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Introduction

“The laser cavity finds the pulse that minimizes loss–it’s like magic.” The dynamics of pulses in a

Kerr Lens Mode-Locked laser converge to a steady stream of ultrafast pulses. Here we attempt to

discover the function that the laser cavity minimizes.

This paper is organized into three parts. First we introduce KLM lasers and review the physics

of the KLM cavity, then we examine the dynamics of laser using numerical simulation, and finally

we use an analytic approach to discover the function that the pulse is minimizing.

1 Kerr Lens Mode-Locked Lasers

Kerr lens mode-locked (KLM) lasers were first realized in 1991 [14]. This laser had pulse width

of 60 femtoseconds. Lasers producing pulses this short are known as ultrafast lasers. At this time

scale, most molecular dynamics are frozen. Molecules do not spin, vibrate, or even emit light at

a rate faster than these laser pulses. This makes ultrafast lasers a invaluable tool for studying

molecular dynamics [16].

KLM lasers mode-lock when self-focusing in the Kerr medium causes the loss in a cavity to

decrease with increasing pulse power. Shorter pulses experience less loss and therefore more net

gain. This feedback causes mode-locking of many frequencies in phase with each other resulting

in an ultrashort pulse. Using a Ti:Sapphire (Ti:Al2O3) crystal as both the gain medium and the

Kerr medium as been successful and popular. The pulse reaches a steady state solution when the
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pulse shortening effect of the fast saturable absorber is balanced by pulse lengthing effects such

as dispersion or bandwidth filtering. The soliton-like pulse that is formed is a result of a balance

between GVD, SPM. Gain saturation, bandwidth filtering, and the pulse shortening effect of the

Kerr media stabilize the pulse.

1.1 Mode-locking

The term ‘Mode-locking’ refers to the frequency modes in a laser cavity. Typically we think of a

short laser pulse in the time domain. A Gaussian laser pulse in the time domain is a Gaussian

shape in the frequency domain. Constructing a laser cavity to excite nearby cavity modes in phase

with each other is the art of mode-locking.

Kerr Lens Mode-Locked lasers operate by passive mode-locking with a fast saturable absorber.

The theoretical foundation of these lasers was first developed by Herman Haus in 1975 [4]. The

science of short laser pulses lasers has progressed steadily over the last 30 years. Figure 1 shows

progress by pulse width, year, and material. This paper focuses on the most popular development

of the last ten years of mode-locking, Kerr-Lens Mode-locking using Ti:Sapphire.

1.2 Fast Saturable Absorber Mode-locking

A fast saturable absorber has an absorption recovery time that is fast compared to the width of

the pulse. Figure 2 shows the recovery of the absorption. Unlike a slow saturable absorber [5] we

assume that the gain is constant over the duration of the pulse. The fast recovery of the absorption

shortens the trailing edge of the pulse.

The fast saturable absorber loss is modeled by

s(t) =
s0

1 + I(t)/Isat

where s0 is the unsaturated loss, I(t) is the intensity of the pulse, and Isat is the saturation intensity

of the absorber.
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Figure 1: Pulsewidths by year and material [5].

Figure 2: Fast Saturable Absorber [5]

Following Haus [5], if the saturation is weak we can expand this to

s(t) = s0 − s0
I(t)
Isat

.

If we normalize |a(t)|2| to be power then we can write

s(t) = s0 −
s0|a(t)|2

IsatAeff
≡ s0 − γ|a(t)|2
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where γ is called the self amplitude modulation (SAM) coefficient.

Haus’ master equation balances gain, loss, gain bandwidth filtering, and the saturable absorber.
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a− (s0 − γ|a|2)a (1)

We can combine s0 into l
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a = (g − l)a +

g
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g

∂2

∂t2
a + γ|a|2a. (2)

Later we will expand gain bandwidth broadening term, g/Ω2
g, to include cavity bandwidth filtering

and call these dispersive effects Dgf where Dgf = g/Ω2
g + 1/Ωf .

