
identifying hidden spatial states of rental markets in Manhattan

Emily Binet Royall
NoMM Spring 2014

Viterbi NYC

0 2 miles

problem + precedent

manufacturing

commercial

residential

open space

nyc zoning : mahattan

Can we use dynamic programming to uncover hidden attributes of cities that give rise to observable patterns? What
kind of implications might this have for urban design and policy?

This project uses the Viterbi Algorithm in an Hidden Markov Model (HMM) framework to uncover hidden “spatial
states” or boundaries giving rise to observed rental patterns in Manhattan. Do the hidden states uncovered by the
model agree with existing zoning policy?

Prior work: L.E. Baum and T. Petrie (1966), Rabiner,
“A tutorial on hidden Markov models and selected applications in speech recognition” (1989), Huang & Kennedy,
“Uncovering Hidden Patterns by HMM.”

$500 $1000 $2000

concept Gross Rent Categories
$ 100-200
$ 240-400
$ 450-600
$ 650-800
$ 900-2000

p (transition)

p (emission)

observed signal
(rental prices)

STATE 1 STATE 2 STATE 3

hidden “grammar” (spatial states)

0.5

0.40.4

0.3 0.2

0.1

0.1

0.5 0.5

MANUFACTURING

RESIDENTIAL COMMERCIAL

transition probabilities:

HMM model elements:

emission probabilities:
gaussian probability
density function

λ = {Aij, B, π}
Given λ, adjust model parameters
to maximize P(O | λ)

25%
10%
30%
45%

vector:
frequency
of # units
within
each rent
category.

initial probabilities:

assumption:
spatial states underly
rental prices

data structure

process

rents

price classes

grid

observation symbols

observation
sequences

hidden
states train

dataHMM
Viterbi

k-means

Viterbi algorithm: finds the most likely sequence of hidden states (viterbi
path) that produces a sequence of observed events in an HMM.

5 categories
@ city-block

distance

pseudocode

st
at

es

R

C

M
1 2 3 4 5 n

1. Assume emission & transition probabilities
2. Goal:
 find most likely sequence of states Z* = argmax P (hidden states z | given obs x)
3. Knowing:
 if f(a) ≥ 0 and g(a,b) ≥ 0,
 then maxa,b f(a) g(a,b) = maxa [f(a) maxb g(a,b)]
4. Begin:
 argmaxz1-n p(z | x) = argmaxz1-n p(z,x) (joint distribution)
5. U = max. Find recursion for:
 max Uk(zk) = max p (z1:k ,x1:k) }expand
 max z1:k-1 = max p (xk | zk) * p(zk | zk-1) * (z1:k-1 | x1:k-1)

emission transition previous
6. Distribute max & found recursion:
 max z1:k-1 = max p (xk | zk) * p(zk | zk-1) * max p(z1:k-1 | x1:k-1)
 Uk(zk) = max p (xk | zk) * p(zk | zk-1) * Uk-1(z1:k-1 | x1:k-1) for k = 2....n

7. Keep track of max sequence in each step & compute for the next
8. Keep track of maximizing path that terminates at state.
9. Max for path Z can be found by appending path to one of previous paths.

Z obs

output + evaluation
max z1:k-1 = max p (xk | zk) * p(zk | zk-1) * (z1:k-1 | x1:k-1)

Output:
 -table of max values for each state & observation category
 -sequence of corresponding hidden states

Evaluation:
 -Algorithm works, but real data needs to be handled.

future directions
1. Get the algorithm to handle real data sets:

 a. symbolize tract data using grid method
 -”alternate advancing technique” (Zhang, C.: Generalized Markov Chain Approach
 for conditional simulation of categorical variables form grid samples (2006).
 b. import the observation sequence where each obs represents a tract with a
 vector = price frequency distribution

2. Objective approach to calculating transmission & emission probabilities:

 a. calculate emission probabilities for each tract (run rand.py for the size of tract
 dataset)
 b. create a program that would move from cell to cell and record state transition.

3. GIS or Grasshopper? Might be possible to write a python script for GIS.
 a. alternatively, a grasshopper plug-in.

4. Repeat for time-sequence data: Social Explorer & ACS

