
8 Finite Differences: Partial Differential Equations

The world is defined by structure in space and time, and it is forever changing in complex

ways that can’t be solved exactly. Therefore the numerical solution of partial differential

equations leads to some of the most important, and computationally intensive, tasks in

all of numerical analysis (such as forecasting the weather). This chapter introduces finite

difference techniques; the next two will look at other ways to discretize partial differential

equations (finite elements and cellular automata). Just as we used a Taylor expansion to

derive a numerical approximation for ordinary differential equations, the same procedure

can be applied to partial differential equations. Because the discretization must be done

in space as well as time, there are many more possible strategies for finding good (and

bad) approximations.

We will start with two degrees of freedom, say one spatial variable x and a time t.
Given a function u(x, t), its spatial derivatives are found from the Taylor expansion

u(x + ∆x, t) = u(x, t) + ∆x
∂u

∂x
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∂x2
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+O[(∆x)3] . (8.1)

The first partial derivative can be approximated by the forward difference

u(x + ∆x, t)− u(x, t)

∆x
=

∂u

∂x
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∣
x,t

+O[∆x] . (8.2)

If we replace ∆x with −∆x, this becomes the equally reasonable backwards difference
approximation

u(x, t)− u(x− ∆x, t)

∆x
=

∂u

∂x
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∣
x,t

+O[∆x] . (8.3)

Their order can be raised by taking the difference between two time steps, which subtracts

out the quadratic term:

u(x + ∆x, t)− u(x− ∆x, t)

2∆x
=

∂u

∂x

∣
∣
∣
∣
x,t

+O[(∆x)2] . (8.4)

Although this might appear always to be preferable, we will see that it can have surprising

undesirable stability properties.

The straightforward finite difference approximation to the second partial derivative is
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Figure 8.1. A computational cluster.

also correct to first order:

1

∆x

[
u(x + ∆x, t)− u(x, t)

∆x
−

u(x, t)− u(x− ∆x, t)

∆x

]

=

u(x + ∆x, t)− 2u(x, t) + u(x− ∆x, t)

(∆x)2
=

∂2u

∂x2

∣
∣
∣
∣
x,t

+O[(∆x)2] . (8.5)

Numerical methods for partial differential equations are usually classified by the char-

acteristics for the equation that they apply to (Chapter 4), which measure how information

from the boundary conditions influences the solution. Characteristics can even be used

as the basis for numerical solvers [Ames, 1992], but here we will simply use them as con-

venient labels for the most common cases: a wave equation (hyperbolic characteristics),

diffusive processes (parabolic), and boundary value problems (elliptic). More complex

systems can have some or all of these elements.

8.1 HYPERBOLIC EQUATIONS: WAVES

To see how the stability of the solution depends on the finite difference scheme, let’s

start with a simple first-order hyperbolic PDE for a conserved quantity in one dimension

∂u

∂t
= −v

∂u

∂x
. (8.6)

Substitution readily shows that this is solved by any function of the form

u = f (x− vt) . (8.7)

Writing u(j∆x, n∆t) = un
j to make the notation clearer, a simple discretization is

first-order in time and second-order in space:

un+1
j − un

j

∆t
= −v

(
un
j+1 − un

j−1

2∆x

)

un+1
j = un

j −
v∆t

2∆x
(un

j+1 − un
j−1) (8.8)

(using a first-order spatial approximation would make it asymmetrical). It can be con-

venient to represent such approximations by drawing the cluster of values used in the

update rule (Figure 8.1). Given an initial distribution un
j , it is straightforward to iterate

this rule forward in time.

To analyze the stability of a finite difference scheme, the von Neumann stability
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analysis locally linearizes the equations (if they are not linear) and then separates the

temporal and spatial dependence (Section 4.3) to look at the growth of the linear modes

un
j = A(k)neijk∆x . (8.9)

This assumed form has an oscillatory dependence on space, which can be used to syn-

thesize any initial condition, and an exponential dependence on time to test the stability.