The solution to this master equation (2) is

a0(t) = A0 sech(t/τ), (3)

where
1
τ2

=
γA2

0Ω
2
ga

2g

and

l − g =
g

Ω2
gτ

2
(4)

By inspection of (2) and (3) we can see that this analytical solution is unbounded. Gain saturation

must be introduced into the model to arrive at a stable pulse. Equation 4 is also a bit confusing at

first glance. Typically for laser operation we would assume that gain g would be larger than loss

l making Equation 4 false. This equation applies for noise in the cavity during pulsed operation.

We have negative net gain for noise. A short pulse by way of Self Amplitude Modulation sees less

loss through the saturable absorber and therefore positive net gain.

The pulse shortening per pass is given by [7]:

∆τ

τ
=

γW

2τ
(5)
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The PSR given in (5) shows an increase in pulse shortening with shorter pulses. For a fast

saturable absorber the pulse shortening rate increases as τ gets smaller (1/τ). We will find that for

a fast saturable absorber the final evolution of our ultrashort pulses will be dominated by soliton

effects.

This inverse-τ relationship has one drawback. For long pulses the pulse shortening rate is small.

This is the primary reason most fast saturable mode-locked lasers are not self-starting and need

to be started by perturbing the cavity in some way. A short pulse is necessary to get the pulse

shortening started.

1.2.1 Kerr Lens Mode-locking

Kerr lens mode-locked lasers operate by an artificial fast saturable absorber caused by the combi-

nation of Kerr lensing and an aperture to give a near instaneous response time much faster than

pulse widths.

The Kerr effect causes the refractive index of a medium to increase with intensity:

n(I) = n0 + n2I

where

n0 = 1.76, n2 = 3 x 10−20 m2W−1

for Ti:Sapphire.

Figure 3: Kerr medium and aperture.

We assume the spatial mode of the pulse is Gaussian. The center of the pulse has a higher

intensity than the outer part. When the pulse goes through the Kerr medium in the cavity, the
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center sees a greater index of refraction than the outer part. This causes a focusing that is dependent

on total pulse intensity. By putting an aperture in the cavity that is smaller than the CW pulse

width we can encourage shorter more intense pulses (Fig. 3). The net effect of the Kerr media

and the aperture creates a fast saturable absorber. ABCD-matrix beam propagation can be used

to describe this self-focusing [6].

532nm Pump Laser

output coupler

high reflector

prisms

Ti:Sapphire

Figure 4: KLM Cavity

The Ti:Sapphire KLM oscillator design from 1991 has remained largely unchanged. Figure 4

shows the Ti:Sapphire crystal pumped at 532nm. The Titanium doped Sapphire crystal acts as

both the gain medium and the Kerr medium. The Kerr focusing in combination with either a

real aperture, cavity misalignment, or pump/cavity beam overlap forms the artificial fast saturable

absorber. The two prisms are included to compensate for the positive group velocity dispersion

(GVD) caused during propagation through the Ti:Sapphire crystal. More recent cavity designs use

chirped mirrors to compensate for Third Order Dispersion (TOD) and GVD rather than prisms.

An acusto-optic modulator is sometimes added in the cavity to initiate mode-locking.
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1.3 Soliton Effects

Ultrashort pulses propagating in a medium typically experience Group Velocity Dispersion. The

broad bandwidth frequency components of a transform limited pulse experience an index of refrac-

tion based on their frequency n(ω). This causes the red side of the pulse to get ahead of the blue

side of the pulse in the case of normal dispersion. This is called a positive chirp. In the case of

anomalous dispersion the blue side of the pulse propagates faster than the red resulting in a nega-

tively chirped pulse. This chirping causes the pulse to become broader in time but the frequency

spectrum remains unchanged.

If we can apply group velocity dispersion (GVD) to our pulse

∆a = jD
d2

dt2
a.

