
4 Partial Differential Equations

Partial differential equations (PDEs) are equations that involve rates of change with

respect to continuous variables. The configuration of a rigid body is specified by six

numbers, but the configuration of a fluid is given by the continuous distribution of the

temperature, pressure, and so forth. The dynamics for the rigid body take place in a

finite-dimensional configuration space; the dynamics for the fluid occur in an infinite-

dimensional configuration space. This distinction usually makes PDEs much harder to

solve than ODEs, but here again there will be simple solutions for linear problems. Classic

domains where PDEs are used include acoustics, fluid flow, electrodynamics, and heat

transfer.

4.1 THE ORIGIN OF PARTIAL DIFFERENTIAL EQUATIONS

In the preceeding chapter we saw how the solution for two coupled harmonic oscillators

simplifies into two independent normal modes. What does the solution look like if there

are 10 oscillators? 1010? Are there any simplifications? Not surprisingly, the answer is yes.

Consider an infinite chain of oscillators (Figure 4.1). The governing equation for the

nth mass is

mÿn = −k(yn − yn+1)− k(yn − yn−1)

ÿn =
k

m
(yn+1 − 2yn + yn−1)

= k δx
︸︷︷︸

τ

δx

m
︸︷︷︸

1/ρ

yn+1 − 2yn + yn−1
δx2

. (4.1)

The two prefactors are the average spring constant τ and mass density ρ (remember that
springs add inversely proportionally), and the final term is just an approximation to the

second spatial derivative:

∂y

∂x
≈ yn−1 − yn

δx
∂2y

∂x2
≈ 1

δx

[
yn+1 − yn

δx
− yn − yn−1

δx

]

=
yn+1 − 2yn + yn−1

δx2
. (4.2)
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Figure 4.1. A chain of harmonic oscillators.

Therefore in the limit of a small spacing between the springs, the system of ordinary

differential equations for a chain of harmonic oscillators reduces to a single partial dif-

ferential equation

∂2y

∂t2
=
τ

ρ

∂2y

∂x2
. (4.3)

This equation is solved by a travelling wave. To see this, substitute a general solution

y = f (x + ct):

c2f ′′ =
τ

ρ
f ′′

c = ±
√
τ

ρ
. (4.4)

This represents an arbitrary disturbance travelling to the right and left with a velocity c:
the location of the origin (for example) of f is determined by x+ ct = 0⇒ x/t = −c. If
there are nonlinearities the velocity will no longer be independent of the shape of the pulse:

different wavelengths will travel at different speeds, a phenomenon called dispersion.

Note that unlike the case for ODEs, the general solution involves an undetermined

function and not just undetermined constants.

This same equation can be found directly by considering the transverse motion of

an infinitesimal element of a continuous string that has a density of ρ and a tension τ
(Figure 4.2). The governing equation for the transverse displacement y of this element is

ma = F

ρ dx
∂2y

∂t2
= τ sin θ

∣
∣
∣
∣
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∣
∣
∣
x

≈ τ tan θ

∣
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− τ tan θ
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x
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∂y

∂x
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− τ
∂y

∂x

∣
∣
∣
∣
x

∂2y

∂t2
≈ τ

ρ

∂2y

∂x2
. (4.5)

As a final example of the origin of partial differential equations, consider a highway

for which position is measured by x, the density of cars by ρ(x), and the rate at which
cars pass a point by I(x). In a time interval dt, the difference in the number of cars that
enter and leave an interval dx is [I(x)− I(x+ dx)]dt. This must be equal to the change
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Figure 4.2. An infinitesimal piece of a string.

in the number of cars at that interval [ρ(t + dt) − ρ(t)]dx because the total number of
cars is (usually) conserved. Equating these gives

[ρ(t + dt) − ρ(t)]dx = [I(x)− I(x + dx)]dt

ρ(t + dt) − ρ(t)

dt
+
I(x + dx)− I(x)

dx
= 0

∂ρ

∂t
+
∂I

∂x
= 0 . (4.6)

Now, assume that a driver’s response can be modeled by a relationship between the traffic

flow and density I(x) = f (ρ(x), x). Multiplying both sides of equation (4.6) by ∂I/∂ρ
gives

∂ρ

∂t

∂I

∂ρ
+
∂I

∂x

∂I

∂ρ
= 0

∂I

∂t
+
∂f (ρ, x)

∂ρ

∂I

∂x
= 0 . (4.7)

Modeling traffic with a PDE can be a very good approximation, and can explain many

observed traffic phenomena such as shock fronts and stationary disturbances [Whitham,

1974].

