Linear Algebra and Applications

Benjamin Recht

February 28, 2005

The Gameplan

- Basics of linear algebra
- matrices as operators
- matrices as data
- matrices as costs/constraints

Basics of linear algebra

A vector is a collection of real numbers arranged in an array. Vectors can be multiplied by real numbers and added to one another.

Lowercase letters like $\mathbf{x}, \mathbf{y}, \mathbf{z}$ will denote arrays of size $n \times 1$. The set of all $n \times 1$ vectors is denoted \mathbb{R}^n . Capital letters like $\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}$ will denote $m \times n$ dimensional arrays and are called *matrices*. The set of all $m \times n$ matrices is denoted $\mathbb{R}^{m \times n}$.

The entries of vectors and matrices are given by non-boldfaced letters. For example, the element in the *i*th row and *j*th column of the matrix \mathbf{A} is A_{ij} .

Bases

- If $\mathbf{x}_1, \ldots, \mathbf{x}_N$ are vectors, a linear combination is a sum $\sum_{k=1}^N a_k \mathbf{x}_k$ which is also a vector.
- A set of vectors $\mathbf{x}_1, \ldots, \mathbf{x}_N$ in linearly independent if $\sum_{k=1}^N a_k \mathbf{x}_k = 0$ only when $a_k = 0$ for all k.
- A basis is a linearly independent set of *n*-vectors e_1, \ldots, e_n such that any *n*-vector v can be written as a linear combination of the e_k . That is, $v = \sum_{k=1}^n a_k e_k$ for some a_k .

Matrices as Operators (1)

- *linearity*: If x, y are vectors then ax + by is a vector for any scalars a and b.
- *linearity (2)*: $f : \mathbb{R}^m \to \mathbb{R}^n$ is *linear* if $f(a\mathbf{x} + b\mathbf{y}) = af(\mathbf{x}) + bf(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^m$ and scalars a, b.
- fact: If f is linear, then there is an $n \times m$ matrix A such that $f(\mathbf{x}) = \mathbf{A}\mathbf{x}$.
- A $n \times m$, B $m \times l$, then AB is $n \times l$.

Matrices as Operators (2)

- Let 1 denote the map where 1x = x for all x.
- A $n \times n$, if there exists a matrix A^{-1} such that $A^{-1}A = 1$ then A^{-1} is called the *inverse* of A.
- FACT: A is invertible (i.e., A has an inverse) if and only if the columns of A are linearly independent (and hence form a basis).
- \mathbf{A}^{\top} is the *transpose* of \mathbf{A} . If A_{ij} is the entry in the *i*th row and *j*th column of \mathbf{A} , A_{ji} is the entry in the *i*th row and *j*th column of \mathbf{A}^{\top} . A matrix is symmetric if $\mathbf{A}^{\top} = \mathbf{A}$.

Matrices as operators (3)

- If x and y are vectors, $y^{\top}x$ is 1×1 , a scalar. This is the *inner* product of x and y.
- If $y^{\top}x = 0$ then x and y are *orthogonal*. If furthermore $x^{\top}x = y^{\top}x = 1$ then the vectors are *orthonormal*.
- $\mathbf{x}\mathbf{y}^{\top}$ is $n \times n$. This is the *outer product* of \mathbf{x} and \mathbf{y}

Matrices and Systems

An $n \times n$ matrix **A** can map *n*-vectors over time. Continuous system:

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t)$$

Discrete time system:

$$\mathbf{x}[n] = \mathbf{A}\mathbf{x}[n-1]$$

Continuous Time Solution

$$\frac{d\mathbf{x}}{dt} = \mathbf{A}\mathbf{x}(t) \qquad \mathsf{ANSATZ:} \ \mathbf{x}(t) = \exp(\mathbf{A}t)\mathbf{x}(0)$$

