17 Constrained Optimization

indent best frequently has constraints
nutrition
groceries g > 0
prices p
price ming G -
minimum requirements 17}
nutrition value N
N-g>m
defines linear program, L.P
price may be a function of quantity, not linear
quadratic objective, quadratic program, QP
general case mathematical program
portfolios, routing airplanes, running a factory
program as plan, not computer program, can be same
electrical networks [Dennis, 1958]
routing [Kelly, 1991, Papadimitriou & Steiglitz, 1998]
flow control [Low et al., 2002]
layering [Chiang et al., 2007]
sorting
variables Z, objective minimize f(Z), constraints ¢(r)
max = -min
slack variables to convert inequality to equality

@) >0 (17.1)
replace with
o(¥)—s=0
s>0 (17.2)

combinatorial = equals 1 or -1 relaxed as algebraic constraint (2 — 1)> = 0
.1 norm

7= | (17.3)
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compressed sensing, sparsity
non-differentiable
[Schmidt et al., 2007]
(z)+ = max(x, 0)
(z)— = max(—z,0)
|z = () + (2)+ (17.4)
|z = |2/q
1
= — [log (1+e7) +log (1 +€°*)] (17.5)
e
d|x| 1 1
= — 17.
dx l+e 2 1+eo® (17.6)
d*|z|q 20e2®
= 17.7
da? (1+ 60‘”3)2 ( )
minimize for increasing o
171 LAGRANGE MULTIPLIERS
single equality constraint ¢(Z) = 0
step in direction d to minimize f while satisfying the constraint
0 = (T +0)
~ @)+ Ve b
=Ve-§ (17.8)
step also minimizes f
0> f(Z+0)— f(@)
~ f(@)+Vf-d— f(@)
=Vf-§ (17.9)

if Vo(Z) and V f(Z) aligned not possible to find a direction, hence & is a local minimizer

define Lagrangian

L= f(7) — \e(@)

solve for

(17.10)
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0=VL
=Vf—-2AVe (17.11)
multiple constraints
linear combination
V@ =) AVe@ (17.12)
F@) =" Xici(@) (17.13)

gives Z()), substitute into constraints to find A
inequality constraint

0 < (T + 0)
~ (@) +Ve- o (17.14)
if constraint not active (c > 0), can just do gradient descent §=—-aVv f
for an active constraint Vf - § < 0and Vc-0 >0
define half-planes

no intersection if point in same direction Vf = AVc¢
same condition, but now A > 0

172 OPTIMALITY

first-order

equality constraints ¢;(7),7 € £

inequality constraints ¢;(¥),7 € Z

inactive constraint \; = 0

complementarity: A\;c; = 0: Lagrange multiplier only non-zero when constraint is
active, otherwise reduces to gradient descent

VL(EN) =0
(@ =0 (@e€f)
(@) =20 (eI
Ai>0 (el
Aici(z) =0 (17.15)
Karush-Kuhn-Tucker (KKT) conditions
necessary

second order: positive definite Lagrangian Hessian
sensitivity
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replace c(x) = 0 with ¢(z) = €
minimizer & goes to T,

@) = f@)=Vf- (T - T)

= A\Vc¢- (Z. — T)
~ A (A(Ze) — «(2))
= Xe
ﬁ = (17.16)

de

shadow prices: change in utility per change in constraint

Z primal A\ dual

multi-objective

Pareto

not possible to improve one constraint without making others worse
defines Pareto frontier

can combine in multi-objective function with relative weights

173 SOLVERS

analytically can solve Lagrangian, then find Lagrange multipliers from constraints

17.3.1 Penalty

penalty
combine
N o 2=
F=f(@+ 2 Z (D) (17.17)
oF _ Of dc;
— =L+ ; 17.1
855.7' 855.7' H P < 855.7' ( ’ 8)
L= f(@~ ) Ne@) (17.19)
oL _ of dc;
oz, o2 by oz, (17.20)

effectively taking ¢; = —\;/p
solving a different problem
driven to 0 as yt — oo

large p ill-conditioned
nonsmooth penalty
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F=f@+p> @] +p le@)]- (17.21)
i€E iel
exact for large enough 1 [Nocedal & Wright, 2006]
non-differentiable
sub-gradient
approximate (17.5)
Newton steps, increase

17.3.2 Augmented Lagrangian

augmented Lagrangian

L=f@) Y \e@ + % 3 &) (17.22)
oL of e e
Sad R N Wi » 17.23
oz, 0z, Z Ao “zi:cl oz, (17.23)

)\;K = )\1 — MUC;

¢ = (A = A/

vanishes much faster, as Lagrange multiplier estimates converge
(n+l) — y(n)

A =N — e

minimize &, update A, increase p

17.3.3 Interior Point

inequality constraints
interior point
directly solve KK'T system of equations
avoid boundaries
primal-dual

min f(#)
subject to Cr(Z) =0

cr(@) —§=
s

Y
o o

(17.24)

solve KKT, perturb from boundary

Vf—)\E'VCE—)\]'VC]:O
ci(f)—8=0

Ais; = )2 (1725)
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Newton step on system

decrease p
same as barrier
minimize
min f(z) — p Z log s;
subject to Cr(Z) =0
ci(@)—5=0 (17.26)
KKT for s;
1
w— =X = (17.27)
Si
AiS; = (17.28)
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Optimization. 2nd edn. New York: Springer.

Unusually clear coverage of a field full of unusually opaque books.

175 PROBLEMS

(16.1) Given a point (z, o), find the closest point on the line y = ax + b by minimizing
the distance d*> = (zy — x)* + (yo — y)* subject to the constraint y — ax — b = 0.

(16.2) Consider a set of N nodes that has each measured a quantity x;. The goal is to
find the best estimate Z by minimizing

N
min Y (z —x;)° (17.29)
=1

however each node ¢ can communicate only with nodes j in its neighborhood

j € N (). This can be handled by having each node obtain a local estimate Z;,

and introducing a consistency constraint ¢;; = &; — Z; = 0V j € N(q).

(a) What is the Lagrangian?

(b) Find an update rule for the estimates Z; by evaluating where the gradient of
the Lagrangian vanishes.

(¢) Find an update rule for the Lagrange multipliers by taking a Newton step on
their constraints.

(16.3) What is the Newton step for the interior point KKT system?

(16.4) Solve a 1D spin glass (Problem 14.2) as a constrained optimization with relaxed
spins.
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(16.5) compressed sensing ...
.. choose random frequencies and amplitudes
. generate time series
. sample random subset of points
.. equality constraint A - T — b=0
.. calculate minimum L2 norm & from SVD
.. calculate minimum L1 norm &
.. approximate I.1 norm, minimize exact penalty, increase
.. compare time series
.. compare Nyquist requirement



