
17 Constrained Optimization

best frequently has constraints

nutrition

groceries ~g ≥ 0
prices ~p
price min~g ~g · ~p
minimum requirements ~m
nutrition value N

N · ~g ≥ ~m
defines linear program, LP

price may be a function of quantity, not linear

quadratic objective, quadratic program, QP

general case mathematical program

portfolios, routing airplanes, running a factory

program as plan, not computer program, can be same

electrical networks [Dennis, 1958]

routing [Kelly, 1991, Papadimitriou & Steiglitz, 1998]

flow control [Low et al., 2002]

layering [Chiang et al., 2007]

sorting

variables ~x, objective minimize f (~x), constraints ~c(~x)
max = -min

slack variables to convert inequality to equality

c(~x) ≥ 0 (17.1)

replace with

c(~x)− s = 0

s ≥ 0 (17.2)

combinatorial x equals 1 or -1 relaxed as algebraic constraint (x2 − 1)2 = 0
L1 norm

|~x|1 =
∑

i

|xi| (17.3)
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compressed sensing, sparsity

non-differentiable

[Schmidt et al., 2007]

(x)+ = max(x, 0)

(x)− = max(−x, 0)

|x| = (x)− + (x)+ (17.4)

|x| ≈ |x|α

=
1

α

[

log
(

1 + e−αx
)

+ log (1 + eαx)
]

(17.5)

d|x|α
dx

=
1

1 + e−αx
−

1

1 + eαx
(17.6)

d2|x|α
dx2

=
2αeαx

(1 + eαx)2
(17.7)

minimize for increasing α

17.1 LAGRANGE MULTIPLIERS

single equality constraint c(~x) = 0

step in direction ~d to minimize f while satisfying the constraint

0 = c(~x + ~δ)

≈ c(~x) +∇c · ~δ

= ∇c · ~δ (17.8)

step also minimizes f

0 > f (~x + ~δ)− f (~x)

≈ f (~x) +∇f · ~δ − f (~x)

= ∇f · ~δ (17.9)

if∇c(~x) and∇f (~x) aligned not possible to find a direction, hence ~x is a local minimizer

define Lagrangian

L = f (~x)− λc(~x) (17.10)

solve for
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0 = ∇L

= ∇f − λ∇c (17.11)

multiple constraints

linear combination

∇f (~x) =
∑

i

λi∇ci(~x) (17.12)

f (~x) =
∑

i

λici(~x) (17.13)

gives ~x(~λ), substitute into constraints to find ~λ

inequality constraint

0 ≤ c(~x + ~δ)

≈ c(~x) +∇c · ~δ (17.14)

if constraint not active (c > 0), can just do gradient descent ~δ = −α∇f
for an active constraint ∇f · ~δ < 0 and ∇c · ~δ ≥ 0
define half-planes

no intersection if point in same direction ∇f = λ∇c
same condition, but now λ ≥ 0

17.2 OPTIMALITY

first-order

equality constraints ci(~x), i ∈ E
inequality constraints ci(~x), i ∈ I
inactive constraint λi = 0

complementarity: λici = 0: Lagrange multiplier only non-zero when constraint is

active, otherwise reduces to gradient descent

∇~xL(~x,~λ) = 0

ci(~x) = 0 (i ∈ E)

ci(~x) ≥ 0 (i ∈ I)

λi ≥ 0 (i ∈ I)

λici(x) = 0 (17.15)

Karush-Kuhn-Tucker (KKT) conditions

necessary

second order: positive definite Lagrangian Hessian

sensitivity
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replace c(x) = 0 with c(x) = ǫ
minimizer ~x goes to ~xǫ

f (~xǫ)− f (~x) ≈ ∇f · (~xǫ − ~x)

= λ∇c · (~xǫ − ~x)

≈ λ (c(~xǫ)− c(~x))

= λǫ
df

dǫ
= λ (17.16)

shadow prices: change in utility per change in constraint

~x primal λ dual
multi-objective

Pareto

not possible to improve one constraint without making others worse

defines Pareto frontier

can combine in multi-objective function with relative weights

17.3 SOLVERS

17.3.1 Penalty

penalty

combine

F = f (~x) +
µ

2

∑

i

c2i(~x) (17.17)

∂F

∂xj

=
∂f

∂xj

+ µ
∑

i

ci
∂ci
∂xj

(17.18)

L = f (~x)−
∑

i

λici(~x) (17.19)

∂L

∂xj

=
∂f

∂xj

−
∑

i

λi

∂ci
∂xj

(17.20)

effectively taking ci = −λi/µ
solving a different problem

driven to 0 as µ → ∞
large µ ill-conditioned
nonsmooth penalty

F = f (~x) + µ
∑

i∈E

|ci(~x)| + µ
∑

i∈I

[ci(~x)]− (17.21)

exact for large enough µ [Nocedal & Wright, 2006]
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non-differentiable

sub-gradient

approximate (17.5)

Newton steps, increase

17.3.2 Augmented Lagrangian

augmented Lagrangian

L = f (~x)−
∑

i

λici(~x) +
µ

2

∑

i

c2i(~x) (17.22)

∂L

∂xj

=
∂f

∂xj

−
∑

i

λi

∂ci
∂xj

+ µ
∑

i

ci
∂ci
∂xj

(17.23)

λ∗

i = λi − µci
ci = (λi − λ∗

i )/µ
vanishes much faster, as Lagrange multiplier estimates converge

λ(n+1)i = λ(n)i − µci
minimize ~x, update λ, increase µ

17.3.3 Interior Point

inequality constraints

can combine for bound, equality constraints

interior point

directly solve KKT system of equations

avoid boundaries

primal-dual

min
~x

f (~x)

subject to ~cE(~x) = 0

~cI (~x)− ~s = 0

~s ≥ 0 (17.24)

solve KKT, perturb from boundary

∇f − λE · ∇cE − λI · ∇cI = 0

~cE(~x) = 0

~cI (~x)− ~s = 0

λisi = µ (17.25)

Newton step on system

decrease µ
same as barrier
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minimize

min
~x,~s

f (x)− µ
∑

i

log si

subject to ~cE(~x) = 0

~cI (~x)− ~s = 0 (17.26)

KKT for si

µ
1

si
− λi = 0 (17.27)

λisi = µ (17.28)

17.4 SELECTED REFERENCES

[Nocedal & Wright, 2006] Nocedal, Jorge, & Wright, Stephen J. (2006). Numerical
Optimization. 2nd edn. New York: Springer.

Unusually clear coverage of a field full of unusually opaque books.

17.5 PROBLEMS

(17.1) Given a point (x0, y0), analytically find the closest point on the line y = ax + b
by minimizing the distance d2 = (x0 − x)2 + (y0 − y)2 subject to the constraint
y − ax− b = 0.

(17.2) Consider a set of N nodes that has each measured a quantity xi. The goal is to

find the best estimate x̄ by minimizing

min
x̄

N
∑

i=1

(x̄− xi)
2 , (17.29)

however each node i can communicate only with nodes j in its neighborhood
j ∈ N (i). This can be handled by having each node obtain a local estimate x̄i,

and introducing a consistency constraint cij = x̄i − x̄j = 0 ∀ j ∈ N (i).

(a) What is the Lagrangian?

(b) Find an update rule for the estimates x̄i by evaluating where the gradient of

the Lagrangian vanishes.

(c) Find an update rule for the Lagrange multipliers by taking a Newton step on

their constraints.

(17.3) What is the Newton step for the interior point KKT system?

(17.4) Solve a 1D spin glass (Problem 15.2) as a constrained optimization with relaxed

spins.


