{5} b_{4} b_{3} b_{2} b_{1}$ be the binary expansion. If $R_{1}=20 K$ and $R_{2}=10_{K}$, what is $V_{\text {Out }}$ when $V_{i}=b_{i}$ for $i=1, \ldots 8$?