Most materials have normal dispersion which induce a positive chirp. In a KLM cavity it is

essential to compensate for this positive chirp with negative dispersion. Negative group velocity

dispersion can be made using a pair of prisms [3] or diffraction gratings [15]. This balance between

the positive dispersion of the cavity elements and the negative dispersion of the prism configuration

allows for near zero net dispersion.

Self-Phase Modulation (SPM) changes the phase of a pulse according to the instantaneous pulse

intensity. In a Kerr medium the phase will be delayed more for higher intensity.

∆a = −jδ|a|2a

n(I) = n0 + n2I

where n0 = 1.76 and n2 = 3 x 10−20 m2W−1 for Ti:Sapphire.

Our full master equation is

1
TR

∂

∂T
a = (g − l)a +

(
g

Ω2
g

+
1

Ω2
f

+ jD

)
∂2

∂t2
a + (γ − jδ)|a|2a (6)
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where g is gain, l is loss, Ωg is gain filtering, Ωf is cavity filtering, D is the GVD parameter, γ is

the SAM coefficient, δ is the SPM coefficient.

2 Numerical Simulation

We use the master equation approach [4, 5, 9, 8] to simulate the dynamics of a KLM oscillator. The

master equation describes passive mode-locking using fast saturable absorbers and includes Group

Velocity Dispersion (GVD), Self-Amplitude Modulation (SAM), Self-Phase Modulation (SPM), and

bandwidth filtering. Most oscillator dynamics that are not explicitly dependent on spatial modes

can be included in this model.

Our simulations are seeded with a Gaussian pulse in the picosecond to 100 femtosecond range.

The master equation governs the pulse evolution simulating one cavity round-trip of the pulse for

each time step. Typical simulations converge on a steady state solution within 2,000 to 8,000

round trips. The non-linear and dispersive effects were applied to the pulse using the Split-Step

Fourier Transform method [1]. This numerical method is commonly used to simulate intense pulses

propagating in optical fiber.

2.1 Simulation Procedure

The simulator is a relatively simple implementation of the pulse evolution described in Haus’

master equation (7). The split-step Fourier transform method was used to evolve a pulse through

one round trip of cavity. We apply the linear cavity effects in the frequency domain and we apply

the non-linear saturation and phase modulation effects in the time domain.

1
TR

∂

∂T
A(T, t) = (g − l)A(T, t) +

(
Dgf + jD

)
∂2

∂t2
A(T, t) + (γ − jδ)|A(T, t)|2A(T, t) (7)

Haus’ Master Equation (7) from left to right has a net gain term (g−l), dispersion D, bandwidth

filtering Dgf where Dgf = g/Ω2
g + 1/Ω2

f , the SAM coefficient γ, and δ the Self Phase Modulation

(SPM) coefficient.
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Generally the combination of gain and SAM produce the ultrashort pulse and keep it stable

while GVD and SPM shorten it further.

At the core of this simulation is the split-step Fourier method.

We’ve adapted Agrawal’s [1] use of the SSFM in pulse propagation in optical fiber to our master

equation describing a KLM cavity. In the fiber derivation, the length of the fiber is broken down

into a large number of segments and then the dispersive terms and nonlinear terms are applied

separately to each segment. If we view our master equation in the form,

∂A

∂T
= (D̂ + N̂)A, (8)

we have linear terms,

D̂ = g − l + (Dgf + jD)
∂2

∂t2
, (9)

and the nonlinear terms,

N̂ = (γ − jδ)|A|2. (10)

We assume that the dispersive terms and non-linear terms can be applied to the pulse separately.

We also assume that effects of one round trip on a pulse are small so we can apply the operators

in one step rather than breaking up the cavity into several segments.

We seed our simulations with a relatively broad bandwidth low intensity pulse. In physical

KLM oscillators it is usually necessary to perturb the cavity by moving one of the dispersion

compensating prisms in order to seed the cavity with something pulse-like to feedback on. Fast

saturable absorber oscillators are typically not self starting since the pulse shortening rate is weak

for long pulses and successively stronger for short pulses.