It’s customary to define k with respect to the spatial separation ∆x, because that will
parameterize the solution, but use an integer n for the time step since that will be used
only for checking the stability.

Plugging in this ansatz gives a solution to the finite difference equation for A(k). If
|A(k)| > 1 for some k, then these modes will diverge and the scheme will be unstable
(remember that the exact solution (8.7) does not diverge). For equation (8.8) this gives

An+1eijk∆x = Aneijk∆x −
v∆t

2∆x

(

Anei(j+1)k∆x −Anei(j−1)k∆x
)

A = 1−
v∆t

2∆x

(

eik∆x − e−ik∆x
)

= 1− i
v∆t

∆x
sin k∆x . (8.10)

The absolute magnitude of this is always greater than 1, and so this scheme is always

unstable. Any initial condition will diverge!

This disturbing behavior in such a sensible approximation is easily corrected with the

Lax method, which averages the neighbors for the time derivative:

un+1
j =

1

2
(un

j+1 + un
j−1)−

v∆t

2∆x
(un

j+1 − un
j−1) . (8.11)

Repeating the stability analysis shows that the amplitude of a solution is

A = cos k∆x− i
v∆t

∆x
sin k∆x . (8.12)

Requiring that the magnitude be less than 1,

|A|2 = cos2 k∆x +

(
v∆t

∆x

)2

sin2 k∆x ≤ 1

⇒
|v|∆t

∆x
≤ 1 . (8.13)

This is the Courant–Friedrichs–Levy stability criterion, and it will recur for a number

of other schemes. It says that the velocity at which information propogates within the

numerical algorithm (∆x/∆t) must be faster than the velocity of the solution v. For space
and time steps that satisfy this condition, the Lax method will be stable. Otherwise, there

is a “numerical boom” as the real solution tries to out-run the rate at which the numerical

solution can advance. The lateral averaging for the time derivative in the Lax method

helps the numerical information propagate, compared to the unstable approximation that

we started with (equation 8.8). The origin of this stability becomes clearer if the Lax

method is rewritten by subtracting un
j from both sides:

un+1
j − un

j

∆t
= −v

(
un
j+1 − un

j−1

2∆x

)

+
1

2∆t
(un

j+1 − 2u
n
j + un

j−1) . (8.14)
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This is just our original equation (8.8), with an extra fictitious diffusion term added that

depends on the discretization:

∂u

∂t
= −v

∂u

∂x
+
(∆x)2

2∆t

∂2u

∂x2
. (8.15)

This is an example of an artificial numerical dissipation, which can occur (and even

be added intentionally) in stable schemes. In this case it is good, because it serves to

damp out the spurious high-frequency modes (k ∼ 1) while preserving the desired long
wavelength solutions. In other cases it might be a problem if the goal is to look at the

long-term behavior of a nondissipative system.

The Lax method cures the stability problem and is accurate to second order in space,

but it is only first-order in time. This means that v∆t will need to be much smaller than
∆x to have the same accuracy in time and space (even though a much larger time step
will be stable). A natural improvement is to go to second order in time:

un+1
j = un−1

j −
v∆t

∆x

(
un
j+1 − un

j−1

)
. (8.16)

The stability analysis for this equation now leads to a quadratic polynomial for the

amplitude, giving two solutions

A = −i
v∆t

∆x
sin(k∆x)±

√

1−

[
v∆t

∆x
sin(k∆x)

]2

. (8.17)

If |v|∆t/∆x ≤ 1 then the radical will be real, and |A|2 = 1 independent of k. The Courant
condition applies again, but now there is no dependence of the amplitude on the spatial

wavelength k and so there is no artificial damping (unlike the Lax method). This is called
the leapfrog method because it separates the space into two interpenetrating lattices that

do not influence each other (un+1
j does not depend on un

j ). Numerical round-off errors

can lead to a divergence of the sublattices over long times, requiring the addition of an

artificial coupling term.

Problem 8.1 considers the finite difference approximaton to the wave equation.

8.2 PARABOLIC EQUATIONS: DIFFUSION

We will next look for finite difference approximations for the 1D diffusion equation

∂u

∂t
=

∂

∂x

(

D
∂u

∂x

)

, (8.18)

and will assume that the diffusion coefficient is constant

∂u

∂t
= D

∂2u

∂x2
. (8.19)

The methods to be described will have natural generalizations when D is not constant.
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The straightforward discretization is

un+1
j − un

j

∆t
= D

[
un
j+1 − 2u

n
j + un

j−1

(∆x)2

]

un+1
j = un

j +
D∆t

(∆x)2
[
un
j+1 − 2u

n
j + un

j−1

]
. (8.20)

Solving the stability analysis,

A = 1 +
D∆t

(∆x)2

[

eik∆x − 2 + e−ik∆x
]

︸ ︷︷ ︸

2 cos k∆x− 2
︸ ︷︷ ︸

2

(

2 cos2
k∆x

2
− 1

)

− 2

= 1−
4D∆t

(∆x)2
sin2

k∆x

2

|A| ≤ 1⇒
4D∆t

(∆x)2
≤ 2 ⇒

2D∆t

(∆x)2
≤ 1 . (8.21)

The method is stable for small step sizes, but since for a diffusive process the time t
to expand a distance L is roughly t ∼ L2/D (Problem 4.2), the number of time steps

required to model this will be ∼ L2/(∆x)2 (i.e., a very large number).

The stability can be improved by evaluating the space derivative forwards in time:

un+1
j − un

j

∆t
= D

[

un+1
j+1 − 2u

n+1
j + un+1

j−1

(∆x)2

]

un+1
j − D∆t

(∆x)2
[
un+1
j+1 − 2u

n+1
j + un+1

j−1

]
= un

j . (8.22)

The stability analysis for this is

A−
D∆t

(∆x)2

[

Aeik∆x − 2A + Ae−ik∆x
]

= 1

A

[

1 +
4D∆t

(∆x)2
sin2

k∆x

2

]

= 1

A =
1

1 +
4D∆t

(∆x)2
sin2

k∆x

2

≤ 1 . (8.23)

This scheme is stable for all step sizes, but might appear to be useless: how can we

implement it since we don’t know the forward values used in the space derivative? These

future values are implicitly determined by the past values, and the trick is to recognize

that the full set of equations can be inverted. The stability follows because peeking into

the future in this way helps move information through the solution more quickly.

The boundary conditions are typically given as either fixed (u1 and uN are specified)

or periodic (u1 = uN+1, so that the system does not have edges). If we assume fixed

boundary conditions and define α = D∆t/(∆x)2, then equation (8.22) can be written as
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a matrix problem
















1 0 0 · · · 0

−α 1 + 2α −α 0 · · · 0
. . .

. . .
. . .

... 0 −α 1 + 2α −α 0
...

. . .
. . .

. . .

0 · · · 0 −α 1 + 2α −α
0 · · · 0 0 1


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
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











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








un+1
1

un+1
2

...

un+1
i
...

un+1
N−1

un+1
N
















=
















un
1

un
2

...

un
i
...

un
N−1

un
N
















This is a tridiagonal matrix (all the elements are zero, except for the diagonal and the

adjacent elements), and it can easily be solved to find un+1 in terms of un without doing

all of the work needed to invert an arbitrary matrix.

The system of equations corresponding to an arbitrary tridiagonal matrix is

b1x1 + c1x2 = y1

aixi−1 + bixi + cixi+1 = yi (2 ≤ i ≤ N − 1) .

aNxN−1 + bNxN = yN (8.24)

For us, b1 = bN = 1, c1 = aN = 0, ai = ci = −α, bi = 1 + 2α, and xi = un+1
i , yi = un

i .

