
Corresponding author:

Vishal Singh
vishal.singh@deakin.

edu.au
ntegrated generative design
Towards an i
framework

Vishal Singh, School of Architecture and Building, Deakin University,

1 Geringhap Street, Geelong, Victoria 3220, Australia

Ning Gu, School of Architecture and Built Environment, University of

Newcastle, New South Wales 2308, Australia
Design creativity techniques encourage divergent thinking. But how well do the

existing generative design techniques support this requirement? How can these

general techniques be augmented for supporting design exploration and

creativity? This paper investigates these questions through a review of five

different generative design techniques used in architectural design that includes

cellular automata, genetic algorithms, L-systems, shape grammars, and swarm

intelligence. Based on the literature on design cognition and the recent

theoretical works on digital design thinking, this paper proposes the need for an

integrated generative design framework to enhance design exploration support

for human designers. Potential challenges and strategies towards developing

such an integrated framework are discussed.

� 2011 Elsevier Ltd. All rights reserved.

Keywords: generative design, architectural design, digital design,

design cognition, reflective practise
T
he main incentives for adopting generative design (GD) systems in

architecture are to use computational capabilities to support human

designers and (or) automate parts of the design process. The ability

to explore larger design space and support design generation is one of the

main objectives besides achieving efficiency (multiple design instances in lim-

ited time), cost reduction (reduced time and labour), optimisation, accuracy,

consistency, etc. This paper focuses on the objectives of design exploration

and support for architectural design. The paper reviews five commonly used

GD techniques in architecture to include shape grammars (SG) (Stiny,

1980), L-systems (LS) (A Lindenmayer, 1968), cellular automata (CA) (von

Neumann, 1951; Wolfram, 2002), genetic algorithms (GA) (Holland, 1975)

and swarm intelligence (SI) (Deneubourg, 1977; Payman, 2004). A review of

the literature suggests that most existing GD systems are developed based

on one of these GD techniques. This limitation often compromises the perfor-

mance of the system in terms of the breadth of design exploration. Although

there are overlaps and similarities, each of these techniques appears more suit-

able than others for specific design tasks. This paper argues for the need of an
www.elsevier.com/locate/destud

0142-694X $ - see front matter Design Studies 33 (2012) 185e207

doi:10.1016/j.destud.2011.06.001 185
� 2011 Elsevier Ltd. All rights reserved.

mailto:vishal.singh@deakin.edu.au
mailto:vishal.singh@deakin.edu.au
http://www.elsevier.com/locate/destud
http://dx.doi.org/10.1016/j.destud.2011.06.001


Table 1 Basic terminologies in

Terminology

Cell Cel
of

Cell state Cel
cha
Cel
nei
cha

Neighbourhood Cel
nei
term
pro

186
integrated GD framework that can support multiple techniques. The proposed

integrated GD framework is envisioned as an interactive design generation

system. Compared to most existing GD systems that are limited to one single

GD technique, which often biases the GD process in a constrained direction,

the proposed integrated GD framework can provide design triggers at differ-

ent phases of the design development and assist in design exploration across

different pathways.

Sections 1 and 2 present a review of the five GD techniques in terms of their (1)

technical factors (2) design factors, and (3) requirements for system develop-

ment. Section 3 briefly discusses the literature on design cognition and digital

design thinking, forming the basis for Section 4, which presents the conceptual

integrated GD framework and the challenges and strategies towards develop-

ing such a framework. Section 5 concludes the paper with a discussion on the

current and potential future work.

1 Literature review of generative design techniques
Though each of the five computational approaches has broader significance

across a range of disciplines spanning fundamental sciences to art and technol-

ogy, the review is confined to their application to architecture design.

1.1 Cellular automata (CA)
CA is a collection of cells on a grid of a specified shape that evolve over time

according to a set of rules driven by the state of the neighbouring cells (von

Neumann, 1951; Wolfram, 2002). The grid can range from one-dimensional

lines to Cartesian grids in arbitrary dimensions. CA has been used for different

aspects of architecture and urban design (Herr & Kvan, 2005; Krawczyk,

2002b). Based on the literature (Krawczyk, 2002b), Table 1 lists some of the

basic terminologies used in 3D CA.

CA is naturally context-sensitive as the generative process is directed by the

states of the neighbouring cells. Design constraints are implemented from
(3D) CA

Description

l is the smallest operationalised unit to define a space (3D/2D). The unlimited lattice
cells can describe the universe (3D space/2D plane).

l state describes the current status of the unit space. For example, a space can be
racterised as empty or full. Cell state can de defined as per the design requirements.
ls can reach stable states such that they are not perturbed by further changes to their
ghbourhood. Cells can also be unstable and subject to changes as an effect to the
nges around them.

ls sharing some pre-defined spatial proximity to a given cell are considered as its
ghbourhood. For example, cells sharing at least one face/edge/vertex of a cell can be
ed as neighbouring cells. Choice of neighbourhood definition/condition is subject to
blem requirements and desired design characteristics.

Design Studies Vol 33 No. 2 March 2012



Table 2 Commonly used term

Terminology

Gene

Genetic codes

Genetic description

Genetic structure

Genotype

Phenotype

Integrated generated des
bottom-up governing the local behaviours of each cell. As a result, the out-

comes of CA are often complex and difficult to predict. The basic components

for composing design using CA are cells. Although there are mechanisms to

transform cells during the application, in general, cells and their available

operations are limited and are constrained by the type of grid adopted.

1.2 Genetic algorithms (GA)
GAs and genetic programming are evolutionary techniques inspired by natu-

ral evolutionary processes. GAs, as Gero and Kazakov (2001) state, ‘. use the

analogues of evolutionary operators on a population of states in a search space

to find those states that optimise a fitness function. The search space consists

of character strings of fixed or variable length (chromosomes or genotypes)

composed of the elements of a given alphabet (alleles). The genotype space

is mapped onto another (phenotype) search space. The fitness function is de-

fined as a function of a state in the phenotype space.’

In design GAs have been used for diverse purposes such as optimisation

(Bullock, Denham, Parmee, & Wade, 1995; Caldas & Norford, 2001; Hybs &

Gero, 1992;Mitchell, 1997; Salge, Lipski, Mahlmann, &Mathiak, 2008), space

layout planning (Coates &Hazarika, 1999; Gero &Kazakov, 1998; Jo &Gero,

1998), emergence of representation styles (Ding & Gero, 2001) and architec-

tural forms (Caldas, 2001). For example, Caldas and Norford (2001) use

GAs with SG to generate façade designs that optimise annual energy consump-

tion. Table 2 lists the commonly used GA terms in design (Ding &Gero, 2001).

1.3 Shape grammars (SG)
An SG is a set of shape rules that can be applied to generate a set or language of

designs (Knight, 1999). The application of the shape rules generates designs, and

the rules themselves are the descriptions of the generated designs. SGs can be

used as design tools to generate design languages or as analysis tools to under-

stand existing designs. Stiny (1980) defines four basic components of an SG:

1. A finite set of shapes

2. A finite set of symbols
s in GA with respect to design

Definition

The smallest unit of a genotype. Alelles are alternative forms of genes.

