"Finding" a Pulse Shape

Jason Taylor May 16, 2005

"The laser cavity finds the pulse that minimizes loss--it's like magic."

My Research

I investigate the usefulness of laser cavities and laser dynamics for information processing.

Kerr Lens Mode-Locked laser cavities

Project Goals

- Discover what a KLM laser minimizes
 - Cavity loss?
 - Population Inversion?
- Use results to predict good bit representation and/or logical operators
 - Space
 - Time
 - Phase
 - Power

Kerr-Lens Mode Locked Oscillator

The Equation

This equation describes the evolution of a short pulse over one round trip in a KLM cavity.

Mode Locking

Artificial Fast Saturable Absorbers

[Hau00]

master equation:

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + (\frac{g}{\Omega_g^2} + \frac{1}{\Omega_f^2})\frac{\delta^2}{\delta t^2}a + \gamma |a|^2a$$

 $a_0(t) = A_0 \operatorname{sech}(t/\tau)$ solution unbounded

Siegman, Haus [Hau00]

Kerr-Lens Mode Locked Laser

Ti:Sapphire Absorption/Emission Spectra

Ti:Sapphire KLM oscillators are available commercially—where else would this graphic come from?

700

Wavelength (Nanometers)

800

900

1000

400

500

600

Soliton Effects in Ultrashort Pulses

 $\Delta n = n_2 I(t)$

Self Phase Modulation (SPM)

$$\Delta a = -j\delta |a|^2 a$$

Group Velocity Dispersion (GVD)

$$\Delta a = jD \frac{d^2}{dt^2} a$$

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\frac{1}{GVD}\frac{\delta^2}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\delta_0 = \text{no SPM}$$

 $D_n = \text{GVD}$

Haus' Master Equation

master equation with GVD and SPM:

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\frac{1}{GVD}$$

$$\frac{1}{GVD}$$

Gain depletion

$$g = g(T) = \frac{g_0}{1 + \frac{E_P(T)}{E_{sat}}}$$

where

$$E_P(T) = \int_{-\infty}^{+\infty} |A(T,t)|^2 dt$$
$$E_P(T) = \Delta t \sum_{n=0}^{N} |A(T,n)|^2$$

Numerical Simulation

Here we look at the equation properties via numerical simulation.

Separate into Linear and Non-Linear Operators

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\frac{\partial A}{\partial T} = (\hat{D} + \hat{N})A$$

where

$$\hat{D} = g - l + (D_{gf} + jD) \frac{\partial^2}{\partial t^2}$$
$$\hat{N} = (\gamma - j\delta) |A|^2$$

 $A(T + \kappa, t) = \exp[\kappa(\hat{D} + \hat{N})]A(T, t)$

Simulation

Gain, SAM, no GVD, no SPM

What is minimized?

- Cavity loss?
- Gain medium population inversion?
- Pulse width?

Haus' Master Equation

master equation with GVD and SPM:

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\frac{1}{GVD}$$

$$\frac{1}{GVD}$$

Gain depletion

$$g = g(T) = \frac{g_0}{1 + \frac{E_P(T)}{E_{sat}}}$$

where

$$E_P(T) = \int_{-\infty}^{+\infty} |A(T,t)|^2 dt$$
$$E_P(T) = \Delta t \sum_{n=0}^{N} |A(T,n)|^2$$

Complex Ginzburg-Landau Equation

master equation with GVD and SPM:

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\frac{1}{GVD}$$

$$\frac{1}{GVD}$$

Gain depletion

$$g = g(T) = \frac{g_0}{1 + \frac{E_P(T)}{E_{sat}}}$$

where

$$E_P(T) = \int_{-\infty}^{+\infty} |A(T,t)|^2 dt$$
$$E_P(T) = \Delta t \sum_{n=0}^{N} |A(T,n)|^2$$

Complex Ginzburg-Landau Equation

master equation:

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

soliton like pulse

CW solution

$$a(t) = A_0 \operatorname{sech}^{(1+j\beta)}\left(\frac{t}{\tau}\right)$$

$$a(t) = A_0 \exp(-j\omega t)$$

general CGLE

$$\frac{\partial}{\partial T}A = A + (1 + jc_1)\frac{\partial^2}{\partial t^2}A - (1 + jc_2)|A|^2A$$

Complex Ginzburg-Landau Equation general CGLE

$$\frac{\partial}{\partial T}A = A + (1 + jc_1)\frac{\partial^2}{\partial t^2}A - (1 + jc_2)|A|^2A$$

Lyapunov Function

soliton like pulse

CW solution

$$a(t) = A_0 \operatorname{sech}^{(1+j\beta)}\left(\frac{t}{\tau}\right)$$

$$a(t) = A_0 \exp(-j\omega t)$$

A good approximate Lyapunov function is known for a CW stationary solution.

No Lyapunov function is known for soliton solutions—too close to chaos. IMHO

Simplify Equation

$$\frac{1}{T_R}\frac{\delta}{\delta T}a = (g-l)a + \left(\frac{1}{\Omega_f^2} + jD\right)\frac{\delta^2}{\delta t^2}a + (\gamma - j\delta)|a|^2a$$

$$\frac{\partial}{\partial T}A(T,t) = jD\frac{\partial^2}{\partial t^2}A - j\delta|A|^2A$$

ignore gain depletion, BW filtering and SAM

Non-linear Schrodinger Equation

$$\frac{\partial}{\partial T}A(T,t) = jD\frac{\partial^2}{\partial t^2}A - j\delta|A|^2A$$

Lyapunov Function:

$$V = \int_{-\infty}^{+\infty} dt \left[-D|A|^2 + \frac{\delta}{4}|A|^4 a + \left| \frac{\partial}{\partial t} A\right|^2 \right]$$

Looks a lot like minimizing the action.

Numerical Confirmation

Try Lyapunov function in simulator.

NLSE Lyapunov function on CGLE with gain saturation

Zoom in on Hump

Zoom in on 2nd Hump

Zoom in on 3rd Hump

Zoom in on 4th Hump

Conclusions

- We found a fractal.
- The NLSE approximate Lyapunov function isn't valid far away from the soliton solution.
- Is a numerical stability analysis of the CGLE sufficient?