These can be solved in two passes. In a system of equations, multiplying one equation

by a constant and adding it to another one does not change the solution. If we multiply

the first row by −a2/b1 and add it to the second row this will eliminate the a2 term.
If we then divide the second row by the new b2 term, and repeat these steps (Gauss
elimination) down the matrix, we will get a new matrix with zeros below the diagonal

and ones on the diagonal (this is called an upper-diagonal matrix). Then, a reverse pass

back up the matrix that multiplies the new N th row by the new values for −cN−1/bN
and adds it to the previous row, and so forth, converts the matrix to a diagonal one and

the solution can be read off. Using primes for the values after the forward pass, a bit of

algebra shows that

c′1 =
c1
b1

y′1 =
y1
b1

c′i+1 =
ci+1

bi+1 − ai+1c′i
y′i+1 =

yi+1 − ai+1y
′

i

bi+1 − ai+1c′i
. (8.25)

Then, the reverse pass gives

xN = y′N

xi = y′i − c′ixi+1 . (8.26)

This is an O(N ) steps algorithm, and so there is little performance penalty for using an
implicit discretization instead of an explicit one.

The accuracy can be improved to second order in time by averaging the spatial deriva-

tive at the beginning and the end of the interval:

un+1
j − un

j

∆t
=

D

2(∆x)2
[(un+1

j+1 − 2u
n+1
j + un+1

j−1) + (u
n
j+1 − 2u

n
j + un

j−1)] . (8.27)
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Figure 8.2. Computational clusters for alternating implicit steps

for the x (solid) and y (dashed) coordinates.

This is called the Crank–Nicholson method, and the stability analysis shows that it is

stable for any time step:

A =
1− (2D∆t/(∆x)2) sin2(kx/2)

1 + (2D∆t/(∆x)2) sin2(kx/2)
. (8.28)

To solve a diffusion problem in higher dimensions we could make it implicit in all of

the dimensions. This works, but results in a banded matrix that is no longer tridiagonal.

Although it can be inverted (with much more effort), a simple trick recovers tridiagonal

matrices. This is the Alternating-Direction Implicit method (ADI), which is an ex-

ample of the general principle of Operator Splitting. In 2D, instead of advancing both

coordinates in one step, the x coordinates are advanced in a first implicit (tridiagonal)
step of ∆t/2, and then in a second implicit step of ∆t/2 the new y coordinates are found.
For the implicit method this is

u
n+1/2
j,k = un

j,k +
D∆t

2(∆x)2
(u

n+1/2
j+1,k − 2u

n+1/2
j,k + u

n+1/2
j−1,k +

un
j,k+1 − 2u

n
j,k + un

j,k−1)

un+1
j,k = u

n+1/2
j,k +

D∆t

2(∆x)2
(u

n+1/2
j+1,k − 2u

n+1/2
j,k + u

n+1/2
j−1,k +

un+1
j,k−1 − 2u

n+1
j,k + un+1

j,k+1) (8.29)

(shown in Figure 8.2).

8.3 ELLIPTIC EQUATIONS: BOUNDARY VALUES

The remaining class of partial differential equations to be discussed are of the form of

the elliptic boundary value problem

∇2u = ρ . (8.30)

This is Poisson’s equation; if the source term ρ = 0 then it becomes Laplace’s equation.
The boundary condition can be specified by giving the value of u on the boundary
(Dirichlet conditions), the value of the normal derivative of u on the boundary (Neumann
conditions), or a mixture of these. Poisson’s equation and Laplace’s equation are among
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the most commonly solved numerical equations because they apply to so many different

areas. It’s instructive to look at some important examples to see how they arise:

• Heat Flow

The heat flux ~F in a material is proportional to the gradient of the temperature T by
the thermal conductivity K:

~F = −K∇T . (8.31)