Define:

$$\exp(\mathbf{A}t) = \sum_{k=0}^{\infty} \frac{1}{k!} (\mathbf{A}t)^{k} = 1 + \mathbf{A}t + \frac{1}{2}\mathbf{A}^{2}t^{2} + \frac{1}{6}\mathbf{A}^{3}t^{3} + \dots$$

taking d/dt gives

$$\frac{d}{dt}\exp(\mathbf{A}t) = \sum_{k=1}^{\infty} \frac{k}{k!} \mathbf{A}^k t^{k-1} = \mathbf{A} \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \mathbf{A}^{k-1} t^{k-1} = \mathbf{A} \exp(\mathbf{A}t)$$

proving

$$\frac{d}{dt}\exp(\mathbf{A}t)x(0) = \mathbf{A}\exp(\mathbf{A}t)x(0)$$

8

Properites of the exponential map

- If S is invertible, $\exp(SAS^{-1}) = S\exp(A)S^{-1}$.
- If D is diagonal, $\mathbf{E} = \exp(\mathbf{D})$ is diagonal and $E_{jj} = \exp(D_{jj})$

Discrete Time Solution

$$x[n] = A^n x[0]$$

Here the proof is immediate.

Analysis

What can we say about linear systems without simulation?

- Does the system oscillate?
- Does the system converge to zero?
- Does the system diverge to infinity?

Eigenvalues

If A is an $n \times n$ matrix, λ is an *eigenvalue* of A if $Av = \lambda v$ for some $v \neq 0$. v is an *eigenvector*.

FACT: If v_1 and v_2 are both eigenvectors of A with eigenvalues $\lambda_1 \neq \lambda_2$, then v_1 and v_2 are linearly independent.

Proof By contradiction, assume there exist nonzero a and b such that

$$a\mathbf{v}_1 + b\mathbf{v}_2 = \mathbf{0} \implies A(a\mathbf{v}_1 + b\mathbf{v}_2) = \mathbf{0} \implies a\lambda_1\mathbf{v}_1 + b\lambda_2\mathbf{v}_2 = \mathbf{0}$$

Multiply the first equation by λ_1 and subtract to find

$$b(\lambda_2 - \lambda_1)\mathbf{v}_2 = \mathbf{0}$$

which is a contradiction.

FACT: If A has n distinct eigenvalues then it's eigenvectors are linearly independent.

FACT: If $S = [x_1, ..., x_n]$ then $S^{-1}AS$ is a diagonal matrix.

Proof

$$\mathbf{S}^{-1}\mathbf{A}\mathbf{S} = \mathbf{S}^{-1}[\lambda_1\mathbf{x}_1, \dots, \lambda_n\mathbf{x}_n]$$
$$= \mathbf{S}^{-1}[\mathbf{x}_1, \dots, \mathbf{x}_n]\mathbf{D}$$
$$= \mathbf{S}^{-1}\mathbf{S}\mathbf{D} = \mathbf{D}$$

FACT: If A is symmetric, $Ax = \lambda_1 x$ and $Ay = \lambda_2 y$ then $\lambda_1 \neq \lambda_2 \implies y^\top x = 0$.

Proof

$$\mathbf{y}^{\top} \mathbf{A} \mathbf{x} = \mathbf{y}^{\top} (\mathbf{A} \mathbf{x}) = \lambda_1 \mathbf{y}^{\top} \mathbf{x}$$
$$= (\mathbf{A} \mathbf{y})^{\top} \mathbf{x} = \lambda_2 \mathbf{y}^{\top} \mathbf{x}$$

Since $\lambda_1 \neq \lambda_2$, we have $\mathbf{y}^\top \mathbf{x} = \mathbf{0}$

Corollary: The eigenvectors of a symmetric matrix \mathbf{A} may be chosen to be orthonormal. If $\mathbf{S} = [\mathbf{x}_1, \dots, \mathbf{x}_n]$ then $\mathbf{S}^\top \mathbf{S} = \mathbf{1}$ and $\mathbf{S}^\top \mathbf{A} \mathbf{S}$ is a diagonal matrix.