4.2 LINEAR PARTIAL DIFFERENTIAL EQUATIONS

As with ordinary differential equations, we will immediately specialize to linear par-

tial differential equations, both because they occur so frequently and because they are

amenable to analytical solution. A general linear second-order PDE for a field ϕ(x, y) is

A
∂2ϕ

∂x2
+B

∂2ϕ

∂x∂y
+ C

∂2ϕ

∂y2
+D

∂ϕ

∂x
+ E

∂ϕ

∂y
+ Fϕ = G , (4.8)

where G(x, y) is specified in some portion of the (x, y) plane and the solution must be
determined in another portion.

A characteristic of a PDE is a surface across which there can be a discontinuity in the

value or derivative of the solution. These define the domains which can be influenced by

parts of the boundary conditions, much like the concept of a light cone in the space-time

plane of special relativity [Taylor & Wheeler, 1992]. The characteristics of equation (4.8)

are determined by the roots of a quadratic polynomial and accordingly can have the form
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of a hyperbola, a parabola, or an ellipse based on the sign of the discriminant B2− 4AC
[Hildebrand, 1976, Pearson, 1990]. The standard forms of these three cases define the

most common PDEs that we will study:

• B2 − 4AC > 0 (hyperbolic)

∇2ϕ =
1

c2
∂2ϕ

∂t2
; (4.9)

• B2 − 4AC = 0 (parabolic)

∇2ϕ =
1

D

∂ϕ

∂t
; (4.10)

• B2 − 4AC < 0 (elliptic)

∇2ϕ = ρ . (4.11)

The first of these is a wave equation (like we found for the coupled harmonic oscilla-

tors), the second is a diffusion equation (for example, for heat or for ink), and the third

is Poisson’s equation (or Laplace’s equation if the source term ρ = 0) and arises in
boundary value problems (for example, for electric fields or for fluid flow).

4.3 SEPARATION OF VARIABLES

These three important partial differential equations can be reduced to systems of ordinary

differential equations by the important technique of separation of variables. The logic

of this technique may be confusing upon first aquaintance, but it rests on the uniqueness

of solutions to differential equations: as with ODEs, if you can find any solution that

solves the equation and satisfies the boundary conditions, then it is the solution. We will

assume as an ansatz that the dependence of the solution on space and time can be written

as a product of terms that each depend on a single coordinate, and then see if and how

this can be made to solve the problem.

To start, the time dependence can be separated by assuming a solution of the form

ϕ(~x, t) = ψ(~x)T (t). There is no time dependence for Laplace’s equation; trying this in
the diffusion equation gives

T (t)∇2ψ(~x) =
1

D
ψ(~x)

∂T (t)

∂t
. (4.12)

Dividing both sides by ψT results in no t dependence on the left hand side and no ~x
dependence on the right hand side, so both sides must be equal to some constant because

the space and time variables can be varied arbitrarily. By convention, taking this constant

to be −k2 gives
1

ψ(~x)
∇2ψ(~x) =

1

D

1

T (t)

dT

dt
= −k2 . (4.13)

The t equation can immediately be integrated to find

T (t) = Ae−k2Dt , (4.14)
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and the ~x equation is Helmholtz’s equation

∇2ψ(~x) + k2ψ(~x) = 0 . (4.15)

Similarly, for the wave equation this separation gives

1

ψ(~x)
∇2ψ(~x) =

1

c2
1

T

d2T

dt2
= −k2 . (4.16)

The time equation is solved by

T (t) = A sin(kct) + B cos(kct) , (4.17)

and the space equation is Helmholtz’s equation again.

Solving Helmholtz’s equation will depend on the coordinate system used for the prob-

lem. There are three common ones used in 3D, based on the symmetry of the problem:

rectangular, cylindrical, and spherical. Writing the derivative operators in each of these

systems is a straightforward exercise in applying the chain rule to the coordinate defini-

tions.