The change of heat Q in a volume is related to the temperature change by the specific
heat C and the density ρ by

dQ

dt
=

∫

V

Cρ
∂T

∂t
dV , (8.32)

and it is also equal to the surface integral of the heat flux

dQ

dt
= −

∫

S

~F · d ~A . (8.33)

Equating these and using Gauss’ theorem,

∫

Cρ
∂T

∂t
dV = −

∫

~F · d ~A

= −

∫

∇ · ~F dV

=

∫

K∇2T dV

⇒ ∇2T =
1

κ

∂T

∂t
, (8.34)

where κ = K/Cρ is the thermal diffusivity. This is a diffusion equation, and for a
steady-state problem the time derivative of T will vanish, leaving Laplace’s equation
for the temperature distribution.

• Fluid Flow

The continuity equation for a fluid of density ρ and velocity ~v is

∂ρ

∂t
+∇ · ρ~v = 0 . (8.35)

If the density is constant this reduces to

∇ · ~v = 0 . (8.36)

A second condition on the velocity field is that if it starts out irrotational (∇×~v = 0) it
will remain irrotational (for example, this will be the case if at −∞ the flow is uniform;

see any fluids text such as [Batchelor, 1967] for a derivation). If the curl of a vector

field vanishes, it can be written as the gradient of a potential:

∇× ~v = 0⇒ ~v = −∇ϕ . (8.37)
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Combining this with the continuity equation gives Laplace’s equation again

∇ · (∇ϕ) = ∇2ϕ = 0 . (8.38)

• Electric Fields
In MKS units, the electric field ~E is determined in terms of the charge density ρ, the
magnetic field ~B, and the polarizability ǫ by

∇ · ǫ ~E = ρ ∇× ~E = −
∂ ~B

∂t
. (8.39)

For a steady-state problem, the time derivative of ~B is zero, and so the electric field

is the gradient of a potential ϕ

∇× ~E = 0⇒ ~E = −∇ϕ . (8.40)

Combining this with the charge equation and assuming that ǫ does not depend on
position gives Poisson’s equation

∇2ϕ = −
ρ

ǫ
. (8.41)

A problem closely related to Laplace’s equation is Helmholtz’s Equation, which we

found by separating out the time dependence in a wave equation:

∇2u =
1

c2
∂2u

∂t2

u = Aeiωt ⇒ eiωt∇2A = −
ω2

c2
Aeiωt

∇2A +
ω2

c2
︸︷︷︸

k2

A = 0 . (8.42)

The obvious finite difference approximation for Poisson’s equation is (in 1D)

uj+1 − 2uj + uj−1

(∆x)2
= ρj . (8.43)

Unlike the initial value problems we have been studying, this has no time dependence.

It can be written as a matrix problem which can be solved exactly:

A · ~u = (∆x)2~ρ ⇒ ~u = (∆x)2A−1 · ~ρ , (8.44)

where

A =

















−2 1 0 · · · 0 1

1 −2 1 0 · · · 0

0
. . .

. . .
. . .

... 0 1 −2 1 0
...

. . .
. . .

. . . 0

0 · · · 0 1 −2 1

1 0 · · · 0 1 −2

















and ~u =
















u1
u2
...

ui

...

uN−1

uN
















. (8.45)
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This is for periodic boundary conditions; with fixed boundary conditions the upper-right

and lower-left corner elements of A would be zero. For Helmholtz’s equation the matrix

problem requires finding the eigenvalues and eigenvectors of A to determine the modes.

