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Can we use dynamic programming to uncover hidden attributes of cities that give rise to observable patterns? What 
kind of implications might this have for urban design and policy? 

This project uses the Viterbi Algorithm in an Hidden Markov Model (HMM) framework to uncover hidden “spatial 
states” or boundaries giving rise to observed rental patterns in Manhattan. Do the hidden states uncovered by the 
model agree with existing zoning policy?

Prior work: L.E. Baum and T. Petrie (1966), Rabiner, 
“A tutorial on hidden Markov models and selected applications in speech recognition” (1989), Huang & Kennedy, 
“Uncovering Hidden Patterns by HMM.” 
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Viterbi algorithm: finds the most likely sequence of hidden states (viterbi 
path) that produces a sequence of observed events in an HMM.

5 categories
@ city-block 

distance



pseudocode

st
at

es

R

C

M
1 2 3 4 5 ...... n

1. Assume emission & transition probabilities
2. Goal: 
 find most likely sequence of states Z* = argmax P ( hidden states z | given obs x) 
3. Knowing:  
 if f(a) ≥ 0 and g(a,b) ≥ 0,
 then maxa,b f(a) g(a,b) = maxa [ f(a) maxb g(a,b) ]
4. Begin:
 argmaxz1-n p(z | x) = argmaxz1-n p(z,x) (joint distribution)
5. U = max. Find recursion for:
 max Uk(zk) = max p (z1:k ,x1:k) }expand
 max z1:k-1 = max p ( xk | zk ) * p( zk | zk-1 ) *  ( z1:k-1 | x1:k-1)

emission transition previous
6. Distribute max & found recursion:
 max z1:k-1 = max p ( xk | zk ) * p( zk | zk-1 ) *  max p( z1:k-1 | x1:k-1)
 Uk(zk)  = max p ( xk | zk ) * p( zk | zk-1 ) *  Uk-1( z1:k-1 | x1:k-1) for k = 2....n

7. Keep track of max sequence in each step & compute for the next
8. Keep track of maximizing path that terminates at state.
9. Max for path Z can be found by appending path to one of previous paths.

Z obs



output + evaluation
max z1:k-1 = max p ( xk | zk ) * p( zk | zk-1 ) *  ( z1:k-1 | x1:k-1)

Output:
 -table of max values for each state & observation category
 -sequence of corresponding hidden states

Evaluation:
 -Algorithm works, but real data needs to be handled.



future directions
1. Get the algorithm to handle real data sets: 

 a. symbolize tract data using grid method
  -”alternate advancing technique” (Zhang, C.: Generalized Markov Chain Approach 
  for conditional simulation of categorical variables form grid samples (2006).
 b. import the observation sequence where each obs represents a tract with a 
  vector = price frequency distribution

2. Objective approach to calculating transmission & emission probabilities:

 a.  calculate emission probabilities for each tract (run rand.py for the size of tract 
  dataset)
 b. create a program that would move from cell to cell and record state transition.

3. GIS or Grasshopper? Might be possible to write a python script for GIS.
 a. alternatively, a grasshopper plug-in.

4. Repeat for time-sequence data: Social Explorer & ACS


