
In-Process Control in Thermal Rapid Prototyping

Nadya Peek
in MAS.864, May 2011

May 16, 2011

Abstract

This report compares thermal control algorithms for curing carbon
fibre and epoxy resin composite parts using a networked mesh of embedded
heater pads and temperature sensors. We compare 1. using proportional
error correction, 2. PID control, and 3. an optimisation using the Nelder-
Mead algorithm.

1. Initial Problem Setup

Suppose a mass M is to be heated up from an ambient temperature T0 to a
temperature T1 with the temperature increasing linearly as a function of time
from time t = 0 to time t = t1, and and for time t > t1 the temperature is to
be kept at T = T1. How much heat supply is required to achieve this? Let us
denote the heat supply per unit time by q.

The heat flow q will consist of one part qh required to heat the body, and another
part qr required to compensate for heat loss. I.e.

q = qh + qr (1)

Rate of heating is T1−T0

t1
, and to supply this one must have

qh = c ·M · T1 − T0
t1

for 0 < t < t1 (2)

= 0 for t > t1 (3)

Here c denotes the specific heat capacity of the material (this is assuming it is
constant over the heated body; otherwise we should replace c ·M by

∫
c · δM ,

over body. In our case we will ignore the fact that we’re working with a hybrid
material.) We note that c may also be a function of the material’s temperature,
but we’re going to assume it is constant.

The heat loss will depend on the temperature of the body, thus

qr = qr(T ) (4)

1



If heat loss is by conduction only, qr will be a constant function,

qr = K(T − T0) (5)

where K is a constant. Otherwise if radiation and/or convection are involved it
becomes a nonlinear function, but in any case it is monotonically rising.

Thus in q = qh + qr(T ) for 0 < t < t1 the first term is constant, but the second
is increasing with temperature. This means that the heat input must increase
until the temperature T1 is reached, and then it must drop suddenly by an
amount c ·M · T1−T0

t1
and remain constant, so that it continues to balance the

heat loss without without further increase in temperature.

Now for the specific case of heating a part which includes uncured epoxy resin
with an activation temperature Ta to begin the curing process, we will have
to introduce a third q, which we will call qe. Epoxy curing is an exothermic
reaction, and we can expect the epoxy on the mould to start contributing to q
through qe once Ta is reached. In our case Ta has been set to be T1, so we know
qe will be 0 when t < t1.

Although using the specific heat capacity, the expected heat loss and the energy
produced in the curing reaction we might be able to set out an energy input in
advance, we are going to adhere to the temperature ramps required to cure the
epoxy resin and carbon fibre part using closed loop temperature control.

Ideally, we will see a temperature controller following a ramp that we can imag-
ine from the theory described above: monotonically increasing while the tem-
perature is ramping, and then suddenly dropping when it is only required to
hold temperature.

2. Closed loop temperature control

To test a heated mould with calorimetry for cure sensing, we built a system
that controls a network of microcontroller nodes, each equipped with a tem-
perature sensor (glass thermistor) and a heating element (NiCr wires controlled
with PWM). The nodes can be set to different temperature profiles that can
correspond to the thickness of the part at that location in the mould. The nodes
communicate through Asynchronous Packet Automata, a communication proto-
col developed at the MIT Center for Bits and Atoms in collaboration with Spirit
Aerosystems, where the geometry of the nodes connections determines how to
address them. The nodes are controlled with a series of simple commands, in-
cluding current up, current down and read temperature. The entire network
can be addressed from a master computer running a controller algorithm. A
graphic depiction can be seen in figure 1.

2



Figure 1: Overview of the system setup with APA nodes and master control
from an external computer.

3



2.1. Proportional control

In the first experiments, the algorithm implemented was simply to change the
input energy at a rate proportional to the deviation in temperature. The first
experiment done using this control method can be seen in figures 2, 3 and 4.

Figure 2: Setup for infusing carbon fibre with epoxy resin on a mould with
temperature sensors and embedded heating pads. The epoxy enters the mould
already heated to 80 C. On top of this we have positioned a heating lamp to
maintain ambient temperature around the mould at around 80 C. Node 1 in
figures and is on the left, and node 2 is on the right.

The mould that we are using in this experiment was developed at Spirit Aerosys-
tems using their composite production facilities. It is made with the same ma-
terials that it is meant to cure, which should minimise the difference in specific
heat capacity between the mould and the part, so that our qh will remain pre-
dictable.

Unfortunately, there is some variation in the temperature sensors we embedded
in the mould, and we have found they do not report consistent temperatures
across sensors. To remedy this, we calibrated each node in software with refer-
ence temperature readings made with an infrared camera on the surface of the
mould.