Stability: Continuous Time

Suppose A has n distinct eigenvalues or is symmetric. Then

$$\mathbf{x}(t) = \exp(\mathbf{A}t)\mathbf{x}(0) = \mathbf{S}^{-1}\exp(\mathbf{D}t)\mathbf{S}\mathbf{x}(0)$$

• If $\operatorname{Re}(\lambda_n) < 0$ for all n, $\lim_{t\to\infty} \mathbf{x}(t) = 0$. The system is *stable*

- If $\operatorname{Re}(\lambda_n) \leq 0$ for all n, $\|\mathbf{x}(t)\| < \infty$ for all t. The system is *oscillating*.
- If $\operatorname{Re}(\lambda_n) > 0$ for any n, then $\lim_{t\to\infty} \mathbf{x}(t) = \infty$. The system is *unstable*.

Stability: Discrete Time

Suppose A has *n* distinct eigenvalues or is symmetric. Then $\mathbf{x}[k] = \mathbf{A}^k x[0] = \mathbf{S}^{-1} \mathbf{D}^k \mathbf{S} x(0)$

- If $|\lambda_n| < 1$ for all n, $\lim_{k\to\infty} \mathbf{x}[k] = 0$. The system is *stable*
- If $|\lambda_n| \leq 1$ for all n, $||\mathbf{x}[k]|| < \infty$ for all k. The system is *oscillating*.
- If $|\lambda_n| > 1$ for any n, then $\lim_{k\to\infty} \mathbf{x}[k] = \infty$. The system is *unstable*.

Random Vectors

Suppose we are observing a process described by a list of \boldsymbol{d} numbers

If each x_i are random variables x is a random vector.

The joint probability distribution is given by $p(\mathbf{x})$. We have

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} p(\mathbf{x}) dx_1 \dots dx_d = 1$$

17

Moments and Expectations

- The expected value of a matrix valued function A(x) is a matrix $\mathbb{E}[A]$ with entries $\int A_{jk}(x)p(x)dx$.
- The mean: $\bar{\mathbf{x}} = \mathbb{E}[\mathbf{x}]$.
- The correlation: $\mathbf{R}_{\mathbf{x}} = \mathbb{E}[\mathbf{x}\mathbf{x}^{\top}].$
- The covariance: $\Lambda_x = R_x \bar{x}\bar{x}^\top$

Positive Semidefinite Matrices

A matrix Q is *positive semidefinite* (psd) if $Q = Q^{\top}$ and for all x, $x^{\top}Qx \ge 0$. This is denoted $Q \succeq 0$

- If $P \succeq 0$ and $Q \succeq 0$ and a > 0, then $aQ \succeq 0$ and $Q + P \succeq 0$.
- If $\mathbf{Q} \succeq 0$, then \mathbf{Q} is diagonalizable and has only nonnegative eigenvalues. Moreover, the eigenvectors can be chosen to be orthonormal.
- The outer product $\mathbf{x}\mathbf{x}^{\top}$ is psd. The correlation and covariances matrices of a random vector are psd.

Matrices as Data

N data points $\mathbf{x}_1, \dots, \mathbf{x}_N$ each consisting of a list of d numbers $\mathbf{x}_n = \{x_{1n}, \dots, x_{dn}\}$

- Images (e.g., 640x480 pixels)
- Audio (e.g., samples)
- Diagnostics (e.g., lab results)

The data matrix is defined to be X where $X_{ij} = x_{ij}$. It is $d \times N$.

Empirical Statistics

• mean
$$\bar{\mathbf{x}}_N = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i$$

• zero-mean data matrix $\hat{X}_{N,ij} = x_{ij} - \bar{x}_{N,i}$

• covariance
$$\Lambda_N = \frac{1}{N} \widehat{\mathbf{X}}_N \widehat{\mathbf{X}}_N^{\top}$$
. $\Lambda_N \succeq 0$

• gram matrix $\mathbf{K}_N = \widehat{\mathbf{X}}_N^\top \widehat{\mathbf{X}}_N$. $\mathbf{K}_N \succeq \mathbf{0}$

Multivariate Gaussians

$$p(\mathbf{x}) = \frac{1}{\sqrt{|2\pi\Lambda|}} \exp\left(-\frac{1}{2}(\mathbf{x}-\bar{\mathbf{x}})^{\top}\Lambda(\mathbf{x}-\bar{\mathbf{x}})\right)$$

The mean of this random vector is $\bar{\mathbf{x}}$. The covariance is Λ .