4.3.1 Rectangular Coordinates

Writing the Laplacian ∇2 in rectangular coordinates leads to Helmholtz’s equation as

∇2ψ + k2ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
+ k2ψ = 0 . (4.18)

Assume that ψ(~x) = X(x)Y (y)Z(z), substitute this in, and divide by it:

1

X(x)

d2X

dx2
+

1

Y (y)

d2Y

dy2
+

1

Z(z)

d2Z

dz2
+ k2 = 0 . (4.19)

Since each term depends only on x, y, or z, the only way that this equation can hold is
if each has a constant value (determined by the boundary conditions)

1

X(x)

d2X

dx2
= −k21 ,

1

Y (y)

d2Y

dy2
= −k22,

1

Z(z)

d2Z

dz2
= −k23 (4.20)

with k21 + k
2
2 + k

2
3 = k

2. Each of these can be integrated to find

X = A1e
ik1x +B1e

−ik1x

Y = A2e
ik2y +B2e

−ik2y

Z = A3e
ik3z + B3e

−ik3z . (4.21)

Multiplying these back together, the spatial solution has the form

ψ(~x) = Aei
~k·~x (4.22)

with ~k · ~k = k2.
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Figure 4.3. Cylindrical coordinate system.

As an example, let’s return to the 1D wave equation that we found from a chain of

harmonic oscillators

∂2y

∂x2
=
1

c2
∂2y

∂t2
. (4.23)

With the separation y(x, t) = X(x)T (t) this becomes

d2T

dt2
+ c2k2T = 0

d2X

dx2
+ k2X = 0 , (4.24)

solved by

T = A sin ckt + B cos ckt X = C sin kx +D cos kx . (4.25)

We know that the chain must be fixed at the ends (X(0) = X(L) = 0). This implies that
D = 0, and that allowable values of the separation constant k are kn = nπ/L for integer
n. Therefore the general solution is

y(x, t) =
∑

n

sin
(nπ

L
x
) [

An sin
(

c
nπ

L
t
)

+ Bn cos
(

c
nπ

L
t
)]

. (4.26)

These are the normal modes of a string, with the oscillation frequency of each mode

proportional to the number of cycles across the string.

4.3.2 Cylindrical Coordinates

In cylindrical coordinates (Figure 4.3), the Helmholtz equation is

∇2ψ + k2ψ =
∂2ψ

∂r2
+
1

r

∂ψ

∂r
+
1

r2
∂2ψ

∂ϕ2
+
∂2ψ

∂z2
+ k2ψ = 0 . (4.27)

Once again, try separating by substituting in ψ = R(r)Φ(ϕ)Z(z) and dividing by it:

1

R

[
d2R

dr2
+
1

r

dR

dr

]

+
1

r2
d2Φ

dϕ2
+
1

Z

d2Z

dz2
+ k2 = 0 . (4.28)
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The terms will cancel if

1

Φ

d2Φ

dϕ2
= −m2

1

Z

d2Z

dz2
= α2 − k2

1

R

[
d2R

dr2
+
1

r

dR

dr

]

− m2

r2
+ α2 = 0 (4.29)

for constants α and m (these definitions are conventional). The first equation is easily

solved:

Φ = A sinmϕ + B cosmϕ . (4.30)

For the solution to be single valued Φ(ϕ + 2π) = Φ(ϕ), and so m must be an integer.

The second equation is similarly solved:

Z = Cez
√

α2−k2 +De−z
√

α2−k2 . (4.31)

Rewriting the radial equation in terms of r = ρ/α,

d2R

dρ2
+
1

ρ

dR

dρ
+

(

1− m2

ρ2

)

R = 0 . (4.32)

This is Bessel’s equation; its solution is given by Bessel functions

R = EJm(αr) + FNm(αr) . (4.33)

Nm is singular as r → 0 while Jm is not, so if the solution is finite at the origin F = 0.
If the radial solution must vanish for some r value it is necessary to know where the
zeros of Jm occur; these are tabulated in many sources (such as [Abramowitz & Stegun,

1965]). The lowest ones are

J0(x) = 0⇒ x ≈ 2.405, 5.520, 8.654, . . .
J1(x) = 0⇒ x ≈ 3.832, 7.016, 10.173, . . .
J2(x) = 0⇒ x ≈ 5.136, 8.417, 11.620, . . . . (4.34)

If α = 0, the radial equation becomes

d2R

dr2
+
1

r

dR

dr
− m2

r2
R = 0 , (4.35)

which is solved by

R(r) =

{
Grm +Hr−m (m 6= 0)
G +H ln r (m = 0)

. (4.36)
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Figure 4.4. Spherical coordinate system.