We assume that that the population lifetime of our gain medium is long compared to the

repetition rate of the cavity. This means that the gain will saturate according to the average power

over many pulses rather than over a single pulse width. To accommodate this assumption we

calculate the effective gain between cavity round trips. In each of the cavity round trip iterations
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Figure 5: Simulator Block Diagram

we calculate a new gain g according to:

g(T ) =
g0

1 + EP (T )
Esat

where

EP (T ) =
∫ +∞

−∞
|A(T, t)|2dt

EP (T ) = ∆t
N∑

n=0

|A(T, n)|2

Dispersion due to gain bandwidth and cavity bandwidth is also updated

Dgf = g/Ω2
g + 1/Ω2

f

The block diagram in Figure 5 shows the operation of the simulator. For each cavity round-trip

we apply linear terms to the pulse envelope in the frequency domain. Then apply the non-linear

operations in the time domain and iterate until we arrive at a self-similar pulse envelope. During

the outer portion of the loop the gain is adjusted to account for gain depletion.
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Parameter Value Description
l 0.025 loss
g0 0.0 - 0.10 unsaturated gain (0.07 typical)
Ωg 2π · 43 THz gain bandwidth
q0 0.01 s0 unsaturated absorber loss

Table 1: Table of simulator parameters for Ti:Sapphire [9].

2.2 Ti:Sapphire

We calculated our Ti:Sapphire model parameters assuming a 50fs pulse, 400mW ML output power,

90MHz repetition rate, and a 3% output coupler. We used a 14W intra-cavity power or 1.55 x 10−7

J/pulse corresponding to a pulse amplitude of A0 = 1250 assuming a sech pulse.

a0(t) = A0 sech(t/τ),

Our simulation should be sensitive to our initial gain parameter g0. Below some threshold our

net gain should be negative and above some turn-on threshold we should see a net gain. Figure 6

shows the final pulse from 20 simulations at gain values from g0 = 0 to g0 = 0.2.

Figure 6: job24: Ti:Sapphire, Converged pulse after 8000 iterations for unsaturated gain values
from 0 to 0.10, no SPM, no GVD
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We can see the net gain turning positive at around g0 = 0.05. This threshold is consistent

with Figure 3 in Kaertner [8]. Each trace represents 8,000 iterations of the master equation. All

pulses converged to a steady state value within this time. Last year’s Matlab computer took about

5 minutes to run each simulation for a given g0.

Figure 7: job40: Ti:Sapphire, Pulse evolution of an ultrashort pulse.

Figure 8: job40: Ti:Sapphire, Bandwidth evolution of an ultrashort pulse.

Group velocity dispersion and self phase modulation were added to the simulation. To view the
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pulse evolution we saved traces every 100 simulation steps. The evolution of an ultrafast pulse is

shown in Figure 7. Our initial pulse seed pulse is shown at step 0. For this simulation we seeded the

simulation with a relatively short 200fs pulse. The simulations converged to their steady state pulse

regardless of initial pulse width or intensity. The final pulse had a width of 38fs. This simulation

converged to a steady state solution after only 1500 cavity round trips. We ran the simulation for

a few thousand iterations beyond this point to confirm convergence.

The evolution of the frequency components of these pulses is shown in Figure 8. Again, the

initial pulse is at step 0. The pulse evolution is easily divided up into three stages. Initially, for

the first 300 steps, unsaturated gain is the dominant effect. The net gain anything other than an

intense pulse is negative. Gain is followed up by self amplitude modulation shortening the pulse.

The gain is eventually saturated and the self amplitude modulation effect reaches its minimum

saturable loss. At around step 800 soliton effects further shorten the pulse. The dip in the middle

of the pulse at step 1000 is due to self phase modulation that is eventually removed by group

velocity dispersion.