Since $\Lambda \succeq 0$, there is a matrix C such that $\Lambda = C^{\top} \Delta C$ with $C^{\top}C = 1$ and Δ is a diagonal matrix. The random vector $y = C(x - \bar{x})$ has zero mean and covariance Δ . That means the components of y are independent.

Marginal and Conditional Moments

- Let y = Ax + v with v constant. Then $\bar{y} = A\bar{x} + v$ and $\Lambda_y = A\Lambda_x A^\top$
- Let $z = [\mathbf{x}, \mathbf{y}]$ be gaussian. Then $\bar{x} = \begin{bmatrix} \bar{\mathbf{x}} \\ \bar{\mathbf{y}} \end{bmatrix}$ and $\Lambda_z \equiv \begin{bmatrix} \Lambda_x & \Lambda_{xy} \\ \Lambda_{yx} & \Lambda_y \end{bmatrix}$ $\Lambda_{xy} = \Lambda_{yx}^{\top}$
- $p(\mathbf{x}|\mathbf{y})$ is a gaussian with mean $\bar{x} + \Lambda_{xy}\Lambda_y^{-1}(\mathbf{y}-\bar{\mathbf{y}})$ and variance $\Lambda_x \Lambda_{xy}\Lambda_y^{-1}\Lambda_{xy}^{\top}$.

PCA

Given a zero-mean random vector \mathbf{x} , let us suppose that we want to represent \mathbf{x} as a $\sum_i a_i \mathbf{y}_i$ with the \mathbf{y}_i uncorrelated. Then the best solution is to have $\mathbf{y}_i = \mathbf{C}_i$, $a_i = \Delta_{ii}$.

When we only have finitely many examples, Λ_N is the best estimate of the actual covariance. Given a matrix of data \mathbf{X} , $\Lambda_N = \mathbf{C}_N \Delta_N \mathbf{C}_N^{\top}$. So we can use $\mathbf{y}_i = \mathbf{C}_{N,i}$ and $a_i = \Delta_{N,ii}$.

If we only have a small number of data points as compared to dimensions, diagonalizing Λ_N can be very computer intensive. The Singular Value Decomposition makes this tractable.

Singular Value Decomposition

If A is a matrix of size $m \times n$ then there exists orthogonal matrices V $(m \times m)$ and W $(n \times n)$ such that

$$\mathbf{V}^{\top}\mathbf{A}\mathbf{W} = \operatorname{diag}(\sigma_1,\ldots,\sigma_p)$$

with $\sigma_1 \geq \ldots \geq \sigma_p \geq 0$, $p = \min(m, n)$.

Proof Without loss of generality, assume $m \le n$. Since $\mathbf{A}^{\top}\mathbf{A} \succeq 0$, the eigenvalues of $\mathbf{A}^{\top}\mathbf{A}$ are equal to $\sigma_1^2 \ge \sigma_2^2 \ge \ldots \sigma_n^2 \ge 0$ for some $\sigma_k \ge 0$. Let r be the largest number for which $\sigma_r > 0$.

Let \mathbf{x}_k be norm 1 eigenvectors of $\mathbf{A}^{\top}\mathbf{A}$ corresponding to σ_k^2 for k = 1, ..., r. Let $\mathbf{y}_k = \mathbf{A}\mathbf{x}_k/\sigma_k$. Since $\|\mathbf{A}\mathbf{x}_k\|^2 = \mathbf{x}_k^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x}_k = \sigma_k^2$, \mathbf{y}_k are norm 1. Furthermore, $\mathbf{y}_j^{\top}\mathbf{y}_k = \frac{1}{\sigma_j\sigma_k}\mathbf{x}_j^{\top}\mathbf{A}^{\top}\mathbf{A}\mathbf{x}_k = 0$ when $k \neq j$ so the \mathbf{y}_k are orthonormal.