4.3.3 Spherical Coordinates

Finally, in spherical coordinates (Figure 4.4) we want to separate

∇2ψ + k2ψ = 0

1

r

∂2

∂r2
(rψ) +

1

r2 sin θ

[
∂

∂θ

(

sin θ
∂ψ

∂θ

)

+
1

sin θ

∂2ψ

∂ϕ2

]

+ k2ψ = 0 . (4.37)

Let’s start with the radial part: ψ = R(r)Y (θ, ϕ)

1

R

1

r

d2

dr2
(rR) +

1

r2
1

Y sin θ

[
∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin θ

∂2Y

∂ϕ2

]

+ k2 = 0

⇒ 1

Y sin θ

[
∂

∂θ

(

sin θ
∂Y

∂θ

)

+
1

sin θ

∂2Y

∂ϕ2

]

= −λ ,

1

R

1

r

d2

dr2
(rR) + k2 − λ

r2
= 0 (4.38)

for a constant λ. If k2 6= 0, substituting r = ρ/k and then R = S/
√
ρ gives Bessel’s

equation again:

d2S

dρ2
+
1

ρ

dS

dρ
+

(

1− λ + 1/4

ρ2

)

S = 0 , (4.39)

with the solution

R = A
1√
kr
J√

λ+1/4
(kr) +B

1√
kr
N√

λ+1/4
(kr) . (4.40)

If k2 = 0, the radial equation simplifies to

1

r

d2

dr2
(rR) − λ

r2
R = 0 , (4.41)

solved by

R = Ar(−1+
√
1+4λ)/2 + Br(−1−

√
1+4λ)/2 . (4.42)
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Now separate the angular parts with Y = Θ(θ)Φ(ϕ):

1

Θ

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+
1

sin2 θ

1

Φ

d2Φ

dϕ2
+ λ = 0

⇒ 1

Φ

d2Φ

dϕ2
= −m2 ,

1

sin θ

d

dθ

(

sin θ
dΘ

dθ

)

+

(

λ− m2

sin2 θ

)

Θ = 0 . (4.43)

The solution of the ϕ equation is

Φ = Aeimϕ +Be−imϕ . (4.44)

For the θ equation, substitute x = cos θ:

d2Θ

dx2
− 2x

1− x2
dΘ

dx
+

1

1− x2

[

λ− m2

1− x2

]

Θ = 0 . (4.45)

This is Legendre’s equation, solved by the Legendre functions

Θ = CΘm
l (x) +DQ

m
l (x) (4.46)

with l(l + 1) = λ.

4.4 TRANSFORM TECHNIQUES

In the previous section we saw that separation of variables can turn partial differential

equations into ordinary differential equations; this can also sometimes be done by taking

the Fourier transform. For example, start with the PDE

∇2ϕ + A
∂2ϕ

∂t2
+B

∂ϕ

∂t
= 0 . (4.47)

ϕ(~x, t) is related to its Fourier transform Φ(~k, t) by

ϕ(~x, t) =

∫ ∞

−∞
Φ(~k, t)ei

~k·~x d~k

Φ(~k, t) =
1

2π

∫ ∞

−∞
ϕ(~x, t)e−i~k·~x d~x . (4.48)

Substituting in the transform for ϕ in equation (4.47), exchanging the order of differen-
tiation and integration, and grouping terms,

∫ ∞

−∞

[

−k2Φ(~k, t) + A ∂2

∂t2
Φ(~k, t) + B

∂

∂t
Φ(~k, t)

]

ei
~k·~x d~k = 0 . (4.49)

The only way that the integral can equal zero for all x is if the integrand vanishes. The
integrand now depends only on Φ and its time derivatives; if a solution can be found to

this ordinary differential equation in t

−k2Φ(~k, t) + A ∂2

∂t2
Φ(~k, t) +B

∂

∂t
Φ(~k, t) = 0 (4.50)
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then it will solve the integral equation. A solution to this differential equation can be

multiplied by an arbitrary function of ~k and still be a solution; this function is determined
from initial conditions by the transform

Φ(~k, 0) =
1

2π

∫ ∞

−∞
ϕ(~x, 0)e−i~k·~x d~x . (4.51)
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4.6 PROBLEMS

(4.1) Consider a round drumhead of radius L. For small displacements its motion is
described by a linear wave equation. Find the frequencies of the six lowest oscillation

modes, and plot the shape of the modes.

(4.2) Solve a 1D diffusion equation with Fourier transforms.

(4.3) Assume a crowded room full of generous children who have varying amounts of

candy. Let ϕn,m(ti) be the amount of candy held by the n,mth child at time ti.
Because of the crowding, the children are approximately close-packed on a square

grid. The children want to equalize the amount of candy, but it is so noisy that they

can only talk to their nearest neighbors (although they are wearing watches). Find

a simple strategy for them to use that results in the candy being evenly distributed,

and in the continuum limit find a familiar PDE that is equivalent to this strategy.