With fixed boundary conditions A is tridiagonal, which we saw in Section 8.2 is easy

to solve. For periodic boundary conditions it is almost tridiagonal, but with the extra

corner elements added. Fortunately, if a matrix is related to another one by adding the

outer product of two vectors

A→ (A + ~u⊗ ~v) (~u⊗ ~v)i,j ≡ uivj (8.46)

then there is a simple relationship between their inverses. In our case, ~u = ~v =

(1, 0, . . . , 0, 1), and −1 is subtracted from the upper-left and lower-right elements of

A before the inversion. The inverses are related by the Sherman–Morrison formula,

derived by doing a power series expansion of the inverse and then using the associativity

of the inner and outer products

(A + ~u⊗ ~v)−1 = (A · (1 + A−1 · ~u⊗ ~v))−1

= (1 + A−1 · ~u⊗ ~v)−1 · A−1

= [1− (A−1 · ~u⊗ ~v) +

(A−1 · ~u⊗ ~v) · (A−1 · ~u⊗ ~v)− · · ·] · A−1

= [1− (A−1 · ~u⊗ ~v) +

A−1 · ~u⊗ (~v · A−1 · ~u)
︸ ︷︷ ︸

β

⊗~v − · · ·] · A−1

= [1− (A−1 · ~u⊗ ~v)(1− β + β2 − · · ·)] · A−1

= A−1 −
(A−1 · ~u)⊗ (~v · A−1)

1 + β
. (8.47)

In 2D, the finite difference approximation for Poisson’s equation is

uj+1,k + uj−1,k + uj,k+1 + uj,k−1 − 4uj,k

(∆x)2
= ρj,k . (8.48)

This can be also be solved by a matrix inversion:

A ·





















u1,1
u2,1
...

uN,1

u1,2
...

uN,2

...

uN,N





















= ∆x2





















ρ1,1
ρ2,1
...

ρN,1

ρ1,2
...

ρN,2

...

ρN,N





















, (8.49)
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where

A =











. . .
. . .

. . .
. . .

. . .

0 1 0 · · · 0 1 −4 1 0 · · · 0 1 0 · · ·
· · · 0 1 0 · · · 0 1 −4 1 0 · · · 0 1 0 · · ·

· · · 0 1 0 · · · 0 1 −4 1 0 · · · 0 1 0
. . .

. . .
. . .

. . .
. . .











(8.50)

The generalization to higher dimensions is straightforward, making a column vector from

a multidimensional array by sequentially reading down the axes.

Matrix (8.50) is banded-diagonal, having 1s offset by N elements on either side of the

diagonal, and in higher dimensions there will be more bands. Although these are sparse

matrices which can be solved directly (see [Press et al., 2007] for techniques), the effort

required in two or more dimensions can quickly become prohibitive.

One alternative that is applicable for constant-coefficient linear problems is Fourier

Transform methods. In 2D, the discrete Fourier transform of the field is

ûm,n =

M−1∑

j=0

N−1∑

k=0

uj,ke
2πimj/Me2πink/N , (8.51)

and the inverse transform is

uj,k =
1

N 2

M−1∑

m=0

N−1∑

n=0

ûm,ne
−2πijm/M e−2πikn/N . (8.52)

Plugging the transforms of u and ρ into equation (8.48), and recognizing that the trans-
form of a function can vanish everywhere only if the function itself is equal to zero,

gives

ûm,n

(

e2πim/M + e−2πim/N + e2πin/M + e−2πin/N − 4
)

= ρ̂m,n(∆x)
2 . (8.53)

Rearranging terms and simplifying the complex exponentials,

ûm,n =
ρ̂m,n(∆x)

2

2 cos
2πm

M
+ 2 cos

2πn

N
− 4

. (8.54)

Therefore, the forward transform of the source term can be calculated, this can be used

to find the û, and then the inverse transform can be taken to find u. This solution
imposes periodic boundary conditions; some other boundary conditions can be imposed

by choosing the form of the expansion (for example, using only sines if the solution

vanishes on the boundary).

The Fourier transform method is so simple only for linear constant-coefficient prob-

lems with boundary conditions along the coordinate axes; some kind of iterative algorithm

is needed for arbitrary geometries. An important class of techniques is found by remem-

bering that Poisson’s equation is the steady-state solution of a diffusion equation

∂u

∂t
= ∇2u− ρ (8.55)
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whether or not it originally arose from diffusion. This means that all of the techniques

for solving diffusion problems can be applied here, with the asymptotic answer giving

the solution to Poisson’s equation.