3 Analytic Examination

Here we will attempt to find the function that the laser minimizes while ringing-up. Ideally we would

like to discover a Lyapunov-like function–a monotonically decreasing, positive definite function.

3.1 Complex Ginzburg-Landau Equation

The Haus master equation (6) describing the full KLM dynamics including soliton effects is a

complex Ginzburg-Landau equation (CGLE). For each cavity round-trip the gain parameter g is

fixed. Gain depletion attenuates the gain parameter as the total energy in the pulse approaches

the limit of the gain media Esat.

g(T ) =
g0

1 + EP (T )
Esat

where

EP (T ) =
∫ +∞

−∞
|A(T, t)|2dt
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This changing parameter of our non-linear partial differential equation makes solving the full

ring-up dynamics difficult. It is usually difficult to find an analytic solution to the CGLE for any

particular set of parameters. To simplify this analysis we will consider only the dynamics of the

laser near full pulse energy δg → 0.

Our complex Ginzburg-Landau equation describing the laser dynamics around the stationary

solution is:

∂

∂T
A(T, t) = (g − l)A +

(
Dgf + jD

)
∂2

∂t2
A + (γ − jδ)|A|2A (11)

This equation has a soliton-like solution [10]

a(t) = A0 sech(1+jβ)

(
t
τ

)
,

and a continuous wave solution

a(t) = A0 exp(−jωt).

The CGLE:
∂

∂T
A = A + (1 + jc1)

∂2

∂t2
A− (1 + jc2)|A|2A (12)

The competition between these two lasing modes and relative stability of each determines

whether the laser is self-starting or not. Where self-starting implies an immediate ring-up to the

soliton-like solution. Soto-Crespo et. al. have extensively studied the CGLE approximated around

the soliton and the CW solutions [13, 12]. Their analysis used a numerical simulation similar to

the one presented earlier. They found regions of the CGLE parameter space where the CW lasing

mode was unstable and the soliton lasing mode was stable which suggests that the laser should be

“self-starting” in that region.

An analytic Lyapunov functional for the CW lasing mode has been reviewed and confirmed

numerically [11]. Unfortunately this treatment of the CGLE did not consider soliton solutions.

In the full parameter space the solitons are usually unstable and much of the space is chaotic.

Rederiving the work in that paper to approximate soliton solutions is presently beyond the scope

14



of this author.

We will attempt to further simplify the master equation.

3.2 Non-linear Schrodinger Equation

As we saw in the numerical section of this paper as the pulses get shorter the soliton effects begin

to dominate. For ultrashort pulses we could consider the soliton effects as the primary dynamics

and assume that gain, SAM, and filtering can be considered small pertibations.

∂

∂T
A(T, t) = jD

∂2

∂t2
A− jδ|A|2A (13)

Terms this equation is identical to solitons propagating down a fiber. It has no dissipative terms

so the total energy in the pulse will remain constant. This equation is known as the Non-Linear

Schrodinger Equation (NLSE).

We have now restricted ourselves to an area very near the stationary solution to the Haus

master equation. The Lyapunov function for this equation is well known [2]. Adapted for our

NLSE parameters we a Lyapunov function.

V =
∫ +∞

−∞
dt

[
−D|A|2 +

1
2

δ

2
|A|4a + | ∂

∂t
A|2

]

3.3 Numerical Confirmation

This Lyapunov function is nothing great. We found a fractal.
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Figure 9: job89b 1: The Lyapunov function derrived from the NLSE for the CGLE.

Figure 10: job89b 2: The Lyapunov function derrived from the NLSE for the CGLE.

Figure 11: job89b 3: The Lyapunov function derrived from the NLSE for the CGLE.
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Figure 12: job89b 4: The Lyapunov function derrived from the NLSE for the CGLE.

Figure 13: job89b 2: The Lyapunov function derrived from the NLSE for the CGLE.
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