Completing \mathbf{y}_k to an orthonormal basis for \mathbb{R}^n gives matrices $\mathbf{W} \equiv [\mathbf{x}_1, \dots, \mathbf{x}_n]$ and $\mathbf{V} \equiv [\mathbf{y}_1, \dots, \mathbf{y}_r, \mathbf{V}_2]$. It is easy algebra to check that $\mathbf{V}^\top \mathbf{A} \mathbf{W}$ has the desired form (See Problem 2).

SVD(A,0)

When A is a matrix of $m \times n$ with m > n, we would rather compute the eigenvalues of $A^{\top}A$ than of AA^{\top} . Furthermore, we need only compute the first *n* columns of V for $A = VSW^{\top}$ to hold.

The matlab command:

[V,S,W] = svd(A,0)

performs this computation efficiently.

Matrices as cost/constraints

We will frequently encounter cost functions and constraints defined by matrices:

- linear equalities: Ax = b
- linear inequalities: $\mathbf{A}\mathbf{x} \leq \mathbf{b}$
- linear cost: $c(\mathbf{x}) = \mathbf{c}^\top \mathbf{x}$
- quadratic cost: $c(\mathbf{x}) = \mathbf{x}^\top \mathbf{A}\mathbf{x} + \mathbf{b}^\top \mathbf{x}$
- least squares: $c(\mathbf{x}) = \|\mathbf{A}\mathbf{x} \mathbf{b}\|^2$

Linear Constraints

Note that linear equalities and linear inequalities are interchangeable by adding constraints or variables:

$$Ax = b \iff Ax \leq b \quad \text{and} \quad Ax \geq b$$

$$Ax \leq b \iff Ax = b + s$$
 and $s \geq 0$

Such ${\bf s}$ are called *slack variables*

Unconstrained Quadratic Programming

$$\min_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} = \begin{cases} 0 & A \succeq 0 \\ -\infty & \text{otherwise} \end{cases}$$

$$\min_{\mathbf{x}} \mathbf{x}^{\top} \mathbf{A} \mathbf{x} - 2\mathbf{b}^{\top} \mathbf{x} + c$$

Differentiate with respect to \mathbf{x} to find that at the optimum

Ax = b

If A is invertible then the minimum is $-\mathbf{b}^{\top}\mathbf{A}^{-1}\mathbf{b} + c$

Schur Complements

Let

$$\mathbf{M} = \left[\begin{array}{cc} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^\top & \mathbf{C} \end{array} \right]$$

The Schur complement of ${\bf C}$ in ${\bf A}$ is given by

$$(\mathbf{M}|\mathbf{A}) = \mathbf{C} - \mathbf{B}^{\top} \mathbf{A}^{-1} \mathbf{B}$$

Similarly

$$(\mathbf{M}|\mathbf{C}) = \mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top}$$

Facts about Schur complements:

$$M \succeq 0 \iff C \succeq 0 \quad \text{and} \quad (M|C) \succeq 0$$

$$\mathbf{M}^{-1} = \begin{bmatrix} (\mathbf{M}|\mathbf{C})^{-1} & -\mathbf{A}^{-1}\mathbf{B}(\mathbf{M}|\mathbf{A})^{-1} \\ -\mathbf{C}^{-1}\mathbf{B}^{\top}(\mathbf{M}|\mathbf{C})^{-1} & (\mathbf{M}|\mathbf{A})^{-1} \end{bmatrix}$$

More Quadratic Programming

For the quadratic minimization

$$\min_{\mathbf{x}_{2}} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{A} & \mathbf{B}^{\top} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix} - 2 \begin{bmatrix} \mathbf{b}_{1} \\ \mathbf{b}_{2} \end{bmatrix}^{\top} \begin{bmatrix} \mathbf{x}_{1} \\ \mathbf{x}_{2} \end{bmatrix}$$

$$x_2^* = C^{-1}(b_2 - Bx_1)$$

Plug that back into the cost function:

$$\mathbf{x}_1^\top (\mathbf{M} | \mathbf{C}) \mathbf{x}_1 - 2 (\mathbf{b}_1 - \mathbf{B} \mathbf{C}^{-1} \mathbf{b}_2)^\top \mathbf{x}_1$$