The simplest is Jacobi’s method, which just takes forward time differences

un+1
j,k = un

j,k +
∆t

(∆x)2
(un

j+1,k + un
j−1,k + un

j,k+1 + un
j,k−1 − 4u

n
j,k)− ∆tρj,k . (8.56)

Here the time step does not have any physical significance; we just want the largest

possible step that converges to the solution. In 2D the Courant condition is ∆t/(∆x)2 ≤
1/4, leading to

un+1
j,k =

1

4
(un

j+1,k + un
j−1,k + un

j,k+1 + un
j,k−1)−

(∆x)2

4
ρj,k . (8.57)

This has a very natural interpretation: starting from a random guess, at each time step

each lattice site is set to the average of its neighbors and then a source term is added. This

process is repeated until the solution stops changing, a technique called relaxation. A

related algorithm, the Gauss–Seidel method, uses updated values as soon as they become

available:

un+1
j,k =

1

4
(un

j+1,k + un+1
j−1,k + un

j,k+1 + un+1
j,k−1)−

(∆x)2

4
ρj,k (8.58)

(assuming that the updating proceeds down rows).

These both work, but the convergence is too slow for them to be useful. This can be

seen by rewriting them in terms of the matrix problem

A · ~u = ~ρ (8.59)

and then separating A into lower-triangular, diagonal, and upper-triangular parts

(L +D +U) · ~u = ~ρ . (8.60)

If ~un is the solution after the nth iteration, the Jacobi method moves the lower- and
upper-triangular parts to the right hand side to update ~u:

D · ~un+1 = −(L +U) · ~un + ~ρ (8.61)

The convergence rate will be determined by the eigenvalues of the iteration matrix−D−1 ·
(L +U). The magnitude of all of the eigenvalues must be less than 1 for stability, and

the largest eigenvalue determines the overall convergence rate (the largest eigenvalue is

called the spectral radius rs). For a large N × N square lattice problem, the spectral

radius is asymptotically equal to [Ames, 1992]

rJacobi ≃ 1−
π2

2N 2
. (8.62)

Therefore, reducing the error by a factor of 10 requires − ln 10/ ln rs ≃ N 2 steps. In the

Gauss-Seidel method, the lower-triangular part is moved over to the left side:

(L +D) · ~un+1 = −U · ~un + ~ρ . (8.63)

For the square 2D lattice, this has a spectral radius of

rGauss−Seidel ≃ 1−
π2

N 2
, (8.64)
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and so the number of steps needed to reduce the error by a factor of 10 is half that required

by the Jacobi method. For a 100× 100 lattice, both of these methods require ∼ 104 steps
for an improvement of a factor of 10 in the answer, which is usually prohibitive. The

Gauss-Seidel method is preferable to the Jacobi method because it converges faster and

does not require auxiliary storage, but something better than both is needed.

The Gauss-Seidel method can be rewritten in a suggestive form as follows:

(L +D) · ~un+1 = −U · ~un + ~ρ

~un+1 = (L +D)
−1[−U · ~un + ~ρ]

= ~un − (L +D)−1 · [U · ~un − ~ρ]− ~un

= ~un − (L +D)−1 · [(L +D +U) · ~un − ~ρ]

= ~un − (L +D)−1 · [A · ~un − ~ρ]

= ~un − (L +D)−1 · ~En , (8.65)

where ~En is the error at the nth time step. In each update, the error gets multiplied
by (L + D)−1 and subtracted from the state. The idea of Successive Over-Relaxation

(SOR) is to extrapolate this correction and subtract a larger change

~un+1 = ~un − α(L +D)−1 · ~En . (8.66)

