ODE HW

Michael Skuhersky

February 2014

3.1

a)

In the event of simple undamped harmonic motion, physically no amount of kinetic or potential energy may escape the system in the form of friction, collisions, conversion to mass, etc. In a mathematical sense, for small displacements around a potential minimum at x_0 , this occurs when there is no damping; when $\gamma = 0$.

b)

The homogenous equation

$$m\ddot{x} + \gamma\dot{x} + kx = 0 \tag{1}$$

can be solved by first predicting a solution of the form

$$x = e^{rt} \tag{2}$$

where r is a number with real and imaginary components. Substituting into (1);

$$m(r^2 e^{rt}) + \gamma(r e^{rt}) + k(e^{rt}) = mr^2 + \gamma r + k = 0$$
(3)

using the quadratic formula, we can find the roots to be

$$r = \frac{-\gamma \pm \sqrt{\gamma^2 - 4mk}}{2m} \tag{4}$$

which means that the homogenous solution, being some linear combination of the solutions given by the roots, is

$$x = C_1 e^{r_+ t} + C_2 e^{r_- t} \tag{5}$$

where C_1 and C_2 are arbitrary constants.

c)

To solve this particular inhomogenous equation, we can predict a solution of the form

$$x(t) = u(\omega)e^{i\omega t} \tag{6}$$

Inserting this into the original equation, we get

$$m(ue^{i\omega t})'' + \gamma(ue^{i\omega t})' + k(ue^{i\omega t}) = e^{i\omega t}$$
(7)

and solving for $u(\omega)$, we get

$$u(\omega) = (-m\omega^2 + i\omega\gamma + k)^{-1} \tag{8}$$

$\mathbf{3.2}$

Setting the equilibrium position of each mass to 0, relative to the entire system the spring extensions are x_1 , $x_2 - x_1$, and $-x_2$. So, to create a system of equations to equalize all forces,

$$F_{mass1} = F_{spring1} + F_{spring2} \tag{9}$$

$$F_{mass2} = F_{spring2} + F_{spring3} \tag{10}$$

This simplifies to the equations of motion

$$m\ddot{x} = -kx_1 + k(x_2 - x_1) \tag{11}$$

$$m\ddot{x_2} = -k(x_2 - x_1) - kx_2 \tag{12}$$

or in ODE form,

$$m\ddot{x_1} + 2kx_1 - kx_2 = 0 \tag{13}$$

$$m\ddot{x_2} + 2kx_2 - kx_1 = 0 \tag{14}$$

The coefficients form the matrix

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \tag{15}$$

which is equivalent to

$$\begin{pmatrix} -1 & 1\\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0\\ 0 & 1 \end{pmatrix} \begin{pmatrix} -\frac{1}{2} & \frac{1}{2}\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix} = MDM^{-1}$$
(16)

so,

$$\frac{k}{m}MDM^{-1}\begin{pmatrix}x_1\\x_2\end{pmatrix} = \frac{\partial}{\partial t^2}\begin{pmatrix}x_1\\x_2\end{pmatrix}$$
(17)

 $\quad \text{and} \quad$

$$\frac{k}{m}D\begin{pmatrix}y_1\\y_2\end{pmatrix} = \frac{\partial}{\partial t^2}\begin{pmatrix}y_1\\y_2\end{pmatrix}\tag{18}$$

because

$$\begin{pmatrix} y_1\\ y_2 \end{pmatrix} = M^{-1} \begin{pmatrix} x_1\\ x_2 \end{pmatrix} \tag{19}$$

the two modes are given by

$$\frac{3k}{m}y_1 = \ddot{y}_1\tag{20}$$

$$\frac{k}{m}y_2 = \ddot{y_2} \tag{21}$$

showing that one of the modes is a factor of three more than the other.