Matrix Inversion Lemma

$$(\mathbf{A} - \mathbf{B}\mathbf{C}^{-1}\mathbf{B}^{\top})^{-1} = \mathbf{A}^{-1} + \mathbf{A}^{-1}\mathbf{B}(\mathbf{C} - \mathbf{B}^{\top}\mathbf{A}^{-1}\mathbf{B})^{-1}\mathbf{B}^{\top}\mathbf{A}^{-1}$$

To check this, apply the partitioned matrix formula twice and set the first blocks equal to each other.

Standard form: $C \to -C^{-1}$

 $(A + BCB^{\top})^{-1} = A^{-1} - A^{-1}B(C^{-1} + B^{\top}A^{-1}B)^{-1}B^{\top}A^{-1}$

Problem1: Emergence of thermodynamics

The following ODE describes the time evolution of a set of coupled masses and springs called the Caldeira-Leggett (CL) model

$$\frac{dx_k}{dt} = p_k/m_k \quad \text{for } k = 0, \dots, N$$
$$\frac{dp_0}{dt} = -m_0 \Omega^2 x_0 + \sum_{k=1}^N g_k(\omega_k x_k - g_k x_0/m_k)$$
$$\frac{dp_k}{dt} = -m_k \omega_k^2 x_k + g_k \omega_k x_0 \quad \text{for } k = 1, \dots, N$$

 x_k and p_k respectively denote the position and momenta of the kth spring (see figure).

• Let N = 200, $\Omega = 1$, $\gamma = 1$, $m_k = 1$, $\omega_k = 10k/N$, and $g_k = \sqrt{40\gamma/(N\pi)}$. Is the system stable, oscillatory, or unstable? How many oscillatory modes are there?

- Write a program to compute $x_0(t)$ with the initial condition $x_0(0) = 1$, $x_k(0) = 0$ for all k = 1, ..., N. Plot $x_0(t)$ from t = 0 to t = 100.
- Consider the system

$$\frac{dQ}{dt} = P/m_0$$
$$\frac{dP}{dt} = -m_0(\Omega^2 + \gamma^2)Q - 2\gamma P$$

with the same parameter settings as above. Is this system stable, oscillatory, or unstable? Analytically compute Q(t) as a function of time. Plot Q(t) for t = 0 to t = 100 with Q(0) = 1 and compare to the output of the CL model.

Problem2: Eigenfaces

Download the database of faces off the class website.

• Finish the proof of the singular value decomposition. That is, verify that

$$\mathbf{V}^{\top}\mathbf{A}\mathbf{W} = \mathsf{diag}(\sigma_1,\ldots,\sigma_p)$$

• Compute the SVD of the data matrix. What do the principle components look like as images?

• Generate 4 a_1, a_2, a_3, a_4 numbers drawn independently from a gaussian and compute the image

$$a_1\sigma_1\mathbf{V}_1 + a_2\sigma_2\mathbf{V}_2 + a_3\sigma_3\mathbf{V}_3 + a_4\sigma_4\mathbf{V}_4$$

This is an *eigenface*

• Compute an *eigensomething* for a something of your choice.

Problem 3: Networks of Resistors

Recall from electronics that the voltage drop across a resistor (i.e., the difference of the voltages at either end) is equal to the current across the resistor times the voltage. Furthermore, remember that the sum of all currents into a node must equal zero. In equations that is:

$$gV = I, \quad \sum_{I_i \in \mathcal{N}a} I_i = 0$$

40

where g = 1/R is the conductance of a resistor.

• Write down these two conditions as matrix constraints on the resistor network. That is, find an 17 \times 18 matrix G and an 8 \times 17 matrix K such that

$$GV = I$$
 and $KI = 0$

• If n is a number between 0 and 255, let $b_8b_7b_6b_5b_4b_3b_2b_1$ be the binary expansion. If $R_1 = 20K$ and $R_2 = 10_K$, what is V_{out} when $V_i = b_i$ for $i = 1, \dots 8$?