It can be shown that this converges for 0 < α < 2 [Ames, 1992]. When α = 1 this is just
the Gauss–Seidel method, α < 1 is underrelaxation (which slows the convergence), and
1 < α < 2 is overrelaxation. The convergence rate depends on the value of α; choosing
a value that is too large is as bad as choosing one that is too small because the solution

will overshoot the final value. The optimal relaxation rate is

α =
2

1 +
√

1− ρ2Jacobi

, (8.67)

which leads to an asymptotic spectral radius of

rSOR ≃ 1−
2π

N
. (8.68)

This reduces the number of steps needed to reduce the error by a factor of 10 to O(N ),
which is now proportional to the grid size rather than the square of the grid size. Written

out in components, for the 2D case SOR is

un+1
j,k = (1− α)un

j,k +
α

4
(un

j+1,k + un+1
j−1,k + un

j,k+1 + un+1
j,k−1)−

α(∆x)2

4
ρj,k (8.69)

(remember that this is not an implicit method, because the forward time steps on the

right-hand side come from preceeding spatial updates).

SOR is very easy to program, but does require determining the relaxation parameter

α (although this can be estimated empirically, since if α is too large the solution will
oscillate). An alternative is to use ADI, which permits larger time steps at the expense

of algorithm complexity. For large problems that require repeated fast solution both

techniques have been superseded by multigrid methods [Press et al., 2007], which find

the final solution onN grid points inO(N ) steps. These methods are based on iteratively
coarse-graining the problem to produce a simpler one that can be solved quickly, and
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then interpolating to find the approximate solution at higher resolution. This is analogous

to the Richardson extrapolation methods for ODEs, but because of the extra dimensions

they are more complicated to implement.

Finally, for a problem such as weather forecasting, the simulation must contend with

not just numerical errors but also uncertainty in the initial conditions and the model

selection. Although these can’t be eliminated, they can be reduced by combining predic-

tions from ensembles of models [Krishnamurti et al., 1999]. This theme will return in

Part Three.
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emphasis on mathematical rigor than on practical advice.

8.5 PROBLEMS

(8.1) Consider the 1D wave equation

∂2u

∂t2
= v2

∂2u

∂x2
. (8.70)

(a) Write down the straightforward finite-difference approximation.

(b) What order approximation is this in time and in space?

(c) Use the von Neumann stability criterion to find the mode amplitudes.

(d) Use this to find a condition on the velocity, time step, and space step for stability

(hint: consider the product of the two amplitude solutions).

(e) Do different modes decay at different rates for the stable case?

(f) Numerically solve the wave equation for the evolution from an initial condition

with u = 0 except for one nonzero node, and verify the stability criterion.

(g) If the equation is replaced by

∂2u

∂t2
= v2

∂2u

∂x2
+ γ

∂

∂t

∂2u

∂x2
, (8.71)

assume that

u(x, t) = Aei(kx−ωt) (8.72)

and find a relationship between k and ω, and simplify it for small γ. Comment
on the relationship to the preceeding question.

(h) Repeat the numerical solution of the wave equation with the same initial con-

ditions, but include the damping term.

(8.2) Write a program to solve a 1D diffusion problem on a lattice of 500 sites, with an

initial condition of zero at all the sites, except the central site which starts at the

value 1.0. Take D = ∆x = 1, and use fixed boundary conditions set equal to zero.
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(a) Use the explicit finite difference scheme, and look at the behavior for ∆t = 1,
0.5, and 0.1. What step size is required by the Courant condition?

(b) Now repeat this using implicit finite differences and compare the stability.

(8.3) Use ADI to solve a 2D diffusion problem on a lattice, starting with randomly seeded

values.

(8.4) Use SOR to solve Laplace’s equation in 2D, with boundary conditions uj,1 = u1,k =
0, uN,k = −1, uj,N = 1, and explore how the convergence rate depends on α, and
how the best choice for α depends on the lattice size.