Numerals or alphabet letters used for coding in a genotype.

A description employing genetic terms. The genetic operations used in evolutionary
systems can then be carried out on this genetic description.

A set of genes with a certain order or relationship.

The genetic constitution of a design, rather than its physical appearance.

The observable properties of a design, its form.

ign framework 187



188
3. A finite set of shape rules

4. Initial shape

A design generated by an SG is viewed as ‘elements in relations’(Stiny, 1990).

In SG, design generation is basically to change (add, subtract or replace) the

‘elements’ and define or alter the ‘relations’ among the ‘elements’ via shape

rules. An SG enables different designs that share a similar style to emerge

by alternating the sequence of shape rule application. Examples of SG imple-

mentations include the Palladian grammar (Stiny & Mitchell, 1978), Mughul

Gardens grammar (Stiny & Mitchell, 1980), Prairie Houses grammar

(Koning & Eizenberg, 1981) and Siza Houses grammar (Duarte, 2005).

The critical challenge in developing a grammar is to produce designs that meet

the design goals or constraints. There are two main approaches (Knight, 1998,

1999).

1. Incorporate foreknowledge into shape rules so that the generated designs

could meet the given goals. This approach constrains the grammars and

controls the shape rule application to increase the predictability of the

outcomes. This approach requires adequate design knowledge while de-

veloping the SG.

2. Allow the SG to generate designs without being constrained. An auto-

mated search and test device is then applied to search through the design

space, test and select the desired solutions. This approach can start with

inadequate design knowledge while developing the SG.

1.4 L-systems (LS)
LSs (Lindenmayer, 1968) are mathematical algorithms known for generating

factual-like forms with self-similarity that exhibit the characteristics of biolog-

ical growth. LSs have been used for a wide range of design problems from sim-

ple computer graphics patterns (Palubicki et al., 2009) to complex city

planning and simulation (Kelly & McCabe, 2006).

LS are primarily a set of production rules applied recursively through string

rewriting. For the purpose of design generation, LS is in principle a design

grammar. However, LS have been distinguished from design grammars as be-

ing operated on strings - the symbolic representation of the design - rather than

directly on the design itself (Parish & Muller, 2001). In a typical LS, design

components are firstly symbolised as strings. By applying various string rewrit-

ing mechanisms, the representation of the design is generated. In order to

visualise or evaluate the generated design, these populated strings are ‘remap-

ped’ into appropriate forms through graphical interpretations. Whereas, in

a typical design grammar, design components such as shapes are directly

used in the design rules, and the rule application implies visual and spatial op-

erations on these components. The computer implementation of the design
Design Studies Vol 33 No. 2 March 2012



Integrated generated des
grammar still requires these design components to be represented as symbols

in the computational system eventually. In summary, LS are variations of de-

sign grammars.

1.5 Swarm intelligence (SI) and multi-agent societies
Agent based models (ABM) are often used to implement social or collective

behaviours (Carley, 1994; Macy & Willer, 2002). Agents are software systems

capable of acting autonomously according to their own beliefs. Agents in a so-

ciety can act independently, or interact and communicate with each other to

compete or collaborate and collectively achieve their goals. A variety of

ABM has been used in design such as works by Kunz, Levitt, and Jin (1998)

and Maher, Smith, and Gero (2003).
SI is the property of a system whereby the collective behaviours of unsophis-

ticated agents interacting locally with their environment cause coherent func-

tional global patterns to emerge (Payman, 2004). SI provides a basis with

which it is possible to explore collective or distributed problem solving without

centralised control or the provision of a global model. Bonabeau, Dorigo, and

Theraulaz (1999) define a swarm in terms of self-organisation and stigmergy.

� In self-organisation structures appear at the global level of a system from

interactions among its lower level components based only on local informa-

tion, without reference to the global pattern. The global pattern is said to be

an emergent property of the system. As an example, Theraulaz and

Bonabeau (1995) demonstrate how 3D lattice swarm can be used to gener-

ate building forms. Self-organisation relies on feedback, randomness and

interactions.

� Stigmergy refers to the indirect interaction of individuals when one of them

modifies the environment and the other responds to the new environment at

a later time. Stigmergy facilitates incremental construction and it is often asso-

ciated with flexibility. When the environment changes because of an external

perturbation, the individuals respond appropriately to that perturbation.
Some of the concepts in SI that are relevant to design tasks include:

� Nest building and self assembly: the global process of a swarm of individ-

uals building a structure of residence and (or) using individual building

blocks. Deneubourg (1977) and Theraulaz and Bonabeau (1995) have

shown the effectiveness of self-organisation and stigmergy in the creation

of 3D spaces. GAs have also been combined with SI to generate functional

spaces (Theraulaz & Bonabeau, 1995).

� Division of labour and task allocation (Oster & Wilson, 1978).

� Trail-laying and trail-following behaviourswhereby an individual is influenced

towards a particular location by another individual or a trail (Bonabeau et al.,
ign framework 189



190
1999). These behaviours have potential applications to design agents immersed

in virtual worlds for tasks such as layout planning and way-finding.

2 Comparison of five generative design techniques
The following sections review and compare the different GD techniques in

terms of the technical, design and system development factors.

2.1 Technical factors
In general, each technique defines a finite set of elements and/or symbols that

can be operated upon using a finite set of production rules and/or operators

(Alfonseca & Ortega, 2000; Coates, 2004; Devert, 2009; Frazer, Frazer, Liu,

Tang, & Janssen, 2002; Lindenmayer & Rozenberg, 1972). Each technique

can be used to generate deterministic as well as non-deterministic systems.

CA, LS and SG are generally represented in graphical forms that result

from transformations and operations (i.e., addition, rotation, subtraction,

etc) on the initial elements, whereas the patterns from SI generally result

from the autonomy of the agents (e.g., where agents act on the environment

such as nest building) or by plotting the agent activities (e.g., tracing agent’s

way-finding trail) (Coates, 2004; Coates & Carranza, 2000; Thalmann et al.,

2004; Yoon &Maher, 2005). For example, Coates (2004) reports a study using

SI that investigates ‘how can we determine the best position and orientation

for paths between buildings on a site, or more generally, given a set of origin

and destination points in space, how will people best move between them?’
There have been instances in which CA and LS (Alfonseca & Ortega, 2000)

and SG and LS have been demonstrated to be equivalent. Furthermore, there

are examples where some of these techniques are used in conjunction with each

other (Jackson, 2002; Jacob, 1996). Using SG and CA together, Speller,

Whitney, and Crawley (2007) claim that ‘the combination of SG for managing

the input and CA for managing the output brings together the human intuitive

approach (visualisation of the abstract) with a computational system that can

generate large design solution spaces in a tractable manner.’ Table 3 discusses

the five approaches in terms of

1. Components and requirements to define and implement the system, i.e.,

the basic elements, operatives, and the operational mechanism needed

to implement the system.

2. Rule application, i.e., how the rules are applied?

3. Main advantages of the system in terms of GD

4. Main limitations of the system

5. Level of accuracy, which relates to the level of automation and amount of

effort required by the user to evaluate the design generated. Table 3 only

lists the general practise. However, even for SG and LS it is possible to

have systems that are constrained enough to generate valid solutions that
Design Studies Vol 33 No. 2 March 2012



Table 3 Technical aspects of the generative design techniques

SG LS CA SI GA

Components &
requirements Set of terminal shapes

Set of operators

Set of production rules

Initial shape

Set of terminal symbols

Set of operators

Set of production rules

Initial symbols

Grid/cells

Set of state rules

Initial cell states

Autonomous agents

Knowledge base

Set of actions and

behaviours, e.g.,

communication, observation.

Objects/Environment the

agents interact with and

(or) change.

Alleles (building blocks)

Chromosomes/Genotypes

(combination of building

blocks)

Phenotypes (solution)

Population (set of solutions)

Genetic operations

Fitness function

Rule
application Usually one rule fires

at a time depending

on the conditions being

matched the LHS.

Usually as many rules

are applied at the

same time as defined.

Relevant rules fire to

change states.

Parallel computational

process. Hence, facilitates

design visualisation at

global level.

Usually one rule fires at a

time depending on the

conditions being matched

the LHS.

Usually one operation is

applied at a time on a

sub-set of the population.

Main
advantages Geometric (visually

defined)

Symbolic Context-sensitive and

neighbourhood effects

In-built constraints

Purely bottom-up

Simultaneous, local vs

global effects

Modelling cognitive and

social behaviour

Simultaneous, local vs

global effects

Regular design evaluation

and improvement

Multiple solutions

Optimisation

Disruptive innovation

Main
limitations Tradeeoff e constraints

vs exploration.

Local to global

(incrementally local

behaviours are lost)

Local to global

(incrementally local

behaviours are lost)

Constrained by cell

geometry/definition

Dimensional constraints

For finite cells, conditions

are different for edge cells.

Requires other design

elements to work with but

does not usually include

design components by

its own.

Progress slows down after

achieving near optima

solutions

Level of
accuracy Trade-off with

exploration

Often requires post-

generation selection

by user.

Trade-off with

exploration

Often requires post-

generation selection

by user

Contingent on problem

representation and

solution interpretation

Often results in design

emergence that are purely

bottom-up

Varies with agent detail

and modelling considerations

Contingent on problem

formulation, i.e., choice of

genotypes and fitness

function

In
teg

ra
ted

g
en
era

ted
d
esig

n
fra

m
ew

o
rk

1
9
1



192
may not require later validations by the user. However, greater the number

of constraints, fewer is the opportunity for exploration and emergence.

In summary,

� CA is particularly useful for its parallel computational processes and simu-

lating context-sensitive growth patterns, e.g., simulating scenarios where

multiple factors are mutually affected by each other such as changes in

one zone that lead to changes in the neighbouring zones.

� SG and LS are similar and useful for generating patterns incrementally,

particularly form-based designs.

� SG and LS may or may not be constrained, unlike CA, which is always con-

strained and context-sensitive.

� SI is useful for simulating self-organisation among various units. Same as

CA, SI also demonstrates parallel computational processes. In SI the paral-

lel processes occur because of the autonomy of agents/units while in CA it is

defined in terms of the cell states and neighbourhood conditions.

� GA is based on modifications, combinations, and other operations on the

building blocks as well as the solution space. Design exploration and selec-

tion occur at each cycle, which is not the case with SG or LS. Genetic op-

erations can generate random designs, and hence, it is easier to model

compared to SG or LS where identifying the rules may take time. The chal-

lenge in GA is to select appropriate alleles, chromosomes and the fitness

function. GA also enables parallel computation but unlike CA and SI

where parallel computation occurs at the local level, in GA parallel compu-

tation occurs through exploration of multiple solutions at the global level.

2.2 Design factors
SomeGD techniques aremore suited to specific design purposes than others. For

example, GAs have mainly been used for optimisation (Mitchell, 1997; Salge

et al., 2008) because the quality of solutions tend to increasewith each generation.

SG and LS are particularly suited to develop emergent shapes and patterns

that arise from repetitions and operations on terminal shapes. Development

of SG and LS is an iterative process because it is difficult to visualise the emer-

gent shapes, often requiring iterative trials to identify the desired terminal

shapes and production rules. SG and LS typically follow ‘function-follows-

form’ philosophy, i.e., once the form is generated, the emergent shape is eval-

uated for its functionality.

SGs are typically used for generating 2D shapes and compositions, space lay-

outs, and in some cases 3D compositions (Duarte, 2005; Halatsch, Kunze, &

Schmitt, 2008; Koning & Eizenberg, 1981; Stiny &Mitchell, 1978). LS are typ-

ically used to generate repetitive patterns, fractals and natural organic forms

such as plants and fractals (Alfonseca & Ortega, 1996; Lam & King, 2005;
Design Studies Vol 33 No. 2 March 2012



Integrated generated des
Lindenmayer & Rozenberg, 1972; Palubicki et al., 2009; Smith, 1984), etc. In

design, LS have also been used for generating city roads and networks (Parish

&Muller, 2001), terrains and textures (Dai & Ozawa, 1997), as well as building

forms (Mueller, Wonka, Haegler, Ulmer, & Gool, 2006).

Being context-sensitive CA tends to follow ‘form-follows-function’ philoso-

phy. The emergent form is the result of the desired functionality. CA facilitates

exploration of social effects through simulations being determined by neigh-

bourhood conditions for solving urban design problems, zoning, block design

and building massing tasks (Krawczyk, 2002a, 2002b).

SI and ABM can be used in various ways. Agents can be used to test the us-

ability of the design environment such as way-finding and social behavioural

patterns. Intelligent, knowledge-rich agents can be used as avatars and design

agents that interact with each other, and with their environment as well as with

the human designer.

The GD techniques are reviewed in Table 4 according to the following design

factors:

1. Suitability to different design phases and design approaches: Each GD

approach has its own strengths and limitations, making it more suitable

to some aspects of design than the others.

2. Type of design problem: Based on the design generation mechanisms each

of the GD approaches have predominantly been used for certain types of

design problems.

3. Complexity of design problem.

4. Characteristics of design outcome.

In summary,

� GA is particularly suitable for design optimisation.

� SG and LS are particularly suitable for form and style generation.

� CAismost suitable for supportingbottom-upcontext-sensitivedesignprocesses.

� SI is useful for (1) evaluating design usability, (2) simulating circulation and

navigation patterns to inform design development, and (3) generating de-

signs that emerge from self-organisation of autonomous units.

� CA and SI are particularly suited for behaviour-driven design processes,

while SG and LS are suited for form-driven design processes. GA allows

an undirected exploration of the design space but provides a search through

the fitness function to ensure quality assurance.

Though each technique is more suited than others for specific purposes, there

have been examples where different technique have been used for similar

purposes.
ign framework 193



Table 4 Design aspects of the generative design techniques

SG LS CA SI GA

Design
purpose Design exploration: space

layout and visual

compositions.

Design exploration: patterns

and visual compositions.

Grid-based design: planning/

zoning.

Usabilityebased especially

context-sensitive design

development.

Design usability such as

way-finding.

Design evaluation and

analysis.

Optimisation. Design

enhancement/improvement.

Simultaneously pursuing

multiple design alternatives

meeting fitness criteria.

Design
approaches Emergent shapes and

patterns.

Geometric shapes.

Function follows form.

Iterative and re-engineering

based approaches.

Emergent repetitive patterns,

fractals and natural organic

forms.

Function follows form.

Iterative and re-engineering

based approaches.

Study of neighbourhood

effects, growth patterns,

social phenomenon, etc.

Form follows function.

User-centric and use-case

designs. Study of social

phenomenon, e.g., norm

creation, way-finding, etc.

Function analysis.

Combinatorial and

morphological designs.

Disruptive innovation.

Design
Problems Architectural styles, objects

and patterns.

Regulated and rule ebased
design.

Generally 2D, but also

examples of 3D.

Roads and networks, terrains

and textures. Forms that

evolve naturally

and tend to be organic.

Generally 2D.

Block design and massing,

planning/zoning and urban

design.

Generally 2D, but also

examples of extrusion to 3D.

Walkways, public spaces,

lobby areas, traffic flow,

and so on.

Rarely used for geometric

design.

Componentebased designs,

optimisation problems.

Design
outcome
characteristics

Emergent and exploratory,

geometrical.

Solutions usually require

validation.

Emergent and exploratory,

organic and repetitive.

Solutions usually require

validation.

Emergent and normative,

context-sensitive.

Usually satisfactory

solutions.

Emergent and normative.

Usually usability driven.

Optimized, usually

satisfactory solutions.

Multiple design alternatives

in most cases.

1
9
4

D
esig

n
S
tu
d
ies

V
o
l
3
3
N
o
.
2
M
a
rch

2
0
1
2



Integrated generated des
2.3 System development factors
In digital design environments, the designer’s competence with the tool as well

as the designer’s capability as a tool builder are critical to effective design gen-

eration (Aish, 2003; Oxman, 2006). Hence, system development factors are

critical to analyse across the different GD techniques.
CA and SI tend to be easier to model because they are generally defined in

terms of states. The rules for potential cell states in CA are easier to identify

because the relationships between the neighbourhood cells and potential con-

figurations can be visualised (this does not mean the emergent configurations

are easy to be visualised). However, as the neighbourhood cell levels to be con-

sidered for potential cell states increase, the number of rules increases expo-

nentially making it harder to define all the cell states (Speller et al., 2007).

For example in a rectangular matrix there are only 8 immediate neighbour-

hood cells giving a maximum possible 28 cell states, which is by itself large.

If the next level of neighbourhood cells is also considered then the number

of cells become 24 giving 224possible cell states. While identifying and enumer-

ating all possible cell states may become extremely difficult, often the cell states

need not to be exhaustively defined. In general, a very few neighbourhood con-

ditions are enough to generate the desired CA. Developing CA and SI is easier

because often these approaches are used to explore some social behaviours.

Hence, a purely bottom-up approach works such that the resulting emergent

behaviour is generally considered useful.
LS and SG are not defined as much in terms of the states as the expectations to

generate emergent patterns. Often re-engineering or backward tracking tech-

niques are adopted to define terminal and non-terminal elements, and a set

of production rules that may generate the desired pattern. Not all of the results

are considered useful, and, hence, developing such systems may take longer

and greater number of iterations. The development of LS and SG is rarely

a purely bottom-up approach (Tapia, 1999) (Table 5).
In summary,

� SG has mostly been explored manually. Developing SG rules is a time con-

suming and iterative process. LS are similarly iterative.

� There are more examples of CA implementation because the cell states are

easier to identify and implement unless higher order neighbourhoods are

considered.

� SI can be implemented with various levels of agent autonomy and intelli-

gence. Often simple reactive agents are used.

� Choice of the alleles and fitness function is critical to developing a useful

GA tool.
ign framework 195



Table 5 System development aspects of the generative design techniques

SG LS CA SI GA

User
intervention High user intervention

to analyse outcomes.

Iterative process.

High user intervention

to analyse outcomes.

Iterative process.

Purely bottomeup.

Low user intervention

once cell dimension,

state rules and initial

states are defined.

Varies with applications.

User may need interaction

with design agents.

Usability test agents may

not require user interventions.

Low user intervention once

fitness functions, genotypes

and termination conditions

are defined.

Development
challenge Difficult to foresee

emergent shapes.

Often requires

re-engineering

and backtracking.

Scaling is a challenge.

Emergent shapes may

require

new set of production

rules.

Difficult to foresee

emergent shapes.

Often requires

re-engineering

and backtracking.

Repetitive. Hence,

scaling is usually not

an issue.

Relatively easy to design

bottom-up, and to

identify possible cell

states and

neighbourhood

conditions if only local

context is considered.

The challenge increases

manifold if cell states

need to be defined

globally.

Varies with applications and

level of agent’s activities.

Agents can range from simple

reactive agents to highly

sophisticated knowledge-rich

agents.

Problem formulation/

representation and choosing

the appropriate alleles,

genotypes, phenotypes and

fitness functions can be

challenging.

1
9
6

D
esig

n
S
tu
d
ies

V
o
l
3
3
N
o
.
2
M
a
rch

2
0
1
2



Integrated generated des
3 Design cognition and generative design systems
There is a general consensus that design is a co-evolutionary process (Dorst &

Cross, 2001; Lawson, 2005; Poon & Maher, 1997; Schon, 1992). Often the de-

signer starts with an ill-defined problem and as the design activity continues

the problem and solutions co-evolve and mutually guide each other. During

this process, which Schon (1992) describes as a ‘reflective practise’, the designer’s

view of the problem and solution is dynamic and changes, as the designer inter-

acts with the task. Gero (1998) adopts a situated stance to explain how the inter-

action of designers’ past experience and the immediate task environment

influence the emergent design solutions. A situated view suggests that the

same designers may generate different solutions in different situations. Thus, if

the designer’s situated state can be altered it is possible to create greater variety

in the solutions generated. Based on this implicit assumption various creative de-

sign techniques such as brainstorming (Osborn, 1957) and TRIZ (Altshuller,

1984) have been developed. These techniques provide triggers and serve as iner-

tia breakers (Savransky, 2000) tomodify the designers’ state of situatedness, and

as an effect facilitate greater design exploration through different viewpoints.
Digital design approaches can provide such triggers andopportunities to change

the designer’s situated state. As noted by Oxman (2006), digital design thinking

and interaction of the designer with digital design medium is a new form of de-

sign, different to the traditional design thinking and interaction of the designer

with the paper-based design. Using a generic schema of components, relation-

ships and properties of digital design, Oxman (2006) provides a theoretical

framework to categorise various classes of digital design approaches depending

on the relationships of the designer, the conceptual content, the design process,

and the design object itself. Re-emphasising the centrality of the designer, and

interaction and reflection as the key mechanisms in design thinking, Oxman

(2006) demonstrates that digital design practises provide greater interaction op-

portunities than the traditional design interaction with the paper based design.

Following are some of key points identified by Oxman (2006) that differentiate

digital design thinking from traditional design thinking:

� In digital design environments not only does the designer interact with the

free form of design (as is the case with paper-based design) but the designer

can also interact with

B The digital constructs (design representations and elements)

B Interact with the design representations created by a generative design

mechanism, i.e, interact with a design representation generated by a set

of pre-defined rules or relationships,

B Interact with the computational mechanisms that generate the design, i.e.,

specify the rules and relationships.

� Digital design has lead to greater explication of what was implicit knowl-

edge in the traditional design thinking such as
ign framework 197



198
B Explication of design processes and mechanisms

B Explication of the design knowledge and the formulations and associa-

tions within the design representation

B Explication of the generative and evaluative knowledge

� The scope of digital design thinking and designer’s individual control is con-

tingent on the designer’s computational literacy. Hence apart from design ex-

pertise, expertise with the computational tools becomes a critical factor.

� Digital design has created new role for designers based on the nature of in-

teraction with the digital design media. The designer’s role is not only lim-

ited to generating the design but there is a greater opportunity for the

designer as a tool builder (Aish, 2003), controlling and developing tools

that generate design through scripting and editing the computational

mechanisms.

� Digital design provides the opportunity for dynamic representation and ab-

stractions unlike the static abstractions of traditional design, enabling new

bases for design thinking.

� The ability to interact with, control and transform the computational mech-

anisms that generate design has led to the emergence of new forms of non-

deterministic design processes that did not exist explicitly in the traditional

design thinking.
While Oxman (2006) explains various classes of digital design approaches, the

critical characteristic identified with GD tools is the need for an interactive

module that provides designers the ability to control and modify the GD

mechanisms in order to achieve the desired solutions. Further, Oxman

(2006) emphasises the opportunity and need for custom design tools and com-

pound models that integrate the different digital design models currently avail-

able. The proposed framework of an integrated GD system below is one such

compound model specific to GD class, which unlike the existing GD systems,

allows designers to interact with more than one GD technique at the same

time, enabling them to control and modify the design generation mechanisms

such that they can potentially explore designs across different design genera-

tion paths.

4 Towards the framework of an integrated generative
design system
GD systems intended to support design exploration should augment ‘reflective

practise’ (Dearden, 2006; Oxman, 2008; Schmitt & Chen, 1991). GD systems

have been used in various innovative ways with many examples of successful

implementation. However, existing GD systems lack flexibility in supporting

such reflective practice because each system is most often developed based

on a single GD technique, constraining the design exploration opportunities

to the design generation path offered by the specific GD technique. The pro-

posed framework aims to address this limitation.
Design Studies Vol 33 No. 2 March 2012



Figure 1 Schematic represen-

tation of proposed integrated

GD system (based on

Oxman, 2006)

Integrated generated des
A computational implementation of any GD system is a challenging task

especially in terms of developing a formal language. This challenge is further

exacerbated if a system is to be implemented that integrates multiple GD tech-

niques because such an application would require identification of the com-

mon language or translation points across the different GD techniques. The

proposed framework of an integrated GD system aims to support multiple

GD techniques through:

� Explication of the knowledge used in choice and evaluation of GD tech-

niques to suit the design situation: Human designers are adept at evaluating

the design problem such that they are able to choose and formulate the design

approach to suit the design needs. This implicit knowledge is used in identi-

fying the basic design elements, operatives and operational mechanisms or

the production rules while implementing a GD system. It is suggested that

the proposed framework explicates this knowledge such that an integrated

GD system can be incrementally developed as an expert system where new

rules can be added as identified by the designer, who is also the tool builder.

� Explication of the knowledge needed to formulate, transform or reformulate

the problem represented in one GD technique to another, for example, from

SG to CA: Not only are the human designers adept at formulating a design

problem or choosing a design approach, they are also able to identify the

emergent design patterns and reformulate the design problem mid-way

through the design development to change the design approach. Once again,

the designer’s implicit knowledge of this reformulation and transformation

can be explicated incrementally as new situations and techniques for transfor-

mation are identified and assimilated into the computational system.
Hence, the proposed interactive framework will create a compound model for

an integrated GD system. Based on the schematic notation used by Oxman

(2006), the proposed framework combines the characteristics of a GD model

with that of an evaluation model, Figure 1. There are explicit links between the

designer and the evaluation procedure, the evaluation procedure and the
ign framework 199



200
representation, and the designer and the generation procedure. The designer

builds the knowledge base in the evaluation procedure while the pre-existing

knowledge base prompts the designer with a trigger. The explicit link between

the evaluation procedure and the representation allows the system to evaluate

the emergent design representations using the knowledge base, and this eval-

uation provides the basis for the trigger prompt. Though the evaluation pro-

cedure also proposes potential changes to the generation mechanism it is

applied through the designer who explicitly interacts with the generation pro-

cedure, which generates the design representation.

The evaluation in the integrated GD system is targeted towards the

� Choice of a GD technique best suited to the design requirements at specific

stage of the design development (e.g. level of detail) and the design ap-

proach (e.g. bottom-up or top-down);

� Identification of design stages and potential translation points for problem

reformulation;

� Identification of requirements and assumptions needed for translation from

one formal language to another;

� Providing triggers to the designers based on the incorporated expert knowl-

edge. The evaluation procedure therefore may serve as brainstorming tool

for the designer, prompting the designer to explore different GD possibili-

ties emerging during the design exploration. Such an expert system not only

allows explication of the designer’s implicit knowledge but may also enable

the designers to use the explicated implicit knowledge of other designers

and experts in the field. Thus, even though the designer remains in control

of the design, (s)he can avail some of the benefits of a group brainstorming

session through unrestrained triggers for design exploration. This capability

will augment another unique characteristic of digital design thinking, which

is, explicit bi-directional flow of the information between the designer and

the digital medium, which is missing in a paper-based design.

4.1 Theoretical basis for integration through translation
points
Though there have been a few examples where more than one of the GD tech-

niques has been used simultaneously for specific purposes, there are no

reported efforts of integrating the five different GD techniques together. There

is a general agreement that creating a common language is challenging and

there is no theoretical proof either that such a common language is possible

that allows a generic representation across the different GD techniques. A

common language is currently out of scope for this paper and nor does this

paper attempt to theoretically establish the possibility of one. Rather, the pa-

per argues towards an approach that may not require a common representa-

tion or language and instead identify potential design situations where

translation conditions are relatively simpler.
Design Studies Vol 33 No. 2 March 2012



Figure 2 Schematic represen-

tation of design space explo-

ration through different GD

paths

Integrated generated des
Hence, for the validity of the proposed framework it is sufficient if we can con-

ceptually establish that such translation points exist during the design develop-

ment where switching between different GD techniques and design

representations is easier than at other points. For that, let us consider the design

space and the potential design solutions explored in this design space through

the different GD techniques. For ease of graphical representation, let us visu-

ally represent the design space as a three dimensional space, Figure 2. The de-

sign space can be explored and navigated across infinite paths depending on

how the design emerges, and what GD technique is adopted, e.g., SG path,

CA path, etc. The designers may follow a top-down or a bottom-up approach

such that they start with decomposing the design problem (e.g. in an urban de-

sign scenario, site into zones and sub-zones) or compose solutions from basic

design elements and details (e.g. building blocks into sub-zones or sub-zones

into zones). In either case GD techniques can be adopted. Though architects

and designers typically follow a decomposition re-composition strategy

(Akin, 1978; 1994), it is possible to identify different design stages where the de-

sign is temporarily finalised at a specific level of detail, for instance, conceptual

zoning or site layout, etc. Since these are established landmarks (levels of de-

tail), it is proposed that these design stages provide an explicit stage in the de-

sign where the possibility of switchover from one GD technique to another can

be evaluated, even though such possibilities for switchover might exist in the

intermediate stages as well. Since the design paths explored by each of the

GD techniques can be assumed to be non-linear, the solution being explored

by any two techniques keep converging or diverging.Hence, at any specific level

of detail the evaluation module needs to assess the relative convergence and di-

vergence between the design solutions generated by different techniques.

4.2 Implementation requirements and potential approach
The proposed framework aims to addresses the decomposition/re-composi-

tion strategies adopted by designers in the early design phase (Akin, 1978;
ign framework 201



202
1994). Following a bottom-up approach, the designer can start using GD

techniques with the smaller design components to achieve designing from

part-to-whole. Alternatively, the designer can use GD techniques to follow

a top-down approach to achieve designing fromwhole-to-part. Or the designer

can iteratively switch between the bottom-up and top-down approaches,

which corresponds more closely to the thinking of human designers who

appear to simultaneously work both ways (Lawson, 2005). However, the

critical challenge in developing an integrated GD system using the proposed

framework is creating the knowledge base for the evaluation procedure. The

following types of rules are required for such a purpose, in addition to the pro-

duction rules within the generation procedure:

� Selection rules: which GD technique is best suited for what problem? These

rules also deal with compatibility, i.e., which technique(s) can be used in

conjunction for the desired effects. For example (in an urban design sce-

nario), CA is more suited for zoning tasks but using GA with CA can allow

optimised zoning. The selection rules can be developed according to the de-

sign requirements and characteristics listed in Table 4.

� Trigger rules: These rules are required for identification of potential trigger

points or phases in the design development where the designer may consider

moving from one GD path to another. In other words, these rules determine

the termination conditions of the current generation process. For example (in

an urban design scenario), the designer may want a minimum and maximum

limit for the number of repeatable elements (e.g., number of blocks) that are

clustered together in onemodule. Once these or similar conditions aremet the

system should prompt about potential change over opportunity. As the de-

sign progresses the design requirements and characteristics may emerge to

align closer with one GD technique than the other. The system requires eval-

uation criteria whereby the proximity of the different GD techniques to the

design characteristics can be compared. For example, while working with

SG the design may reach a stage where it appears to fall within a structured

matrix. At this point of the design there is a potential for a switch to CA. Sim-

ilarly a design that started with CAmay tend to lose the defined cellular struc-

ture at the global level. In that case it provides a good indication for switching

to some other techniques. These individual triggers and indicators can be im-

plemented as rules which can be administered at regular intervals in the

design development as part of the evaluation procedure.

� Translation rules: These rules follow on the Trigger rules to suggest how the

identified elements from one GD technique can be translated as inputs to

another GD technique. For example, starting with SG when the designer fi-

nalises a module, and decides to use it as a part of the cell definition in CA at

the next step, what needs to be done? How will a cell or matrix be defined to

correspond to the characteristics of the reformulated design problem?

� Strategy rules are required to computationally integrate the bottom-up and

top-down approaches. In some ways the Strategy rules integrate the three
Design Studies Vol 33 No. 2 March 2012



Integrated generated des
rules discussed above, but these rules may be required at a conceptually

higher level to organise the design process.

In general, the tables comparing different GD techniques (Section 2) across the

technical, design and systemdevelopment factors provide the initial starting point

for developing the different rules for selection, trigger, translation and strategy.

5 Discussion
Digital Design thinking is different to traditional paper based design. There is

greater potential for interaction, explicit support for reflective practice and bi-

directional information exchange. Various classes of digital design models ex-

ist with different properties and objectives. GD systems are a class of digital

design models that are often intended to support design exploration. However,

given that most of the existing GD systems are based on one GD technique

they tend to follow one design path rather than exploring different design view-

points, which is contrary to the design creativity approaches that promote di-

vergent thinking. Hence, compound models of GD systems are needed that

can support multiple GD techniques and facilitate more flexible design explo-

ration along different viewpoints. This paper provides one of the first impor-

tant steps towards this objective and discusses a conceptual framework for

such an integrated system.
This paper reviews five different GD techniques to include SG, CA, GA, LS

and SI across their technical, design and system development characteristics.

Based on this review the paper proposes a framework of an integrated GD sys-

tem that can support these five techniques, and discusses the challenges and re-

quirements for developing such an system. Developing such integrated

computational systems is challenging because of the need for a common lan-

guage or formalism required for transition across the different GD techniques.

The integratedGD system is envisioned as an interactive expert systemwith the

designer being central to the design development. The designer is also viewed as

a tool developer, who contributes to the system’s knowledge base as (s)he inter-

acts with and uses the system. The system that forms the evaluation procedure

requires different categories of rules for problem reformulation, technique se-

lection and translation between the GD techniques. These rules will require ex-

plication of some of the knowledge of GD tools and techniques that has so far

remained implicit with the tool developers and users.
Some empirical work has been conducted with sample design scenarios to test

the feasibility of an integrated framework and identify the conceptual and tech-

nical requirements. Future work is needed in refining and implementing the

framework. The development of an integrated GD system based on the frame-

work is expected to be an iterative process, much like any other design activity,

where the tool builder(s), the designer(s), reflect on the emergent challenges and

opportunities as new rules are identified and integrated into the system.
ign framework 203



204
References
Aish, R. (2003). Extensible computational design tools for exploratory architecture.

In B. Kolarevic (Ed.), Architecture in the digital age. NewYork: Spon Press.
Akin, O. (1978). How do architects design? In J.-C. Latombe (Ed.), Artificial

intelligence and pattern recognition in computer aided design (pp. 806e809)
Amsterdam: North Holland Publishing Company.

Akin, O. (1994). Psychology of early design. Pittsburgh: Carnegie Mellon
University.

Alfonseca, M., & Ortega, A. (1996). Representation of fractal curves by means of
L systems. In Proceedings of the conference on designing the future (pp. 13e21).
Lancaster: United Kingdom ACM. http://doi.acm.org/10.1145/253341.
253348.

Alfonseca, M., & Ortega, A. (2000). Representation of some cellular automata by
means of equivalent L Systems. In: Complexity International, 7.

Altshuller, G. (1984). Creativity as an exact science. New York: Gordon &

Breach.
Bonabeau, E., Dorigo, M., & Theraulaz, G. (1999). Swarm intelligence: From

natural to artificial systems. Oxford University Press.

Bullock, G. N., Denham, M. J., Parmee, I. C., & Wade, J. G. (1995). Develop-
ments in the use of the genetic algorithm in engineering design. Design Studies,
16, 507e524.

Caldas, L. G. (2001). An evolution-based generative design system: using adapta-
tion to shape architectural form. Unpublished PhD, Massachusetts Institute of
Technology, Boston.

Caldas, L., & Norford, L. K. (2001). Architectural constraints in a generative de-

sign system: Interpreting energy consumption levels. In Building simulation
2001. International Building Performance Simulation Association.

Carley, K. (1994). Sociology: computational organization theory. Social Science

Computer Review, 12, 611e624.
Coates, P. S. (2004). Review paper: some experiments using agent modelling at

CECA. In 7th generative art conference 2004.

Coates, P. S., & Carranza, P. M. (2000). Swarm modelling. The use of swarm
intelligence to generate architectural form. In Generative art.

Coates, P. S., & Hazarika, L. (1999). The use of genetic programming for appli-
cations in the field of spatial composition. In Generative art. Milan.

Dai, M.-L., & Ozawa, K. (1997). Texture synthesis by L-systems. Image and
Vision Computing, 15, 197e204.

Dearden, A. (2006). Designing as a conversation with digital materials. Design

Studies, 27, 399e421.
Deneubourg, J. L. (1977). Application de l’ordre par fulctuations a la description

de certaines etapes de la construction du nid chez les termites. Insect Soc, 24,

117e130.
Devert, A. (2009). When and why development is needed: generative and develop-

mental systems. In Proceedings of the 11th annual conference on genetic and

evolutionary computation (pp. 1843e1844). Montreal, Quebec, Canada:
ACM. http://doi.acm.org/10.1145/1569901.1570194.

Ding, L., & Gero, J. S. (2001). The emergence of the representation of style in
design. Environment and Planning B: Planning and Design, 28, 707e731.

Dorst, K., & Cross, N. (2001). Creativity in design process: co-evolution of
problem-solution. Design Studies, 22, 425e437.

Duarte, J. P. (2005). A discursive grammar for customizing mass housing: the case

of Siza’s houses at Malagueira. Automation in Construction, 14, 265e275.
Design Studies Vol 33 No. 2 March 2012

http://doi.acm.org/10.1145/253341.253348
http://doi.acm.org/10.1145/253341.253348
http://doi.acm.org/10.1145/1569901.1570194


Integrated generated des
Frazer, J. H., Frazer, J. M., Liu, X., Tang, M. X., & Janssen, P. (2002).
Generative and evolutionary techniques for building envelope design. In
Generative art 2002: 5th international generative art conference GA2002. Italy,
Milan.

Gero, J. S. (1998). Conceptual designing as a sequence of situated acts. In
I. F. Smith (Ed.), Artificial intelligence in structural engineering (pp.
165e177). Berlin: Springer.

Gero, J. S., & Kazakov, V. (1998). Evolving design genes in space layout prob-
lems. Artificial Intelligence in Engineering, 12, 163e176.

Gero, J. S., & Kazakov, V. S. (2001). A genetic engineering approach to genetic

algorithms. Evolutionary Computing, 9, 71e92. http://dx.doi.org/10.1162/
10636560151075121.

Halatsch, J., Kunze, A., & Schmitt, G. (2008). Using shape grammars for master

planning. In Design computing and cognition ’08 (pp. 655e673).
Herr, C., & Kvan, T. (2005). Using cellular automata to generate high-density

building form. In Computer aided architectural design futures 2005 (pp.
249e258).

Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor:
University of Michigan Press.

Hybs, I., & Gero, J. S. (1992). An evolutionary process model of design. Design

Studies, 13, 273e290.
Jackson, H. (2002). Toward a symbiotic coevolutionary approach to architecture in

creative evolutionary systems. Morgan Kaufmann Publishers Inc. 299e313.
Jacob, C. (1996). Evolving evolution programs: genetic programming and

L-systems. In Proceedings of the first annual Conference on genetic program-
ming (pp. 107e115). Stanford: California MIT Press.

Jo, J., & Gero, J. S. (1998). Space layout planning using an evolutionary
approach. Artificial Intelligence in Engineering, 12, 149e162.

Kelly, G., & McCabe, H. (2006). Interactive generation of cities for real-time
applications. In ACM SIGGRAPH 2006 research posters (pp. 44). Boston,

Massachusetts: ACM.
Knight, T. W. (1998). Designing a shape grammar. In J. S. Gero, & F. Sudweeks

(Eds.), Artificial intelligence in design (pp. 499e516). The Netherlands: Kluwer

Academic Publishers.
Knight, T. W. (1999). Applications in architectural design, and education and

practice. In Report for NSF/MIT workshop on shape computation, NSF/MIT

workshop on shape computation. http://www.shapegrammar.org/education.pdf.
Koning, H., & Eizenberg, J. (1981). The language of the Prairie: Frank Lloyd

Wright’s Prairie houses. Environment and Planning, 8, 295e323.
Krawczyk, R. (2002a). Architectural interpretation of cellular automata. In

Generative art 2002.
Krawczyk, R. (2002b). Experiments in architectural form generation using cellu-

lar automata. In eCAADe 2002.

Kunz, J. C., Levitt, R. E., & Jin, Y. (1998). The virtual design team: a computa-
tional simulation model of project organizations. Communications of the
Association for Computing Machinery, 41, 84e92.

Lam, Z., & King, S. A. (2005). Simulating tree growth based on internal and
environmental factors. In Proceedings of the 3rd international conference on
Computer graphics and interactive techniques in Australasia and South East

Asia (pp. 99e107). Dunedin, New Zealand: ACM. http://doi.acm.org/
10.1145/1101389.1101406.

Lawson, B. (2005). How designers think, fourth edition: the design process demys-
tified. Architectural Press.
ign framework 205

http://dx.doi.org/10.1162/10636560151075121
http://dx.doi.org/10.1162/10636560151075121
http://www.shapegrammar.org/education.pdf
http://doi.acm.org/10.1145/1101389.1101406
http://doi.acm.org/10.1145/1101389.1101406


206
Lindenmayer, A. (1968). Mathematical models for cellular interaction in develop-
ment I. Filaments with one-sided inputs. Journal of Theoretical Biology, 18,
280e289.

Lindenmayer, A., & Rozenberg, G. (1972). Developmental systems and lan-

guages. In Proceedings of the fourth annual ACM symposium on theory of com-
puting (pp. 214e221). Denver, Colorado, United States: ACM. http://
doi.acm.org/10.1145/800152.804917.

Macy, M., & Willer, R. (2002). From factors to Actors: computational Sociology
and agent-based modeling. Annual Review of Sociology, 28, 143e166.

Maher, M. L., Smith, G. J., & Gero, J. S. (2003). Design agents in 3D virtual

worlds. In R. Sun (Ed.), IJCAI workshop on cognitive modelling of agents
and multi-agent interactions (pp. 92e100), Acapulco, Mexico.

Mitchell, T. (1997). Machine Learning. Mcgraw-Hill International Edit):

McGraw-Hill Education (ISE Editions).
Mueller, P., Wonka, P., Haegler, S., Ulmer, A., & Gool, L. V. (2006). Procedural

modeling of buildings. ACM Transactions on Graphics, 25, 614e623.
Osborn, A. F. (1957). Applied imagination (1st ed.). New York: Scribner’s.

Oster, G., & Wilson, E. O. (1978). Caste and ecology in the social insects. Prince-
ton, NJ: Princeton University Press.

Oxman, R. (2006). Theory and design in the first digital age. Design Studies, 27(3),

229e265.
Oxman, R. (2008). Digital architecture as a challenge for design pedagogy: theory,

knowledge, models and medium. Design Studies, 29, 99e120.

Palubicki, W., Horel, K., Longay, S., Runions, A., Lane, B., & Prusinkiewicz, P.
(2009). Self-organizing tree models for image synthesis. In ACM SIGGRAPH
2009 papers (pp. 1e10). New Orleans, Louisiana: ACM. http://doi.acm.org/

10.1145/1576246.1531364.
Parish, Y. I. H., & Muller, P. (2001). Procedural modeling of cities. In SIG-

GRAPH ’01: proceedings of the 28th annual conference on computer graphics
and interactive techniques (pp. 301e308).

Payman, A. (2004). Swarm intelligence. Pasadena, CA: Jet Propulsion
Laboratory.

Poon, J., & Maher, M. L. (1997). Co-evolution and emergence in design. Artificial

Intelligence in Engineering, 11, 319e327.
Salge, C., Lipski, C., Mahlmann, T., & Mathiak, B. (2008). Using genetically opti-

mised artificial intelligence to improve gameplaying fun for strategical games. In

Proceedings of the 2008ACMSIGGRAPHsymposiumon video games (pp. 7e14).
Los Angeles, California: ACM. http://doi.acm.org/10.1145/1401843.1401845.

Savransky, S. D. (2000). Engineering of creativity, introduction to TRIZ methodol-
ogy of inventive problem solving. CRC Press.

Schmitt, G. N., & Chen, C.-C. (1991). Classes of design e classes of methods e
classes of tools. Design Studies, 12, 246e251.

Schon, D. (1992). Designing as a reflective conversation with the materials of

a design situation. Knowledge- Based systems, 5, 3e14.
Smith, A. R. (1984). Plants, fractals, and formal languages. In Proceedings of

the 11th annual conference on computer graphics and interactive techniques

(pp. 1e10). ACM. http://doi.acm.org/10.1145/800031.808571.
Speller, T. H., Whitney, D., & Crawley, E. (2007). Using shape grammar to derive

cellular automata rule patterns. Complex Systems, 17, 79e102.

Stiny, G. (1980). Introduction to shape grammars. Environment and planning
B: Planning and Design, 7, 343e351.

Stiny, G. (1990). What is a design? Environment and Planning, 17, 97e103.
Design Studies Vol 33 No. 2 March 2012

http://doi.acm.org/10.1145/800152.804917
http://doi.acm.org/10.1145/800152.804917
http://doi.acm.org/10.1145/1576246.1531364
http://doi.acm.org/10.1145/1576246.1531364
http://doi.acm.org/10.1145/1401843.1401845
http://doi.acm.org/10.1145/800031.808571


Integrated generated des
Stiny, G., & Mitchell, W. J. (1978). The Palladian grammar. Environment and
planning 5e18.

Stiny, G., & Mitchell, W. J. (1980). The grammar of paradise: on the generation of
Mughul gardens. Environment and Planning, 7, 209e226.

Tapia, M. (1999). A visual implementation of a shape grammar system. Environ-
ment and Planning B: Planning and Design, 26, 59e73.

Thalmann, D., Hery, C., Lippman, S., Ono, H., Regelous, S., & Sutton, D. (2004).

Crowd and group animation. In ACM SIGGRAPH 2004 course notes (p. 34).
Los Angeles, CA: ACM. http://doi.acm.org/10.1145/1103900.1103934.

Theraulaz, G., & Bonabeau, E. (1995). Modelling the collective building of com-

plex architectures in social insects with lattice swarms. Journal of Theoretical
Biology, 177, 381e400.

von Neumann, J. (1951). The general and Logical theory of automata. In

L. A. Jeffress (Ed.), Cerebral mechanisms in behavior-the Hixon symposium
(pp. 1e41). New York: John Wiley.

Wolfram, S. (2002). A New Kind of science. Wolfram Media Inc.
Yoon, J. S., & Maher, M. L. (2005). A swarm algorithm for wayfinding in dy-

namic virtual worlds. In Proceedings of the ACM symposium on virtual reality
software and technology (pp. 113e116). Monterey, CA, USA: ACM. http://
doi.acm.org/10.1145/1101616.1101639.
ign framework 207

http://doi.acm.org/10.1145/1103900.1103934
http://doi.acm.org/10.1145/1101616.1101639
http://doi.acm.org/10.1145/1101616.1101639

	Towards an integrated generative design framework
	1. Literature review of generative design techniques
	1.1. Cellular automata (CA)
	1.2. Genetic algorithms (GA)
	1.3. Shape grammars (SG)
	1.4. L-systems (LS)
	1.5. Swarm intelligence (SI) and multi-agent societies

	2. Comparison of five generative design techniques
	2.1. Technical factors
	2.2. Design factors
	2.3. System development factors

	3. Design cognition and generative design systems
	4. Towards the framework of an integrated generative design system
	4.1. Theoretical basis for integration through translation points
	4.2. Implementation requirements and potential approach

	5. Discussion
	References