Ambient temperature in the room that we used for the experiments is set at 21

4



C. The mould is heated to 80 C before the introduction of the epoxy, which is
also already heated to 80 C (without the heat, the epoxy has too high a viscosity
to flow through the part).

Figure 3: Curing Cytec epoxy with a ramp from of 2 C per minute from 80 C
to 180 C. This figure shows two separate nodes embedded in a single carbon
fibre mould. The two separate input current and temperature lines are for each
heating pad and corresponding thermistor. The maximum current is 0.5 A per
node. The decreasing input energy through t = 2200s is due to the repositioning
of the external heat lamp.

In figure 3 you can see a drop in input current from t = 5700s which is rectified at
t = 7500s. Just looking at this graph, we might think that what we are observing
is simply our control algorithm being slow to respond, not immediately dropping
to only supply qr and then overshooting when it does. To better understand the
dynamics of this plot, we ran a control experiment which can be seen in figure
4. In the control we re-ramped the part we had previously already cured, after
manual inspection that it had indeed cured correctly.

Comparing the two plots, we notice that it is not a resonance. We could subtract
the first plot from from the second to show only the different in qh + qr, which
we will assume to be qe.

This is already quite promising a result, but to make more certain what we’re
seeing has nothing to do with our current input, we would like to implement a

5



Figure 4: This is the same setup as shown in figure 3, except now the mould and
part have already gone through one heating cycle and the epoxy has hardened.

6



better control algorithm which will more closely approximate the energy input
we are theoretically expecting to see, which includes a discontinuity at T1 instead
of the decline proportional control must give us.

2.2. PID control

PID control has been widely used for nearly a half century of control. It is a
control loop mechanism that takes the proportional error, the rate of change in
error and the accumulated error into account when calculating how to adjust
the output at any given step.

If we let e(t) be the error at time t, then the output current at time t can be
given by:

out(t) = Kp · e(t) +Ki ·
∫ t

0

e(t)dt+Kd · e(t)
d

dt

In the sum, the first term is the proportional, the second the integral, the third
the derivative. Here the gains Kp, Ki and Kd are tuning parameters. We will
elaborate on selecting values for these parameters in 2.2.1.

In algorithm form, the PID controller can be implemented as follows:

PID-control(target , current , prev error)

1 error ← target – current
2 integral ← integral + error · elapsed
3 derivative ← (error - prev error) / elapsed
4 output = KP ·error + KI ·integral +KD·derivative
5 prev error ← error

2.2.1. Tuning

Manually selecting good values for the Kp, Ki and Kd gains is somewhat tricky,
and entire bookshelves have been written about it [1]. When manually tuning
a PID loop, first the Ki and Kd gains are set to 0. The Kp is increased until
the output oscillates. Then Kp is decreased from that value, and its decrease
is redistributed over the integral and derivative terms. Determining exactly
how to redistribute can be guided by many different rules of thumb, such as
increasing Kp will increase overshoot but decrease steady-state error.

We’ve chosen a heuristic tuning method known as the Ziegler-Nichols Method,
developed by Ziegler and Nichols in the 1940s by observing helmsmen steering
ships. Like with manual tuning, the Ki and Kd gains are initially set to 0. Kp is
increased until the output starts to oscillate with constant amplitude, at value
Ku. The period of the oscillation is Tu. Then the parameters are selected from
the table 1:

7



Figure 5: Temperature (pink) and input current (green) with four consecutive
tunings of PID control. The node was given a temperature ramp of 5 degrees per
minute, from 90 C to 110 C. In a, Kp is too large and the output is oscillating,
and Ki is too large so the changes are delayed. In b, this is somewhat reduced,
but the control is still largely overshooting. Plots c and d show better results
but fail to produce the angular temperature we expect.

Control Type Kp Ki Kd

P Ku/2 - -
PI Ku/2.2 Tu/1.2 -
PID Ku/1.7 Tu/2 Tu/8

Table 1: Ziegler-Nichols PID tuning heuristic

8



This method is tricker than it may seem– even with the Ziegler-Nichols method,
it is difficult to get values for the gains that are accurate for a variety of tem-
perature ramps. Often, a timely response in one part of the temperature ramp
is paired with an oscillation in another.

Figure 6: With too aggressive tuning, the output from PID overshoots so much
and also takes some time to update all the nodes in the network that horrible
awful oscillation occurs.

2.3. Nelder-Mead Algorithm

This algorithm, first proposed by Spendley et al [4] and later developed by
Nelder and Mead [2], uses a heuristic search strategy to find a minimum of
a function of n variables. It depends on the evaluation of the function at the
vertices of a simplex, where a simplex is defined to be a polytope with one vertex
more than the space it is searching in. The method described below follows the
implementation of amoeba in Numerical Recipes for C [3].

The function is evaluated at each vertex of the simplex. The values are sorted
from smallest to largest

f(x1) ≥ f(x2) ≥ ... ≥ f(xn+1) (6)

The worst point is omitted when calculating the centroid of the polytope (the
mean of the columns), and then the worst point is reflected across the face
towards the best point:

xr = x0 + α(x0 − xn−1) (7)

Here α is a reflection coefficient (we use 1). If f(x1) ≥ f(xr) < f(xn), then xr
becomes the new xn+1 in the simplex, and the algorithm loops.

9



If the reflected point is the best found, or f(xr) < f(x1), then grow the reflected
point out to see if it improves even more:

xr = x0 + γ(x0 − xn+1) (8)

Here γ is the growth coefficient (we use 2). If f(xe) < f(xr), then a new simplex
is formed where xe is the new xn+1, else xr is the new xn+1.

If the reflected point is the worst found, or f(xr) ≥ f(xn∀n), then shrink xr by:

xc = xn+1 + β(x0 − xn+1) (9)

Here β is the contraction coefficient (we use 0.5). If the contracted point is
better than the worst point or f(xc) < f(xn+1), then loop with a new simplex
with xc.

If none of the above steps helped, shrink the entire simplex towards the best
result, or for all i in {2, ..., n+ 1}:

xi = x1 + ρ(xi − x1) (10)

Where ρ is a shrinking coefficient (we use 0.5). To make sure our simplex does
not get stuck in a local minima, we have to ensure that the initial simplex is of
sufficient size.

To apply Nelder-Mead to our specific problem, we need to determine the func-
tion we are trying to minimise. Our aim is to optimise our controller’s parame-
ters to best approximate the temperature ramp we have specified. To determine
our search space, we performed k + 1 experiments where we varied our param-
eters. The experiment with the worst result is discarded, and a new one is
substituted according to the Nelder-Mead method.

The coordinates we select for our starting simplex can be defined by the following
matrix, where the links between coordinates are given by

xij = x1j +Xij · δxj (11)

here i ranges between 1 and k + 1 and j ranges between 1 and k.

0 0 0 0 0
p q q q q
q p q q q
q q p q q
q q q p q
q q q q p


where

p =
1

k
√

2
· (
√
k + 1 + k − 1) (12)

and

q =
1

k
√

2
· (
√
k + 1− 1) (13)

10



We use the response function to a desired increase of 10 C as an optimisation
criterion (noting that this may not be so optimal, but doing experiments with a
more realistic desired increase of 100 C would take weeks unless someone wants
to buy me a fancy Peltier block). It is a weighted sum that considers both the
error deviation and the duration and amplitude of the oscillations:

Fr =
∑

Si + a · tosc + b · Ei (14)

Where Si denotes the surface of oscillations around the set point, tosc is the
duration of oscillations in seconds, and Ei the error in degrees. The weights a
and b were both set to 1.

The variables we have determined to effect the outcome are the integral time
(in seconds), the derived time (in seconds), the tuning parameters Kp, Ki and
Kd and of course the input energy in %. Therefore our simplex has 6 variables
and will be represented by a polytope in 6-dimensional space with 7 vertices.

The starting coordinates use the k that has parameters set by previous Ziegler-
Nichols tuning attempts.

3. Issues

Somehow the incantations that I normally use to get my APA network online
hate me. After much debugging and re-making of controller boards, I have
determined that 1: one of the heater pads in the 2x2 is burnt out, 2: related
to 1, I want new heater nodes and that 3: we need to do something about this
weird state the boards can come up in (...Neil?).

References

[1] K. J. Äström. PID Controllers: Theory, Design, and Tuning. International
Society for Measurement and Control, 1995.

[2] J. A. Nelder and R. Mead. A simplex method for function minimization.
Computer Journal, 7:308–313, 1965.

[3] W. Press and S. Teukolsky. Numerical Recipes in C. Cambridge University
Press, 1992.

[4] W. Spendley, G. R. Hext, and F. R. Himsworth. Sequential application of
simplex designs in optimization and evolutionary operation. Technometrics,
4:441–443, 1962.

11


	1 Initial Problem Setup
	2 Closed loop temperature control
	2.1 Proportional control
	2.2 PID control
	2.2.1 Tuning

	2.3 Nelder-Mead Algorithm

	3 Issues

