The mnomentum equation in vector for a velocity field $\vec{V}$
$$\frac{\partial \vec{V}}{\partial t}+(\vec{V}\cdot\nabla)\vec{V}=-\frac{1}{\rho}\nabla p + \nu \nabla^2\vec{V}$$This represents three scalar equations, one for each velocity component $(u,v,w)$. We are solving it in 2-D, so there will be two scalar equations:
$$\frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+v\frac{\partial u}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial x}+\nu \left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2} \right) $$$$\frac{\partial v}{\partial t}+u\frac{\partial v}{\partial x}+v\frac{\partial v}{\partial y} = -\frac{1}{\rho}\frac{\partial p}{\partial y}+\nu\left(\frac{\partial^2 v}{\partial x^2}+\frac{\partial^2 v}{\partial y^2}\right) $$We need one ore more equation, which is the POisson equation to link pressure and velocity:
$$\frac{\partial^2 p}{\partial x^2}+\frac{\partial^2 p}{\partial y^2} = -\rho\left(\frac{\partial u}{\partial x}\frac{\partial u}{\partial x}+2\frac{\partial u}{\partial y}\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}\frac{\partial v}{\partial y} \right)$$niter = 51
- maximum number of iterationsnx = 21
- number of x spatial pointsny = 11
- number of y spatial pointsxmax = 2
ymax = 1
infinity
= 100 - a large numberDirichlet:
Neumann: