IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005 721

Coevolutionary Free Lunches

David H. Wolpert and William G. Macready

Abstract—Recent work on the foundational underpinnings of
black-box optimization has begun to uncover a rich mathematical
structure. In particular, it is now known that an inner product
between the optimization algorithm and the distribution of opti-
mization problems likely to be encountered fixes the distribution
over likely performances in running that algorithm. One ramifi-
cation of this is the “No Free Lunch” (NFL) theorems, which state
that any two algorithms are equivalent when their performance
is averaged across all possible problems. This highlights the
need for exploiting problem-specific knowledge to achieve better
than random performance. In this paper, we present a general
framework covering most optimization scenarios. In addition
to the optimization scenarios addressed in the NFL results, this
framework covers multiarmed bandit problems and evolution of
multiple coevolving players. As a particular instance of the latter,
it covers “self-play” problems. In these problems, the set of players
work together to produce a champion, who then engages one or
more antagonists in a subsequent multiplayer game. In contrast
to the traditional optimization case where the NFL results hold,
we show that in self-play there are free lunches: in coevolution
some algorithms have better performance than other algorithms,
averaged across all possible problems. However, in the typical
coevolutionary scenarios encountered in biology, where there is no
champion, the NFL theorems still hold.

Index Terms—Coevolution, multiarmed bandits, no free lunch,
optimizations, self-play.

1. INTRODUCTION

ECENT work has started to uncover the mathematical

foundations of black-box optimization, i.e., the foun-
dations of optimization scenarios where one does not know
the “objective/fitness” function to be optimized, but can only
work with samples of that function [5], [9], [10], [14], [17],
[21]-[23], [28], [31]. In particular, it is now known that an
inner product between one’s black-box optimization algorithm
and the distribution of likely objective functions fixes the
distribution over likely performances in running that algorithm.
An immediate implication of this result is the “No Free Lunch”
(NFL) theorems. These establish the equivalent performance of
all optimization algorithms when averaged across all possible
problems.! As an example of these theorems, recent work has
explicitly constructed objective functions where random search
outperforms evolutionary algorithms [26]. There has also been
much work extending these early results to different types of

Manuscript received August 11, 2004; revised January 15, 2005.

D. H. Wolpert is with the NASA Ames Research Center, Moffett Field, CA
94035 USA (e-mail: dhw @email.arc.nasa.gov).

W. G. Macready is with D-Wave Systems, Vancouver, BC V6J 4Y3, Canada
(e-mail: wgm@dwavesys.com).

Digital Object Identifier 10.1109/TEVC.2005.856205

IMore precisely, the algorithms must be compared after they have examined
the same number of distinct configurations in the search space; see references
above.

optimization (e.g., to multiobjective optimization [7]). The web
site: www.no-free-lunch.org offers a list of recent references.

However, all this previous work has been cast in a manner
that does not cover repeated game scenarios where the “objec-
tive function” for one player or agent can vary based on the re-
sponse of another player. In particular, the NFL theorems do
not cover such scenarios. These game-like scenarios are usu-
ally called “coevolutionary” since they involve the behaviors of
more than a single agent or player [13].

One important example of coevolution is “self-play,” where
from the system designer’s perspective, the players “cooperate”
to train one of them as a champion. That champion is then pitted
against an antagonist in a subsequent multiplayer game. The
goal is to train that champion player to perform as well as pos-
sible in that subsequent game. (For example, in checkers and
chess, see [4] and [15].)

Early work on coevolutionary scenarios includes [2], [16],
and [29]. More recently, coevolution has been used for problems
that on the surface appear to have no connection to a game (for
an early application to sorting networks, see [19]). Coevolution
in these cases sometimes enables escape from poor local optima
in favor of better local optima.

We will refer to all players other than the one of direct at-
tention as that player’s “opponents,” even when, as in self-play,
the players can be viewed as cooperating. Sometimes when dis-
cussing self-play, we will refer to the specific opponent to be
faced by a champion in a subsequent game—an opponent not
under our control—as the champion’s “antagonist.”

In this paper, we present a mathematical framework, gener-
alized optimization (GO), that covers both traditional optimiza-
tion and coevolutionary scenarios. GO also covers other sce-
narios such as multiarmed bandits. We then use GO to explore
the differences between traditional optimization and coevolu-
tion. We find dramatic differences between the traditional opti-
mization and coevolutoin scenarios. In particular, unlike the fun-
damental NFL result for traditional optimization, in the self-play
version of coevolution there are algorithms that are superior to
other algorithms for all problems. However, in the typical co-
evolutionary scenarios encountered in biology, where there is no
champion, the NFL theorems still hold, i.e., uniformly averaged
over all objective functions, all algorithms perform identically.

Section Il summarizes the previous NFL work that we extend,
and Section III motivates these extensions. Section IV presents
the resultant extended NFL framework, GO, and provides ex-
ample illustrations of GO. Section V applies GO to self-play,
and Section VI demonstrates that NFL results need not apply
in this case. In Section VII, we discuss the role of the antag-
onist’s intelligence in such free lunch results. We conclude in
Section VIII.

1089-778X/$20.00 © 2005 IEEE



722 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

II. BACKGROUND

Motivated by the myriad heuristic approaches to black-box
combinatorial optimization, researchers have sought insight into
how best to match optimization algorithms to problems. The
importance of this task was highlighted in [36]. We review the
approach taken in that paper as it forms the starting point for our
extensions.

We consider search over a finite space X and assume that
the associated space of possible “fitness” or “objective func-
tion” values Y is also finite. The sizes of the spaces are | X|
and |Y|, respectively. The space of possible fitness functions
F = Y contains |Y|I¥! possible mappings from X to Y. A
particular mapping in F' is indicated as f € F'. All of the re-
sults mentioned in this section be extended to the case of sto-
chastic fitness functions specified by conditional distributions
P(y € Y | ¢ € X) rather than single-valued functions from X
to Y. (This is explicitly demonstrated below when we introduce
GO, the generalized version of the original NFL framework.)
However, for pedagogical simplicity here, we restrict attention
to single-valued f’s. The goal of one’s “black-box optimiza-
tion/search algorithm” is to find an = that has a good value of
f(x), using only samples of f. In particular, we are interested in
the performance of such algorithms when averaged across some
distribution P(f) of single-valued fitness functions.

The mathematical formalization of what we mean by
“black-box optimization/search algorithm” in [36] is motivated
by iterative algorithms like evolutionary algorithms, simu-
lated annealing, and tabu search. All such algorithms sample
elements of the search space (i.e., select an z € X), and
evaluate the fitness y = f(z) € Y of that sample. New z’s are
selected based upon previously sampled x’s and the associated
fitness values. At an iteration at which a total of m distinct
x’s have been examined, we write those x’s and associated
fitness values as an ordered set of m distinct “configurations”:
dm = {(dZ,(1),d%,(1)),...,(d%,(m),d¥,(m))}. We refer to
this ordered set of configurations as a “sample”.? Configura-
tions in d,, are ordered according to the time at which the
algorithm sampled them. Thus, d% (t) is the tth sampled x
value, and d¥,(t) = f(dZ,(t)) is the associated fitness value.
The ordered sets of all X and Y values are indicated as d, and
d¥,, respectively. Algorithms are compared on the basis of the
samples d,,, that they generate.

It is important to note that the =’s in d;,, must all be distinct.
This means that algorithms are compared only on the basis of
the unique x’s they have examined. This does not mean that
algorithms that do revisit 2’s (as evolutionary algorithms and
simulated annealing typically do) cannot be compared. Rather,
it means they must be compared based on the number of distinct
2’s they have examined. The fact that we are comparing them
that way means that for the purposes of our analysis, we can
treat them as though each point they visit is distinct. Further
discussion of this point is found in [36].

Based upon these definitions an algorithm is a (perhaps
nondeterministic) mapping from a set of samples d,,, to a new
(i.e., not yet visited) point in the search space, d;,, . (m + 1).

2This set was called a trace in [30].

That mapping is specified by the probability distribution
P (dy, . 1(m + 1) = x|dy,) defined over X which gives
the probability of the algorithm selecting x at time m + 1.
To ensure that search space points are not revisited, we
require zero probability on previously visited x’s. Thus,
Pr(df, o 1(m + 1) = z|dy,) = 0 forall z € df, .3 The algo-
rithm begins with the selection of a starting configuration as
specified by an initial distribution P; (d} (1) = x).

Combining these considerations, an algorithm a is a specifi-
cation of the probability distributions P, P», etc. (This defini-
tion of a search algorithm has been reused by others in the spe-
cial case where the mapping was assumed to be deterministic,
e.g., in [30].) With every visit to a new search space element the
set of samples is extended from d,,, to include the new x and its
fitness, i.e., dpy1 = dp U{z, f(2)} sothatdy, ,  (m+1) ==z
and d}), ., (m + 1) = f(z). While covering many classes of
algorithms (like simulated annealing, evolutionary algorithms,
tabu search, etc.), not all algorithms are of this type. In partic-
ular, algorithms that use more information about the objective
function than just the samples are not of this type (e.g., enumer-
ative algorithms like branch and bound). The results presented
here do not necessarily apply to algorithms outside the class we
consider.

The efficacy of a search algorithm is assessed with a perfor-
mance measure ®(dY,), which is a function of all the fitness
values seen by the algorithm by step m. Examples of such a
measure are the best fitness value seen so far, the ending fitness
value, etc. (It is important to note that use of such a measure
of performance differs from the typical concerns of computa-
tionally complexity. We are not concerned with run times or
memory issues.) The performance of an algorithm « after having
visited m distinct z’s, averaged over a class of optimization
problems specified with a distribution P(f), is E(®|m,a) =
> rer @(dy,)P(d, | f,m, a)P(f). When P(f) s uniform over
any set of functions which is closed under permutations,* then
it can be shown that P(d},|m,a) = 3 ; P(d},|m.a, f)P(f)
is independent of a [28], [30], [36]. Thus, the expected perfor-
mance of any pair of algorithms is equal under that type of av-
erage. This is an example of an NFL result. The most general
form for P(f) for which such NFL results hold is derived in
[11], [21].

Reference [36] considers many extensions of the basic NFL
results. It is shown there that algorithms may be distinguished
once we look beyond simple average performances. In addition,
one can derive results independent of the distribution over opti-
mization functions P(f) [23].

Our purpose here is to extend the framework discussed above
to coevolutionary settings where there is more than a single
player. As we shall see, the extension we arrive at, GO, ad-
dresses many problems of interest in both evolutionary and co-
evolutionary optimization. Before presenting the details of GO,
we motivate its extensions through consideration of an idealized
self-play optimization problem, and the k-armed bandit.

3For algorithms that in actuality revisit points, P,, is the distribution of what
new point they product when they finally are done revisiting old points.

4So, in particular, P(f) for any permutation & : X — X of inputs P(f) =
P(f o o).



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

III. MOTIVATION

In this section, we present two separate motivations for our
generalization of the original NFL framework into GO.

A. Self Play

We can view the NFL framework reviewed above as a “game”
in which a single player is trying to determine what “move” z it
should make to optimize ®(dY,). As an example of another type
of problem we would like to study, we consider self-play. This
extension involves moves of more than one player, even though
there is still a single ® and f. For example, in the case of two
players the fitness function depends upon the “moves” of both
players, indicated as z and 7.

To illustrate this consider a multistage game involving the
two players [1], [18], such as checkers [4]. Have the players
be computer programs. In this setting, the moves & and z are
the two complete computer programs that compete with each
other, rather than the plays they make at any particular stage.
These programs, fixed at the beginning of the game, specify each
player’s entire strategy of what play to make in response to what
set of preceding observations. It is these programs that are of in-
terest.5 In this case, f reflects the performance of one particular
one of the players. As another example, £ might represent an
algorithm to sort a list, and & a mutable set of lists to be sorted.
The payoff f here reflects the ability of the algorithm to sort the
lists in Z.

In self-play, we fix attention on the payoff to one of the two
players, the “champion,” with the other player being the “oppo-
nent.” A fitness function f(z,T) gives the reward to the cham-
pion (e.g., +1 for a pair of moves in which it wins, 0 for an
indeterminate or drawing pair, and —1 for a losing pair). Now,
concatenate the moves of our player (z) and the opponent (T)
into a single joint point = [z, Z]. The mathematical advan-
tage of doing this is that it means we will not need to gen-
eralize the definition of fitness functions when we extend the
NFL framework into GO; the fitness function remains a map-
ping from X = X x X into Y. Now, however, X is the space
of joint (champion, opponent) game moves.

Generalizing from the two-player version of self-play, we can
have several players compete in a tournament, and from the re-
sults of that tournament, we select a single best player. That
best player constitutes the champion, who will compete against
an antagonist in a subsequent game. The goal is to design the
tournament to produce the champion with the best possibility
of beating the antagonist. We would like to assess the efficacy
of various such tournament designs, and to see if NFL-like re-
sults hold for such designs.

When designing a self-play tournament there are two dif-
ferent choices to make. First, one must decide how the “training
games” are selected, i.e., how each set of all the players’ moves
for the next round of the tournament are chosen based on the
results of the preceding rounds. Second, one must decide how
to use the outcomes of all those games to select the champion’s
move.

5In noncooperative game theory these programs are called “normal form
strategies.” To minimize terminology, here we will refer to them as moves
always, even when (as in evolutionary game theory) this is uncoventional.

723

We use nomenclature analogous to the original NFL
work to indicate how training games are selected. The m
distinct training games and their fitnesses are indicated as
dm = {(d5,(1),d%(1)),...,(d},(m),d¥,(m))}. Similarly,
we parallel the original NFL work and write the probabilistic
mapping that selects each new training game’s moves based on
the results of the preceding ones as a set of conditional distri-
butions. We write that set of distributions as the “algorithm” a,
exactly as in the original NFL framework.

The second component of designing a tournament is choosing
the champion’s move at the end of the tournament. We indicate
how that is done with a function A, which maps a completed
sequence of training games d,,, into the champion’s move. We
parameterize that champion’s move as the associated subset of
all joint moves x consistent with it. For example, say that after
our set of games our champion will take the role of the first
player in a two-player subsequent game with a single antago-
nist. In other words, our champion is a choice of a (hopefully)
optimal first player’s move for that subsequent game. So, we
choose that champion’s move by selecting a particular value z*
for the move z of the first player in the subsequent game. Since
that choice of move doesn’t restrict the antagonist’s responses,
we indicate that move as the subset of all z € X with z = x*,
i.e., the subset {(z*,7)|z7 € X}.So, A maps d,, to such a subset
of X. (In the more general approach of Section V, A is allowed
to map d,,, to probability distributions over X, not just to sub-
sets of X.)

How do we judge the performance of the champion when we
do not know how the antagonist will act? One possibility is to
measure the performance of the champion against the antagonist
who performs best against that champion. If the champion plays
the game according to z*, then this worst case measure may
be written as min; f(z*,T) where T ranges over all possible
opponent moves. Our definition of A(d,,,) allows us to write that
worst case performance more generally as ming e 4(q,,) f(). A
good champion will maximize this worst possible performance.

Here, we see the first difference from the original single-
player NFL scenario. In that original optimization setting per-
formance is solely a function of d¥, (the observed game out-
comes), independent of f. Here, however, the maximin criteria
has an explicit dependence on the fitness function f. As we shall
see, it is this dependence which will give rise to free lunches in
which there can be a priori differences between algorithms.

Of course, there are other ways of quantifying the perfor-
mance of the champion besides the maximin value, and in some
cases those alternatives are more appropriate. In this work, we
concentrate on the maximin measure, but we expect that if the
performance measure depends explicitly on f, then generically
NFL type results will not hold. Subtleties in evaluating the
performance of game-playing moves are considered in [3], [8],
and [12].

B. Bandit Problems

The k-armed bandit problem is simple, but captures much of
the essence of the critical exploration/exploitation tradeoff in-
herent in black-box optimization. In this problem a player is
faced with choosing repeatedly between k distinct real-valued
stochastic processes having different means. With each selec-
tion it makes (of either process 1, process 2, ..., process k)



724 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

the player receives a real-valued reward sampled stochastically
from the process it chose. The player’s goal is to maximize the
total reward collected over m selections. One simple strategy is
to sample each process n times for a total of kn training points,
and for the remaining m — kn time steps to sample that process
which has the higher empirical mean based on the n points sam-
pled from each process. An algorithm of this type was proposed
(erroneously) as justification for the schema theorem of genetic
algorithms [20], [24].

In order to allow NFL-like analyses to apply to algorithms
for bandit problems, we must generalize the notion of a fitness
function. In this case the fitness of any given z value (z = 4 for
selecting process 7) is not deterministic, but stochastic, given by
sampling the associated process. To capture this, we extend the
definition of “fitness function” from a X — Y mapping to a
mapping from X — Z, where Z is a space capturing proba-
bilistic models. This is illustrated below.

IV. GENERALIZED OPTIMIZATION FRAMEWORK

As seen in the preceding pair of motivational examples, to
increase the scope of NFL-like analyses, we need to make two
slight extensions. First, we must broaden the definition of per-
formance measures to allow for dependence on f, and second,
we need to generalize fitness functions to allow for nondeter-
minism. The resultant framework, GO, is closely related to the
one used in the very first work on NFL, preceding the NFL re-
sults for the problem of search. This original work was the ap-
plication of NFL to supervised machine learning [32]-[34].¢

A. Formal Specification of Generalization Optimization

We assume two spaces, X and Z. To guide the intuition, a
typical scenario might have x € X be the joint move followed
by our players in a self-play scenario, and z € Z be one of the
possible probability distributions over some space of possible
rewards to the champion. However, GO applies more generally.

In addition to X and Z, we also have a fitness function

f: X —Z (D

In the example where z is a probability distribution over re-
wards, f can be viewed as the specification of an z-conditioned
probability distribution of rewards; different 2’s result in dif-
ferent distributions over rewards. In particular, single-valued
fitness functions are special cases of such an f, where each
f(x)-each z-conditioned probability distribution—is a delta
function about some associated reward value. Different such f
give different single-valued mappings from z to rewards. The
generalization of such single-valued mappings by introducing
Z into GO is what allows for noisy payoffs, and to allow GO
to cover bandit problems.

We have a total of m time steps, and represent the samples
generated through those time steps as

i = (dyy d) = ({dp (D120 {dn (D) -

6The NFL theorems for optimization are sometimes seen as having implica-
tions for natural selection. In contrast, the philosophical domain most strongly
impacted by the original NFL theorems for supervised learning is the problem
of justifying inductive inference of scientific theories from data, e.g., as consid-
ered by Hume.

Asin classic NFL, each d7, (t) is a particular € X .Each dZ, (¢)
is a (perhaps stochastic) function of f(d%, (¢)), F(f(d%,(1))).
For example, say z’s—values of f(x)—are probability distri-
butions over reward values. Then, dZ (¢t) = F(f(d%,(t))) could
consist of the full distribution f(d*(t)), i.e., F'(-) could be the
identity mapping. Alternatively, dZ,(t) could consist of a mo-
ment of the distribution f(d% (¢)), or even a random sample of
it. In general, we allow the function F’ specifying dZ, (t) to vary
with ¢. However, that freedom will not be exploited here. Ac-
cordingly, to minimize the notation, we will leave the space that
each dZ, (t) lives in implicit, and will also leave the function F’
implicit; the symbol “F” will not recur below. As shorthand, we
will write d(t) to mean the pair (d%, (t), dZ,(t)).

A search algorithm, a (or just “algorithm” for short), is an
initial distribution P (dZ,(1)) of the initially selected point
dr (1) € X, together with a set of m — 1 separate conditional
distributions P;(dZ,(¢) | d¢—1) fort = 2,..., m. Such an algo-
rithm specifies which x to next choose, based on the samples
observed so far, for any time step ¢. Often, as in previous NFL
work, we assume that the next = has not been previously seen.
This is reflected as an implicit restriction on the conditional
distributions P;(d¥, (t) | di—1).

Finally, we have a (potentially vector-valued) cost function,
C(dm, f), which is used to assess the performance of the algo-
rithm. Often our goal is to find the a that will maximize E(C') for
a particular choice of the mapping forming the dZ, (¢)’s from the
f(dZ,(t))’s. This expectation E(C) is formed by averaging over
any stochasticity in the mapping from f’s to associated d?, (¢)’s.
It also averages over those fitness functions f consistent (in the
sense of Bayes’ theorem) with the observed samples d,,. (See
below for examples.)

The NFL theorems concern averages over all f of quanti-
ties depending on C'. For those theorems to hold in a GO sce-
nario—for f-averages of C to be independent of the search
algorithm—it is crucial that for fixed d,,, C does not depend
on f. (We direct the reader to the original proofs of the NFL
theorems; the extensions of those proofs to the GO setting is
straightforward.) When that independence is relaxed, the NFL
theorems need not hold. As we have seen such relaxation occurs
in self-play; it is how one can have free lunches in self-play.

B. Examples of the Framework

Example 1: One example of GO is the scenario considered
in the original NFL theorems. There we can identify Z with a
distribution over Y, where Y is a subset of R (for convenience,
we take X and Y countable). This allows for the treatment of
noisy fitness functions, where the fitness at any x value is sam-
pled from an z-dependent probability distribution.

As remarked above, deterministic fitness functions are the
special case where such distributions must be delta functions.
In this case the implicit mapping from f(dZ,(¢)) to the associ-
ated dZ,(t) is given simply by evaluating the real value f has at
d* (t). As an alternative formulation, for such deterministic fit-
ness functions, we can instead define z € Z to be the same as Y.
(Recall that Z need not be a space of probability distributions;
that’s only the choice of Z used for illustrative purposes.) In this
case, dZ (t) is simply the value f(d%,(¢)). In our more general
version of the original NFL scenario, z is a nondelta function



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

distribution over Y, and the mapping f(dZ, (t)) to the associated
dZ,(t) is given by forming a stochastic sample of f(dZ,(t)).

In the scenario of the original NFL research, a does not allow
revisits. In addition, we take C(d,,, f) = ®(d,) (recall the def-
inition of the performance measure ® in Section II). As already
noted, for NFL theorems these conditions are crucial: The cost
function must not depend on f, and the search algorithm a must
not allow revisit. Both conditions apply to the version of GO
given here.

More generally, the NFL theorems apply to GO scenarios
which can be cast as an instance of this example. This fact will
be exploited below.

Example 2: The formal specification of two-player self-play
in terms of GO is almost identical to that of the original (noisy
fitness function) NFL scenario. The only formal difference be-
tween the scenarios arises in the choice of C. However, the vari-
ables are interpreted differently, e.g., x is now a joint move.

In self-play, we use the set of repeated games, together with
any other relevant information we have (e.g., how the game
against the antagonist might differ from the games heretofore),
to choose the champion’s move to be used in the subsequent
game against the antagonist. As we have seen, the procedure for
making this choice is a function A(d,,,) mapping d,, to a subset
of X. Since it measures performance of the champion’s move
against the antagonist, C' must involve this specification of the
champion’s move.

Formally, C uses A to determine the quality of the search
algorithm that generated d,,, as follows:

C(dm, f) = min E(f;z) @

z€A(dm)

where “E(f;z)” is the expected value of the distribution of re-
wards our champion receives for a joint move with the antago-
nist given by z

E(f;z) =Y yPs(y =)= ylf(@)](y) (©)

yey yey

where [f(z)](y) is the distribution f(z) evaluated at y.

This cost function is the worst possible payoff to the cham-
pion. There are several things to note about it. First, this defi-
nition of cost still applies if the number of players in any game
is greater than two (the number of players just determines the
dimensionality of z, and the form of the function A). Also, A
arises nowhere in our formulation of self-play except in this
specification of C. Finally, note that the C' of self-play depends
on f.

Say we have a two-player self-play scenario and the antago-
nist has no care for any goal other than hurting our champion.
Say that the antagonist is also omniscient (or at least very lucky),
and chooses the z which achieves its goal. Then, the expected
reward to the champion is given by (2). Obvious variants of this
setup replace the worst-case nature of C' with some alternative,
have A be stochastic, etc.

Whatever variant we choose, typically our goal in self-play is
to choose a and/or A so as to maximize E(C), with the expecta-
tion now extending to average all possible f, and all associated
d ., generated by running our algorithm. The fact that C depends

725

on f means that NFL need not apply though. Examples of this
are presented below, in Sections V, V-B, and VI.

Example 3: Another example is the k-armed bandit problem
introduced for optimization by Holland [20], and analyzed thor-
oughly in [24]. The scenario for that problem is identical to that
of Example 1, except that there are no constraints that the search
algorithm not revisit previously sampled points, Y = R, and
every z is a Gaussian. The fact that revisits are allowed (since
typically m > k) means that NFL need not apply.

Example 4: In the general biological coevolution scenario
[6], [25], [35], there is a set of “players” who change their moves
from one game to the next, just like in self-play. Unlike in the
self-play scenario though, in the general biological coevolution
scenario, each player has an associated frequency in the pop-
ulation of all players, and that frequency also varies through
the succession of games. This means that the two scenarios are
quite different when formulated in GO. Moreover, the formula-
tion for the general coevolution scenario involves definitions of
Z, f, etc., that would appear counterintuitive if we were to in-
terpret them the same way we do in self-play.

We formulate the general coevolution scenario in GO by
having a set of N agents (or agent types, or player types, or
cultures, or lineages of genomes, or lineages of genes, etc.), just
like in self-play. Their move spaces are written S;. Unlike in
self-play (where there are also multiple agents’ move spaces),
X is extended beyond the current joint move to include the
joint “population frequency” value of those moves. Formally,
we write

X:(S’l,ul) X e X (SN./’U,N) (4)
and interpret each s; € S; as a move of agent type ¢ and each
u; € R as a frequency with which agent ¢ occurs in the overall
population of all players. Implicitly, all instances of agent 7 in
the population play the same move s;.” As an example, we could
have each ¢ be a single agent, so that “learning” by agent 7 cor-
responds to having the move of 4, s; € S;, change from one
time step to the next. In this example, the population frequen-
cies are confined to the two values {0,1/N}. (For example, if
we have no death or birth processes, then the frequencies are al-
ways 1/N.) As another example, when 4 is a “lineage of a gene,”
it is not the move s; (i.e., the gene) that changes from one time
step to the next, but the associated frequency of that move in
the population. This too is accommodated in our choice of X;
changes in z from one time step to the next can involve changes
in the joint-frequency without any changes in the joint-move.
More generally, our formulation allows both kinds of changes
to occur simultaneously. In addition, mutation, e.g., modifica-
tion of the gene, can be captured in this GO formulation. This
is done by having some ’s that at certain times have zero pop-
ulation frequency, but then stochastically jump to nonzero fre-
quency, representing a new agent that is a mutant of an old one.

To be more precise, for any ¢, we interpret s;(t) as s current
move. However, we interpret u;(t) as i’s previous population
frequency, i.e., the population frequency, at the preceding time

"Typically, Y=, u; = 1 of course, though we have no need to explicitly require
this here. Indeed, the formalism allows the «; not to be population frequencies,
but rather integer-valued population counts.



726 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

step, of the move that ¢ followed then. In other words, we inter-
pret the u; component of dZ,(t) as the population frequency at
time step ¢ — 1 of the move followed by agent ¢ at £ — 1, a move
given by the S; component of d¥ (¢ — 1). So the information
concerning each agent ¢ is “staggered” across pairs of succes-
sive time steps. This is done as a formal trick, so that a can give
the sequence of joint population frequencies that accompanies
the sequence of joint moves, as described below.

Have each z be a probability distribution over the possible
current population frequencies of the agents. So given our def-
inition of X, we interpret f as a map taking the previous joint
population frequency, together with the current joint move of
the agents, into a probability distribution over the possible cur-
rent joint population frequencies of the agents.

As an example, in evolutionary game theory, the joint move
of the agents at any given ¢ determines the change in each one’s
population frequency in that time step. Accordingly, in the repli-
cator dynamics of evolutionary game theory, f takes a joint
move s1 X ... sy and the values of all agents’ immediately pre-
ceding population frequencies, and based on that determines the
new value of each agent’s population frequency. More precisely,
to accommodate finite-population size effects, f(dy, (¢)) is that
distribution over possible current population joint-frequencies,
and d? (t) is a sample of that distribution.

In this general coevolution scenario, our choice for a, which
produces dZ, (t + 1) from d,,(¢), plays two roles. These corre-
spond to its updates of the move components of d7, (¢) and of the
population frequency components of dZ, (t), respectively. More
precisely, one of the things a does is update the population fre-
quencies from those of the previous time-step ¢ — 1 (which are
stored in d¥,(t)) to the ones given by dZ,(¢). This means a di-
rectly incorporates those population frequencies into the {u;}
components of d¥, (¢ + 1).

The other thing a does, as before, is determine the joint move
[1,...,2N] for time ¢+ 1. At the risk of abusing notation, as in
self-play, we can write the generation of the new move of each
agent ¢ by using a (potentially stochastic and/or time-varying)
function written a;. In sum then, an application of a to a
common d; is given by the simultaneous operation of all those
N distinct a; on dy, as well as the transfer of the joint popula-
tion frequency from d#(t). The result of these two processes is
d”(t + 1).

Note that the new joint move produced by a may depend on
the previous time-step’s population frequencies, in general. As
an example, this corresponds to sexual reproduction in which
mating choices are stochastic, so that how likely agent i is to
mate with agent j depends on the population frequencies of
agents ¢ and j.8 However, in the simplest version of evolutionary
game theory, the joint move is actually constant in time, with the
only thing that varies in time being the population frequencies,
updated in f. If the agents are identified with distinct genomes,
then in this version of evolutionary game theory reproduction is
parthenogenic.

80bvious elaborations of GO allow X to include relative rewards between
agents in the preceding round, as well as the associated population frequencies.
This elaboration would allow mate selection to be based on current differential
fitness between candidate mates, as well as their overall frequency in the popu-
lation.

As always, the choice of C' depends on the research problem
at hand. It is set by what one wishes to know about a sequence
d,, and f. Typical analyses performed in population biology and
associated fields have C be a vector with N components, one for
each agent, each such component depending only on the asso-
ciated agent’s components of d;. As an example, often in pop-
ulation biology each component is j’s population frequency at
t — 1; what one wishes to research is the population frequencies
at the end of a sequence of interactions between the biological
entities.

Usually, in such biological research, there is no notion of a
champion being produced by the sequence of interactions and
subsequently pitted against an external antagonist in a “bake-
oft.” (Famously, evolution is not teleological.) Accordingly, un-
like in self-play, in such research there is no particular signifi-
cance to results for alternative choices of C' that depend on f. So
make the approximation, reasonable in real biological systems,
that 2’ s are never revisited. Then, our coevolutionary scenario is
a special case of Example 1. (More precisely, it is a special case
of the choices of Z, f, etc., of Example 1.) This means that the
NFL theorems hold for such choices of C, under our never-re-
visiting approximation.

Some authors have promoted the use of the general coevolu-
tion scenario as a means of designing an entity to perform well,
rather than as an analytic tool for analyzing how a biological
system happens to develop. For example, this is the premise un-
derlying much of the use of genetic algorithms for optimization.
In general, whether or not NFL applies to such a use of coevolu-
tion for design will depend on the details of the design problem
at hand.

For example, say the problem is to design a value ¥ that max-
imizes a provided function g(y), e.g., design a biological organ
that can function well as an optical sensor. Then, even if we
are in the general coevolutionary scenario of interacting popula-
tions, we can still cast the problem as a special case of Example
1. In particular, for our design problem C' does not involve any
“subsequent game against an antagonist,” so C' is independent
of f. (Just like in Example 1, C only depends on f indirectly,
through the characteristics of the population produced for f. Un-
like in self-play, there is no direct dependence on f in C'.) Sim-
ilarly, we can restrict search to never be revisiting.

Due to the fact that they’re a special case of Example 1, the
NFL theorems hold in such scenarios. The extra details of the
dynamics introduced by the general biological coevolutionary
process do not affect the validity of those theorems, which is
independent of such details.

On the other hand, say the problem is to design an organism
that is likely to avoid extinction (i.e., have a nonzero population
frequency) in the years after a major change to the ecosystem.
More precisely, say that our problem is to design that organism,
and then, after we are done its ecosystem is subjected to that
change, a change we know nothing about a priori. For this
problem, the coevolution scenario is a variant of self-play; the
“years after the major change to the ecosystem” constitute the
“subsequent game against an antagonist.” Now, it may be quite
appropriate to choose a C' that depends directly on f. In this
situation NFL may not hold.



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

There are other ways one can express the general coevolu-
tion scenario in GO, i.e., other choices for the roles of f, a, etc.
that capture that scenario. The advantage of the one described
here is how it formally separates the different aspects of the
problem. f plays the role of the laws of Nature which map joint
moves and population frequencies to new population frequen-
cies (e.g., the replicator dynamics). All variability in how one
might update moves—crossover, mutation, etc.—are instead en-
capsulated in a. In particular, if one wishes to compare two such
update schemes, without knowing anything about f ahead of
time or being able to modify it, that means comparing two dif-
ferent a’s, while f is fixed and not something we can have any
knowledge about.

V. APPLICATION TO SELF-PLAY

In Section III-A, we introduced a model of self-play. In the
remainder of this paper, we show how free lunches may arise in
this setting, and quantify the a priori differences between certain
self-play algorithms.

To summarize self-play, we recall that agents (game moves)
are paired against each other in a (perhaps stochastically
formed) sequence to generate a set of two-player games. After
m distinct training games between an agent and its opponents,
the agent enters a competition. Performance of the agent is
measured with a payoff function. The payoff function to the
agent when it plays move x and it’s opponent plays Z is written
as f(x), where + = (z,Z) is the joint move. We make no
assumption about the structure of moves except that they are
finite.

We define the payoff for the agent playing move 2 indepen-
dent of an opponent’s reply, g(z), as the least payoff over all
possible opponent responses: g(z) = ming f(z,Z). With this
criterion, the best move an agent can play is that move which
maximizes g (a maximin criterion) so that its performance in
competition (over all possible opponents) will be as good as pos-
sible. We are not interested in search strategies just across the
agent, but more generally across the joint moves of the agent
and its opponents. (Note that whether that opponent varies or
not is irrelevant, since we are setting its moves.) The ultimate
goal is to maximize the agents performance g.

We make one important observation. In general, using a
random pairing strategy in the training phase will not result in
a training set that can be used to guarantee that any particular
move in the competition is better than the worst possible move.
The only way to ensure an outcome guaranteed to be better
than the worst possible is to exhaustively explore all possible
responses to move z, and then determine that the worst value of
f for all such joint moves is better than the worst value for some
other move z’. To do this requires that m is greater than the
total number of possible moves available to the opponent, but
even for very large m, unless all possible opponent responses
have been explored, we cannot make any such guarantees.

Pursuing this observation further, consider the situation
where we know (perhaps through exhaustive enumeration of
opponent responses) that the worst possible payoff for some
move z is g(z) and that another joint move 2’ = (2, Z’) with
x # 2/ results in a payoff f(z') < g(z). In this case, there is

727

no need to explore other opponent responses to z’ since it must
be that g(z’) < g(x), i.e., 2’ is maximin inferior to z. Thus, in
designing an algorithm to search for good moves, any algorithm
that avoids searching regions that are known to be maximin
inferior (as above), will be more efficient than one that searches
these regions (e.g., random search). This applies for all g, and
so the smarter algorithm will have an average performance
greater than the dumb algorithm. Roughly speaking, this result
avoids NFL implications because varying uniformly over all
g does not vary uniformly over all possible f, which are the
functions that ultimately determine performance.

In the following sections, we develop this observation further.

A. Definitions

We introduce a few definitions to explore our observation. We
assume that there are [ moves available to an agent, and label
these using X = [1,..., []. For each such move, we assume the

opponent may choose from one of [(z) possible moves forming
the space X Sg) .2 Consequently, the size of the joint move space
is | X| = Y_;_, l(z). For simplicity, we take X (z) to be inde-
pendent of z so that X = [1,...,1] and | X| = II. If the training
period consists of m distinct joint moves, even with m as large
as | X| — [, we cannot guarantee that the agent will not choose
the worst possible move in the competition as the worst possible
move could be the opponent response that was left unexplored
for each of the [ possible moves.

As always, a sample of configurations (here configurations
are joint moves) is a sample of distinct points from the input
space X, and their corresponding fitness values. For simplicity,
we assume that fitness payoffs are a deterministic function of
joint moves. Thus, rather than the more general output space Z,
we assume payoff values lie in a finite totally ordered space Y.
Consequently, the fitness function is the mapping f : X — Y,
where X = X x X is the space of joint moves. As in the general
framework, a sample of size m is represented as

= {(d, (1), d5, (1)) 5 - (di (), d, (m)) }

where d2,(t) = {d% (t), dZ, (t)}, and d¥, (¢) = f(d (1), 42, (1))
and ¢t € [1,...,m] labels the samples taken. In the above defi-
nition, d7, (t) is the ¢th move adopted by the agent, dZ, (¢) is the
opponent response, and d¥, (t) is the corresponding payoff. As
usual, we assume that no joint configurations are revisited, and
that an algorithm a defined exactly as in the classic NFL case
is used to generate sample sets d,,,. A particular coevolutionary
optimization task is specified by defining the payoff function
that is to be maximized. As discussed in [36], a class of prob-
lems is defined by specifying a probability density P(f) over
the space of possible payoff functions. As long as both X and
Y are finite (as they are in any computer implementation), this
is conceptually straightforward.

There is an additional consideration in the coevolutionary
setting, namely, the decision of which move to apply in
the competition based upon the results of the training sam-
ples. In GO, this choice is buried in the performance mea-
sure through the function A(d,,). Recall that A(d,,) is a

9Note that the space of opponent moves varies with x. This is the typical
situation in applications to games with complex rules (e.g., checkers).



728

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

TABLE 1

EXHAUSTIVE ENUMERATION OF ALL POSSIBLE FUNCTIONS f(z,Z) AND g(z) =

min; f(z,z) FOR

X = {1,2},X = {1,2},AND Y = {1/2,1}. THE PAYOFF FUNCTIONS LABELED IN BOLD
ARE THOSE CONSISTENT WITH THE SAMPLE d> = {(1,2;1/2),(2,2;1)}

) | Al o fs | falfs | fe | f1]fs
1

fo | Sfio | fu1 fi3 fis
1

fi2 f14
12 172 1 172 1 12 1

QD (21T (2|1 12112
L2y (12wl 1|1 ||| 1|1
U j(wlwlw|w| 1| 1|11
R AR AR AR AR AR R AR

172 172 1 1 172 172 1 1
172 12 172 12 1 1 1 1
1 1 1 1 1 1 1 1

z g1 g2 93 94 g5 g6 g7 g8 99 gio g11 | g12 913 g14 gis | 916
1 12 | 172 | 12 1 12 | 12 | 112 1 12 172 12 1 172 172 172 1
2 12 | 172 (12 | 12| 172|172 ) 12| 12 172 172 172 12 1 1 1 1

function which, given a sample of games and outcomes, re-
turns a probability distribution over a subset of X. In the
case where A(d,,) is deterministic and selects the cham-
pion move z* based on d,,, then the subset output by A is

{(z*,%) | T € possible opponent responses to z*}.
If A is deterministic the natural empirical measure of the per-
formance of the search algorithm a obtained during training is
¢ =

a:GA(:lI,lnl)nﬂ dz, fe).
Though we shall not pursue it here, it is a simple matter to allow
for nondeterministic A. In such cases, A(d,,) might stochasti-
cally define an optimal move z* through specification of d,,, -de-
pendent probability density p(z*|d,,) over X. In this situation,
performance could be defined as the weighted average

> p(@*|dy) min f(z*,7)
zeX (z*)

zreX

where the min over Z is over possible opponent responses to z*.
It is also straightforward to include a distribution over opponent
responses if that were known.

To summarize, search algorithms are defined exactly as in
classical NFL, but performance measures are extended to de-
pend both on f and A. The best a for a particular f and A are
those that maximize C'.

The original version of NFL (for traditional optimization)
defines the performance differently because there is no oppo-
nent. In the simplest case, the performance of a (recall that
there is no champion-selecting procedure) might be measured
as C' = maxue[1,m d%,(t). One traditional NFL result states
that the average performance of any pair of algorithms is iden-
tical, or formally, >°, P(C'| f,m,a) is independent of a.1® A
natural extension of this result considers a nonuniform average
over fitness functions. In this case, the quantity of interest is
> P(C|f,m,a)P(f), where P(f) weights different fitness
functions.

A result akin to this one in the self-play setting would state
that the uniform average . P(C' | f,m,a, A) is independent
of a. However, as we have seen informally, such a result cannot
hold in general since a search process with an a that exhausts an
opponent’s repertoire of moves has better guarantees than other
search processes. A formal proof of this statement is presented
in Section VL

lOActually, far more can be said, and the reader is encouraged to consult [36]
for details.

B. An Exhaustive Example

Before proving the existence of free lunches, we provide a
small exhaustive example to illustrate our definitions, and to
show explicitly why we expect free lunches to exist. Consider
the case where the player has two possible moves, i.e., X =
{1, 2}, the opponent has two responses for each of these moves,
i.e., X = {1,2}, and there are two possible fitness values Y =
{1/2,1}. The 16 possible functions are listed in Table I. We see
that the maximin criteria we employ gives a biased distribution
over possible performance measures: 9/16 of the functions have
g=1[1/2 1/2],3/16 have g = [1/2 1],3/16 have g = [1 1/2],
and 1/16 have g = [1 1], where g = [g(z = 1) g(z = 2)].

If we consider a particular sample, say do =
{(1,2;1/2),(2,2;1)}, the payoff functions that are
consistent with this sample are fq, f10, f13, f14,» and
the corresponding distribution over ¢ functions is

6(g—1[1/2 1/2])/2+4 6(g — [1/2 1])/2. Given that any sample
will give a biased sample over g functions, it may not surprising
that there are free lunches. We expect that an algorithm which
is able to exploit this biased sample would perform uniformly
better than another algorithm which does not exploit the biased
sample of g’s. In the next section, we prove the existence of
free lunches by constructing such a pair of algorithms.

VI. CONSTRUCTION OF FREE LUNCHES

In this section, a proof is presented that there are free lunches
for self-play by constructing a pair of search algorithms such
that one explicitly has performance equal to or better than the
other for all possible payoff functions f. We normalize the
possible Y values so that they are equal to 1/|Y|,2/]Y],..., 1.
Thus, regardless of how Y values are assigned by the fitness
function, our measure gives the fraction of possible fitness
values having lesser or equal fitness and, thus, forms a sort of
normalized ranking.

As discussed earlier, we assume that all [ agent moves offer
the same number of possible opponent responses /. We consider
algorithms that explore m = [ distinct joint samples. Agent
moves are labeled by z € {1,...,l} and opponent responses
are labeled by 7 € {1,...,/}. For simplicity, we take [ = [.

In the following section, we consider three different algo-
rithms and show different expected performance for each of
them. For those not interested in the details of the derivation
of the performances a summary of results appears at the end of
the section.



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

A. Algorithms Having Different Expected Performance

Algorithm a, explores the joint moves (1, 1),...,(1,m) and
algorithm a5 explores the joint moves (1,1),...,(m,1),i.e., a;
exhausts opponent responses to x = 1, while as only samples
one opponent response to each of its m possible moves. For the
champion-selection rule, A(d,,), we apply the Bayes optimal
rule: select the move g that has the highest expected g(z) when
averaged uniformly over payoff functions consistent with the
observed sample.

To start, we determine the expected performance of an algo-
rithm that does not have the benefit of knowing any opponent
responses. In this case, we average the performance g(z), for
any element z, over all |Y | functions.!! We note that for any
given agent move z, the |Y|” possible function values at the
joint moves (z, -) are replicated |Y |¥/|Y]! = |V [‘¢=1) times.
The number of times that a g(z) value of 1 — /Y| is attained
in the first |Y'|! distinct values is (i 4 1) — i'. Thus, the average
g(z) value, which we denote (g), is

(9 =>

> (1= 1) w00

where n;(i) = [(i + 1)/|Y|]' = [i/]Y|]". This average value is
obtained for all moves z. In the continuum limit where |Y| —
00, the expected value of ¢ is simply

(9) = 1/(1 +1).

This serves as a baseline for comparison; any algorithm that
samples some opponent responses has to do better than this.

Next, we consider the algorithm a;, which exhaustively ex-
plores all opponent responses to z = 1. Because m = [, there
are |Y|' possible d,, that this algorithm might see. For each of
these sample sets, d,,, we need to determine g(1), and the av-
erage ¢ values for each of the other moves z # 1. This average
is taken over the |Y'|'*-1) functions that are consistent with d,,, .
Of course, we have g(1) = min d¥, and the expected g(z) value
for z # 1 are all equal to (g) (since we have no samples from
any moves z # 1). Since the champion-choosing rule maxi-
mizes the expected value of g, the expected performance of a
for this sample setis max(min d¥,, (g)). Averaged over all func-
tions the expected performance of aj is

[v]-1

(9)1 = Zmax (mind¥,, (g))

¥,

IYIZ

where the sum is over all |Y|7 possible samples. Converting the
sum over all samples into a sum over the minimum value of the
sample, we find

[Y]-1

(o= 3 max (1= i 40) ) i)

1=0
LIY](1=(g))] ; [Y]-1
_ (1—m)nl<z’)+<g> R ()
1=0 i=[]Y[(1—=(9))]

Recall that | X| = IT.

729

If we define i, = [|Y|(1 — (g))]. then we obtain

(1 ~ Ill/_|> ny(i) + (g) {1 <|§?l)l}

In the continuum limit, we have

ig—1

)

=0

(.CI>1 =

(o)== 4 ) (1- (- ()
1 7 141
BT +<1—+z) ]

where we have recalled the expected value (g) = 1/(1+1). We
note that as | — oo the performance of algorithm ay is (1+¢71)
times that of (g).

The analysis of algorithm as is slightly more complex. In this
case, each game occurs at a different z. For any given observed
set of samples, the optimal move for the agent is to choose that
z* which has the largest fitness observed in the sample. With this
insight, we observe that when summing over all functions, there
are |Y'|'=! possible completions to max dY, for the remaining
[ — 1 unobserved responses to z*. We must take the minimum
over these possible completions to determine the expected value
of g. Thus, the expected payoff for algorithm a, when averaging
over all functions is

[Y]-1

Yo = |Y|l Z Z min (maxdy 1- |Y|>nl 1(4).

We proceed in the same fashion as above by defining'2 7y =
[Y](1 — max d¥,) (which depends on d¥,) so that

(9)2
1 1 ia—1 . [v|-1 V)i |
= %0 Z max dy, Z ni_1 (i) + Z W”T—l(z)
a, | i=0 i=ig
[ . -1 Y|-1
1 1 ngn |Y| — y
_WZ max d¥, (|7> + Z V] ———nj_1(%)
dy, |

The sum over samples is now tackled by converting it to a sum
over the |Y| possible values of maxd¥,. The number of se-
quences of length  having maximum value j is 5/ — (5 — 1)%.
Moreover, if max d¥, = j/|Y|, then iy = |Y| — j, and so

IY.I { IY.I }H

[Y]-1

p>

i=[Y[—j

5>

Jj=1

[Y]—i

W”iq(i) ni(j —1)

I2There is no need to take the ceiling because 7, is automatically an integer.



730 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

The continuum limit in this case is found as

1 _ -
(g)2 = l/0 dy;yi {yj(l —y)'!

—y;
1 N _ 1 i
:/ dyjy;-(l —y) +/ dyjyj_1
0 0

1 ]
—/ dyjyi (1 —yy)' !
0

= B(I+1,0) + 1/ - B(l,1)

+ (- 1)/1 dy(1 - y)yi‘z}

where B(z,y) is the beta function defined by B(z,y) =
I'(z)I'(y)/T(x + y). For large [, the Beta functions almost
cancel and the expected performance for as varies as 1/1, which
is only slightly better than the performance of the algorithm
that does not have access to any training data.

Summary of Results: For reference, we summarize these re-
sults, and the conditions under which the results have been de-
rived. We have considered a two-player game, where the player
and opponent each have [ possible moves available to them.
Training algorithms sample m = [ distinct games and their
fitnesses. Fitness values lie uniformly between O and 1, and
measure the normalized ranking so that, e.g., the configuration
having fitness 1/2 is fitter than half of all possible fitnesses.

Performance is measured by the maximin criterion (i.e., the
worst-case performance of the move against an opponent), and
averaged over all possible fitness functions. Three algorithms
were considered: random search which randomly selects / dis-
tinct training games; algorithm a; which applies a single given
move and determines the opponents best response to that move;
and algorithm ay which samples a single opponent response
to all its [ possible moves. In all cases, the champion move is
selected with the Bayes optimal rule which chooses the move
having the highest expected performance given the observed
data. The expected performance in each of these algorithms is

Random:#

1+1

1 I\
c—— 1 -
T +<1—|—l> ]
az: B(I+1,0) + 1/l — B(1,1)

where B(z,y) = I'(z)I'(y)/T'(z + y).

Fig. 1 plots the expected performance of a4, as, and random
search as a function of [ (recall that m = [ = I). Algorithm a
outperforms algorithm a on average for all values of /.

B. Performance Difference

Though a; outperforms as on average, it is interesting to
determine the fraction of functions, where a; will perform no
worse than a,. This fraction is given by [V |7 37 ; f(perf, (f)—
perfy(f)), where perf; (f) is the performance of algorithm a4
on payoff function f, perf,(f) is the performance of algorithm
as on the same f, and 6 is a step function defined as f(x) = 1 if

0.7

05 -

04r

Performance

0.2

0.1

0 L s s L L
0 5 10 15 20 25 30

I

Fig. 1. Expected performance of algorithm «; (indicated as {g)1), which
exhaustively enumerates the opponents response to a particular move, and
algorithm a. (indicated as (g)>), which samples only one opponent response
to each move. For comparison, we also plot (g}, which is the expected
performance of an algorithm that does no sampling of opponent responses.

x > 0 and f(z) = 0, otherwise. The Bayes optimal payoff for
ay for any given payoff function f is!3

ming f(1, %),

pert,(f) = {minz He0) if min; f(1,7) > (g) '

otherwise

Similarly, the performance of algorithm as is given by
perfy(f) = min f(z3, )

where x5 is the move having the highest fitness observed in the
sample games d,,,.

To determine the performance of the algorithms for any given
f, we divide f into its relevant and irrelevant components as
follows:

Jio_ Ja

m:f(171)> WZf(Z,l)

|];/—1| = m;n{f(lf)h_? #1}, |];,—2| = m%n{f(27j)|j; £1}
V] = mgx{f(L Dz #1,2}

D];—| = min{f(a3, #)lz5 # 1,2,7 # 1}.

In the definition of p, 25 is the move chosen by a2; if a2 does not
choose move x5 = 1 or 2, the specific value of x3 is irrelevant.
Given these definitions, the performances of the two algorithms
are

if min(j1, k1) > |Y|{g)

otherwise

perf, () = — {min(jhklx

N m min(j27k2)7

13We have assumed arbitrarily that a; will select move 2 if it does not select
move 1. This choice has no bearing on the result.



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

0.74 T T T T T T T

0.72

0.7

(6(perf; — perf,))

0.64 -

0.62
0

1

Fig. 2. The fraction of functions in the continuum limit where algorithm
ay, which exhaustively enumerates the opponents response to a particular
move, performs no worse than algorithm a», which samples only one opponent
response to each move. The figure was generated with 10" Monte Carlo
samples of the integrand for each value of /.

and
1 min(j1, k1), if max(jy,J2,n) = Jj1
perfy(f) = — ¢ min(ja, k2), if max(j1,52,n) = J2
Y] min(n, p) otherwise
respectively.

In summing the above expressions over f, we replace the sum
over f with a sum over j1, jo, k1, k2, n, and p using the appro-
priate multiplicities. The resulting sums are then converted to
integrals in the continuum limit and evaluated by Monte Carlo.
Details are presented in Appendix A.

The results are shown in Fig. 2, which plots the fraction of
functions for which perf; > perf,. This plot was generated
using 107 Monte Carlo samples per [ value.

C. Other Champion-Selection Criteria

We have shown the existence of free lunches for self-play by
constructing a pair of algorithms with differing search rules a;
and as, but with the same champion-selecting rule (select the
move with the highest expected g(z)), and showed different per-
formance. Unsurprisingly, we can construct algorithms with dif-
ferent expected performance that have the same search rules, but
which have different champion-selecting rules. In this section,
we provide a simple example of such a pair of algorithms. This
should help demonstrate that free lunches are a rather common
occurrence in self-play settings.

Each process of the pair we construct use the same search rule
a (it is not important in the present context what a is), but dif-
ferent deterministic champion-selecting rules A.!4 In both cases,
a Bayesian estimate based on uniform P(f) and the d,,, at hand
is made of the expected value of g(z) = minz f(z, Z) for each
x. Since we strive to maximize the worst possible payoff from
f, the optimal champion-selection rule selects the move that

14The notation A is meant to be suggestive of the fact that A(d,,, ) is the z
(first) component common to all joint configurations in A(d. ).

731

maximizes this expected value while the worst champion-se-
lection rule selects the move that minimizes this value. More
formally, if E(C|d,,,a, A) differs for the two choices of A,
always being higher for one of them, then E(C|m,a,A) =
>-a, P(dm|a)E(Cld,, A) differs for the two A. In turn

E(Clm,a,A) =Y [Cx P(C| f,m,a,A) x P(f)]
f,C

x Y [C x P(C|f,m,a,A)]
f.c

for the uniform prior P(f). Since this differs for the two A, so
must Y. P(C | f,m,a, A).

Let g(z) be a random variable representing the value of g(z)
conditioned on d,,, and z, i.e., it equals the worst possible payoff
(to the agent) after the agent applies move z and the opponent
replies. In the example of Section V-B, we have Eg(1) = 1/2
and Eg(2) = 3/4.

To determine the expected value of g(x), we need to know
P(j(x) | 2,dm) = 32 P(i(x) | 2, dm, f)P(f) for uniform
P(f). Of the entire sample d,,,, only the subset sampled at z is
relevant. We assume that there are k(z, d,,) < m such values.!
Since we are concerned with the worst possible opponent re-
sponse let 7(z, d,,) be the minimal Y value obtained over the
k(x,d,,) responses to z, i.e., (z, dy,) = mingeqz dy, (z, 7).
Since payoff values are normalized to lie between O and 1, 0 <
r(z,dmn) < 1. Given k(z,d,,) and (2, d,,), P(§ | z,dy) is
independent of z and d,,, and so we indicate the desired proba-
bility as 7 ().

In Appendix B, we derive the probability 7, in the case
where all Y values are distinct (we do so because this results in
a particularly simple expression for the expected value of ¢) and
in the case where Y values are not forced to be distinct. From
these densities, the expected value of §(z) can be determined.
In the case where Y values are not forced to be distinct, there is
no closed form for the expectation. However, in the continuum
limit where |Y| — oo, we find (see Appendix C)

—(1— Uz)—k(z,dm)+1

EGa) | 2, dn) = 10T ®

lz) —k(z,dm) +1
where we have explicitly noted that both £ and r depend both
on the move z, as well as the training sample d,,,. As shorthand,
we define C,,(z) = E(§(z) | z,dm).

The best move given the training sample is the deterministic
choice A, . (dm) = argmax,C,,(z) and the worst move is
A oret(dm) = argmin, C,, (). In the example of Section V-B
with the sample of size 2, Ay ..;(d2) = 2 and A, (d2) = 1.

As long as C,, (z) is not constant (which will usually be the
case since the r values will differ), the performances of the two
champion-selecting rules will differ, and the expected perfor-
mance of A, will be superior.

D. Better Training Algorithms

In the previous sections, we constructed Bayes-optimal algo-
rithms in limited settings by using specially constructed deter-
ministic rules @ and A. This alone is sufficient to demonstrate
the availability of free lunches in self-play contexts. However,

150f course, we must also have k(z,dn) < l_(g) for all samples d.,, .



732 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

TABLE 1I
EXHAUSTIVE ENUMERATION OF ALL 16 POSSIBLE AGENT PAYOFFS, g®(z = 1),¢*(2 = 2), FOR BOUNDEDLY INTELLIGENT ANTAGONISTS HAVING
INTELLIGENCE PARAMETER o = 1/4, o« = 2/4, ¢ = 3/4, AND @ = 4/4. SEE TABLE I FOR THE CORRESPONDING f FUNCTIONS AND FOR THE
o = 1g FUNCTION. THE PAYOFF FUNCTIONS LABELED IN BOLD ARE THOSE CONSISTENT WITH THE SAMPLE d» = {(1,2;1/2),(2,2;1)}

a fi f2 f3 fa f5 fe f7 Jo fi0 f11 f12 fis | fia | fis | fie
1/4 l,.I_ é’_l. _3_,1 171 .1_’£ iyé é,é 1,2 l’é é,_. é’é 1’§ 1 §’1 2’1 1,1
IR NSRS S AN S A NSRS AR SIS S B A RS
velvz| %7 | %7 | 01| 3% | wE |y |V (2% | we | wg | Lw || w vl ]
AR RN R AR A AR AR AR AR AR R L

we can build on these insights to construct even better (and even
worse) algorithms by also determining (at least partially) the
Bayes-optimal search rule (a, A), that builds out the training set,
and selects the champion move. That analysis would parallel the
approach taken in [24] used to study bandit problems, and would
further increase the performance gap between the (best, worst)
pair of algorithms.

VII. ROLE OF THE ANTAGONIST’S “INTELLIGENCE”

All results thus far have been driven by measuring perfor-
mance based on g(z) = arg ming f(z, Z). This is a pessimistic
measure as it assumes that the agent’s antagonist is omniscient,
and will employ the move most detrimental to the agent. If
the antagonist is not omniscient and cannot determine z* =
arg min_ f(z, ), how does this affect the availability of free
lunches?

Perhaps the simplest way to quantify the intelligence of the
antagonist is through the fraction « of payoff values known to
the antagonist. The antagonist will use these known values to
estimate its optimal move Z*. The « = 1 limit corresponds
to maximal intelligence where the antagonist can always deter-
mine Z* and, as we have seen, gives free lunches. In the « = 0
limit, the antagonist can only make random replies, and so that
the expected performance of the agent will be the average over
the antagonist’s possible responses.

One way to approach this problem is to build the antagonist’s
bounded intelligence into the agent’s payoff function g and pro-
ceed as we did in the omniscient case. If | X| is the number of
joint moves, then there are (| X|/«|X|) possible subsets of joint
moves of size «| X |.16 We indicate the list of possible subsets as
S(X, alX|), and a particular subset by S; € S. For this partic-
ular subset, Z* is estimated by selecting the best response out of
the S; payoff values known to the antagonist. Of course, it may
be the case that there are no samples in S; having the agent’s
move x and in that case the antagonist can only select a random
response. In this case, the agent will obtain the average payoff
Y5 f(z,Z)/l(z). If we assume that all subsets of size a| X | are
equally likely, then the agent’s payoff function against an antag-
onist with bounded intelligence is given by

g% (x) = <0[f§(||>1 siesz

(X,a|X])

arg min(g,a‘c)GSi f(z, 7).

This generalization reduces to the previously assumed g
in the maximally intelligent « = 1 case. In Table II, the
functions ¢'/4, g2/4, ¢3/%, and ¢*/* are listed for the ex-
ample of Section V-B. As expected, the payoff to the agent
increases with decreasing « (a less intelligent antagonist).

16We assume that v is an integral multiple of 1/|X].

However, we also observe that for the same sample ds,
the average [g(z = 1)g(z = 2)] values are [5/8 7/8] for
a = 1/4,[29/48 41/48] for a = 2/4,[9/16 13/16]" for
« = 3/4, and [1/2 3/4]7 for o = 4/4. For this sample,
da(a, Ay ) continues to beat (a, A by the same amount
independent of «.

Worst)

VIII. CONCLUSION

We have introduced a general framework for analyzing NFL
issues in a variety of contexts, GO. When applied to self-play
GO establishes the existence of pairs of algorithms in which one
is superior for all possible joint payoff functions f. This result
stands in marked contrast to similar analyzes for optimization in
nonself-play settings. Basically, the result arises because under
a maximin criteria the sum over all payoff functions f is not
equivalent to a sum over all functions minz f(-,Z). We have
shown that for simple algorithms, we can calculate expected per-
formance over all possible payoff functions and in some cases
determine the fraction of functions where one algorithm outper-
forms another. On the other hand, we have also shown that for
the more general biological coevolutionary settings, where there
is no sense of a “champion” like there is in self-play, the NFL
theorems still hold.

Clearly, we have only begun an analysis of coevolutionary
and self-play optimization. Many of the same questions posed
in the traditional optimization setting can be asked in this more
general setting. Such endeavors may be particularly rewarding
at this time given the current interest in the use of game theory
and self-play for multiagent systems [27].

APPENDIX

A. Performance Comparison

In this appendix, we evaluate the fraction of functions for
which a; performs better or equal to algorithm as, where a
and as are defined, as in Section VI-B.

The function f(perf, (f) — perfy(f)) is equal to 1 if

Cd1 + elcdg + 6266?16?2 + élédl + Edg + 6356?16?2

where ¢ = (min(j1, k1) > [Y|{(9)),d1 = (max(j1,J2,7)
J1), d2 = (max(ji,j2,m) = ja2),e1 = (min(jy, k1)
min(j27k2))7 €2 = (mln(Jllkl) 2 min(mp)),eg,

(min(ja, k2) > min(n,p)). In the above Boolean expression,
we have used the condensed notation ab = aAb,a+b=a Vb,
and a = —a. Itis convenient to factor the Boolean expression as

c(dy + erds + eadida) + E(€1dy + da + e3didz).

To give the fraction of functions where a; performs better
than as, this expression is to be summed over j1, j2, k1, k2, 7,

IAVARI



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

TABLE III
MULTIPLICITIES OCCURRING WHEN CONVERTING THE
SUM OVER f TO A SUM OVER THE ALLOWED
VALUES OF j1, J2, k1, k2,1, AND p

J1 1

J2 1 )
ki | (Y] =k + 1) = (Y] = k)it
ko | (Y- kz + 1)’"1 — (Y] = k)t 1
n __ ( _ 1)1—2 )

p | (Y]- P+ )=t — (Y| —p)i—?

and p with appropriate multiplicities. The multiplicities are
given in Table III.
In the continuum limit this sum becomes the integral

'/01 djl/ol djz/o1 dklp(kl)/ol dkgP(k'g)/Ol dnP(n)

1
X / dpP(p){c(d1 +61d2+62(j16i2)+6(éld1 +d2+€36216i2)}
0

where P(ky) = (I - 1)(1 — k1)""2, P(ks) = (I — 1)(1 -
k)2, P(n) = (I — 2)n1=%, P(p) = (I — 1)(1 — p)'~2,
and condition ¢ is modified to min(ji,k1) > (g). Though
this integral is difficult to evaluate analytically, it is straight-
forward to evaluate by Monte Carlo importance sampling of
(j1,72,k1,k2,m,p) using the respective probability distri-
butions. Samples from P(u) = ¢(1 — u)?~! are obtained
by sampling values v from U(0,1) and transforming so that
u = 1 — v"/%; samples from P(w) = qw?~" are obtained via
w = v/,

B. Determination of m,..(§): Distinct Y

To determine mw,(g), we first consider the case where all Y
values are distinct and then consider the possibility of duplicate
Y values. Though we only present the nondistinct case in the
main text, we derive the distinct Y case here because we can
obtain a closed-form expression for the probability and because
it serves as a simpler introduction to the case of nondistinct Y.

To derive the result, we generalize from a concrete example.
Consider the case where |Y| = 10,l(z) = 5, and k =
A particular instantiation is presented in Fig. 3. In this case
r = 4/10, which is not the true minimum for responses to .
The probability that 7 is the true minimum is simply k/I(z).
If 7 is not the true minimum then P(g|d,,) is found as fol-
lows. P(¢§ = 1/10]d,,) is the fraction of functions containing
Y values at {1/10} U d%Z 17 Since the total number of possi-

bilities consistent with the data is (ll()g) _—];c) this fraction is
Y[—k=1,, Y|k, _ -
(l_(z) k — >/(l_( ) — )— (I(z) = k)/(|Y| = k). Similarly,

P(g = 2/10/d,) s <£$_k_

know that the function can not contain a sample having fitness
less than 2/10.

)/( l|(1;|) k) because we

17By d% we mean the set of Y values sampled at z..

733
Y 1/10 | 2/10 | 3/10 | 4/10 | 5/10 | 6/10 | 7/10 | 8/10 | 9/10 | 10/10
f(&, ) * * * * *
dy atz * * *
P(gldy) | 6/21 | 5/21 | 4/21 | 6/21 0 0 0 0 0 0
Fig. 3. Row 1 indicates the Y values obtainable on a particular payoff

function f for each of the /(x) = 5 possible antagonist responses. Row 2 gives
the Y values actually observed during the training period. Row 3 gives the
probabilities of ¢ assuming a uniform probability density across the f which
are consistent with d,,, . The expected value of P(g|d,, ) is 2.48/10.

Y 1/10 2/10 3/10 4/10 | 5/10 | 6/10 | 7/10 | 8/10 { 9/10 | 10/10
f(z,) * * % *
d¥ atz * %
P(gld) | 19/100 | 17/100 | 15/100 | 49/100 0 0 0 0 0 0

Fig. 4. Row 1 indicates the Y values obtainable on a particular payoff
function f for each of the [(z) = 5 possible antagonist responses. Row 2 gives
the Y values actually observed during the training period. Row 3 gives the
probabilities of ¢ assuming a uniform probability density across the f which
are consistent with d,,. Note that unlike Fig. 3 there are some duplicate Y
values. The expected value of P(§|d,, ) is 2.94/10.

Thus, in the general case, we have
N 1 ~[a—1Y]g
T (9) = 7~ {9(7" -9 < b_' 1|g>
a
(i)
8 <a— |5;|r—|— 1)}

where a = |Y| — k,b = I(z) — k,0(z) = 1iff x > 0, and
05 = 1iff g = 7. Since it is easily verified that

a—g\ _ (a

b—1 ) \b
this probability is normalized correctly. The expected value of
g s, therefore

Y |r—1

(a—|l;|r+l>+ Z:I

g'=

- 1 a—|Y|r+1
Gl = —ox 4 (7
|w(b)
[v|r—1 ol i
j: ~/ -
+ =1 1g<b_1>
g:

Evaluating this sum, we find

s = [ ()] {(i51) - (0]
_ YT e M (a1 - [Vt
b+1 s

where the falling power a® is defined by a% = a(a — 1)(a —
2)---(a — b+ 1). For the case at hand where |Y| = 10,1(z) =
5,and k = 3, wehave ¢ = 7 and b = 2. Since r = 4/10
the expected value is E(g|d,,) = (1/10)(82 — 42)/(3 - 72) =
52/21 ~ 2.48/10.

C. Determination of my, »(§): Nondistinct Y

In Fig. 4, we present another example where I[(z) = 5,k = 3,
and » = 4/10. In this case, however, there are duplicate Y
values. The total number of functions consistent with the data is
|YV|'@)~k = |Y|°. In this case, it is easiest to begin the analysis



734 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 9, NO. 6, DECEMBER 2005

with the case g = r. The number of functions having the min-
imum of the remaining b points equal to |Y| is 1. Similarly, the
number of functions having a minimum value of (|Y| — 1) is
20 — 1. 2° counts the number of functions where the b function
values can assume one of Y or Y — 1. The —1 accounts for the
fact that 1 of these functions has a minimum value of Y and not
Y — 1. Generally, the number of functions having a minimum
value of 7/ is (|Y| = |Y|r'+1)* = (|Y| =Y |r")’. All7’ > 7 will
result in the minimal observed value 7 so that the total number
of functions having an observed minimum of 7 is

Y]
SOV = YT+ 1" = (Y] = [V = (Y]~ Y]+ 1)

Thus, the probability of g = r is
The(§ = 1) = [Y7H(IY] = [V]r + 1)
We turn now to determining the probabilities where g < 7.
Of the b remaining Y values, the probability that the min-
imum is g is
e (9) = YTV = Y13+ 1)" = (Y] = [Y19)"}.

Combining these results, we obtain the final result
1\*
ke (§) = 0(r = §) (1 - g+ m) —(1-9)"

b
+ 0,5 |:1—’I“+L:| .
g |Y|

Given 7, ,-(§), the expectation value of § is found as
1\
EGhdn) = (1-7+ 37 )
Y]

r—1/|Y| 1\"
(1-9+57) -9

+ >
-3 (-(-m)

a=1/Y|
where we have canceled appropriate terms in the telescoping
sum. If we define Sy, (n) = >, i*, then we can evaluate the
last sum to find

E(gldm) = Y {S(IY]) = Sp(IY] = [Y]r)}.

Though there is no closed form expression for Si(n), arecursive
expansion of Si(n) in terms of S;(n) for j < k is

k—1
1 _i(k+1
Sp(n) = —— =N (=) (P TS,
) = g o = e (57 ) s
The recursion is based upon Sp(n) = n.
In the concrete case above where |Y| = 10,7 = 4/10 and
b = 2, the expected value is (1/10)294/100 = 2.94/10.

D. Continuum Limit

In the limit where |Y'| — oo, we can approximate the expec-
tation E(g|d,) given by the sum

T

E(gldn) = D (1=("=1/|Y])’
r=1/Y|
r—=1/|Y|
= ) @a-r
r’'=0

by the integral

1

= b+—1{1 —(L=7)"*1} (6)

E(3ldm) = / (-

The prediction made by this approximation at |Y| = 10,7 = 4,
and b = 21is2.61/10 as opposed to the correct result of 2.94/10.
However, had |Y| = 1000 and » = 400, the accurate result
would have been 261.65/1000, while the approximation gives
261.3/1000.

ACKNOWLEDGMENT

The authors would like to thank the editor D. Fogel and the
anonymous referees for many helpful comments.

REFERENCES

[1] R.J. Aumann and S. Hart, Handbook of Game Theory with Economic
Applications Amsterdam, The Netherlands, 1992.

[2] N. Barricelli, “Numerical testing of evolution theories: Part II: Prelimi-
nary tests of performance, symbiogenesis and terrestrial life,” Acta Bio-
theoretica, vol. 16, no. 3,4, pp. 99-126, 1963.

[3] A. Bucci and J. B. Pollack, “Order-theoretic analysis of coevolution
problems: Coevolutionary statics,” in Proc. Bird of a Feather Workshops,
Int. Conf. Genetic Evol. Comput., A. Barry, Ed., New York, NY, 2002,
pp. 229-235.

[4] K. Chellapilla and D. B. Fogel, “Evolution neural networks, games, and
intelligence,” Proc. IEEE, vol. 87, pp. 1471-1498, 1999.

[5] S. Christensen and F. Oppacher, “What can we learn from no free lunch?
A first attempt to characterize the concept of a searchable function,” in
Proc. Genetic Evol. Comput. Conf., L. Spector, E. D. Goodman, A. Wu,
W. B. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk,
M. H. Garzon, and E. Burke, Eds., San Francisco, CA, July 7-1, 2001,
pp. 1219-1226.

[6] Y. Cohen, T. L. Vincent, and J. S. Brown, “A G-function approach to fit-
ness minima fitness maxima, evolutionarily stable strategies, and adap-
tive landscapes,” Evol. Ecology Res., vol. 1, pp. 923-942, 1999.

[7] D. W. Corne and J. D. Knowles, “No free lunch, free leftovers theorems
for multiobjective optimization problems,” in Lecture Notes in Computer
Science. New York: Springer-Verlag, 2003, Proc. 2nd Int. Conf. Evol.
Multi-Criterion Opt., pp. 327-341.

[8] E. D. de Jong and J. B. Pollack, “Ideal evaluation from coevolution,”
Evol. Comput., vol. 12, no. 2, pp. 159-192, 2004.

[9] S. Droste, T. Jansen, and 1. Wegener, “Optimization with randomized
search heuristics—The (A)NFL theorem, realistic scenarios, and diffi-
cult functions,” Theor. Comput. Sci., vol. 287, no. 1, pp. 131-144, 2002.

[10] T. M. English, “Optimization is easy and learning is hard in the typical
function,” in Proc. Congr. Evol. Comput., A. Zalzala, C. Fonseca, J. H.
Kin, and A. Smith, Eds., La Jolla, CA, 2000, pp. 924-931.

, “On the structure of sequential search: Beyond “no free lunch”,”

in EvoCOP, Lecture Notes in Computer Science, J. Gottlieb and G. R.

Raidl, Eds. New York: Springer-Verlag, 2004, vol. 3004, pp. 95-103.

[11]



WOLPERT AND MACREADY: COEVOLUTIONARY FREE LUNCHES

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

S. L. Epstein, “Toward an ideal trainer,” Mach. Learn., vol. 15, pp.
251-277, 1994.

S. G. Ficici and J. B. Pollack, “A game-theoretic approach to the simple
coevolutionary algorithm,” in Parallel Problem Solving from Nature VI,
M. Schoenauer, K. Deb, G. Rudolph, X. Yao, E. Lutton, H.-P. Schwefel,
and J. J. Merelo, Eds. New York: Springer-Verlag, Sep. 2000.

D. B. Fogel and A. Ghozeil, “A note on representations and variation
operators,” IEEE Trans. Evol. Comput., vol. 1, no. 2, pp. 159-161, Jul.
1997.

D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, “A self-learning evo-
lutionary chess program,” Proc. IEEE, vol. 92, pp. 1947-1954, 2004.
L. J. Fogel and G. H. Burgin, “Competitive goal-seeking through evo-
lutionary programming,” Air Force Cambridge Research Labs., Cam-
bridge, MA, Final Rep. Contract AF 19(628)-5927.

A. Franz, K. H. Hoffmann, and P. Salamon, “Best possible strategy for
finding ground states,” Phys. Rev. Lett., vol. 86, pp. 5219-5222, 2001.
D. Fudenberg and J. Tirole, Game Theory. Cambridge, MA: MIT
Press, 1991.

W. D. Hillis, “Coevolving parasites improce simulated evolution as an
optimization procedure,” in Artificial Life, C. G. Langton, C. Taylor, J.
D. Farmer, and S. Rasmussen, Eds. Reading, MA: Addison-Wesley,
1992, pp. 313-322.

J. H. Holland, Adaptation in Natural and Artificial Systems.
bridge, MA: MIT Press, 1975.

C. Igel and M. Toussaint, “A no-free-lunch theorem for nonuniform dis-
tributions of target functions,” J. Math. Modeling, Algorithms, vol. 3, no.
4, pp. 313-322, 2004.

M. Koeppen, D. H. Wolpert, and W. G. Macready, “Remarks on a recent
paper on the ‘no free lunch’ theorems,” IEEE Trans. Evol. Comput., vol.
5, no. 3, pp. 295-296, Jun. 2001.

W. G. Macready and D. H. Wolpert, “What makes an optimization
problem hard?,” Complexity, vol. 5, pp. 40-46, 1996.

, “Bandit problems and the exploration/exploitation tradeoff,” IEEE
Trans. Evol. Comput., vol. 2, pp. 2-22, 1998.

J. Maynard Smith, Evolution and the Theory of Games.
U.K.: Cambridge Univ. Press, 1982.

M. Oltean, “Searching for a practical evidence for the no free lunch
theorems,” in Biolnspired Approaches to Advanced Information Tech-
nology, LNCS 3141, A. Ijspeert et al., Eds. Lausanne, Switzerland:
Springer-Verlag, Jan. 2004.

S. Parsons and M. Wooldridge, “Game theory and decision theory in
multi-agent systems,” Autonomous Agents Multi-Agent Sys., vol. 5, no.
3, pp. 243-254, Sept. 2002.

N. J. Radcliffe and P. D. Surry, “Fundamental limitations on search al-
gorithms: Evolutionary computing in perspective,” Computer Science
Today: Recent Trends and Developments, LNCS 1000, pp. 275-291,
1995.

J. Reed, R. Toombs, and N. Barricelli, “Simulation of biological evolu-
tionary and machine learning,” J. Theroet. Biol., vol. 17, pp. 319-342,
1967.

Cam-

Cambridge,

735

[30] C. Schumacher, M. D. Vose, and L. D. Whitley, “The no free lunch and
problem description length,” in Proc. Genetic Evol. Comput. Conf., L.
Spector, E. D. Goodman, A. Wu, W. B. Langdon, H.-M. Voigt, M. Gen,
S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, and E. Burke, Eds., 7-11,
2001, pp. 565-570.

D. Whitley, “A free lunch proof for gray versus binary encodings,” in
Proc. Genetic Evol. Comput. Conf., W. Banzhaf, J. Daida, A. E. Eiben,
M. H. Garzon, V. Honavar, M. Jakiela, and R. E. Smith, Eds., Orlando,
FL, 1999, pp. 726-733.

D. H. Wolpert, “The relationship between PAC and the statistical physics
framework, the Bayesian framework and the VC framework,” in The
Mathematics of Generalization. Reading, MA: Addison-Wesley,
1995, pp. 117-215.

——, “The existence of a priori distinctions between learning algo-
rithms,” Neural Comput., vol. 8, pp. 1391-1420, 1996.

, “The lack of a priori distinctions between learning algorithms,”
Neural Comput., vol. 8, pp. 1341-1390, 1996.

, “Bounded rationality game theory,” Inf. Theory, 2004, submitted
for publication.

D. H. Wolpert and W. G. Macready, “No free lunch theorems for op-
timization,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-83, Apr.
1997.

[31]

[32]

[33]

[34]

[35]

[36]

David H. Wolpert received the B.S. degree from Princeton University,
Princeton, NJ, and the Ph.D. degree in physics from the University of
California, Santa Barbara.

He is currently a Senior Computer Scientist at the NASA Ames Research
Center, Moffett Field, CA, and a consulting Professor at Stanford University,
Stanford, CA. He was formerly the head of a data mining group at IBM Almaden
Research and a Postdoctoral Fellow at the Santa Fe Institute. His work pri-
marily concerns how to design collectives of complex adaptive agents to achieve
a global goal (i.e., distributed control and/or distribution optimization). Other
work investigates the bounds on computation that hold in broad classes of phys-
ical universes, and the use of self-dissimilarity as a complexity measure. He also
works on the extension of game theory to subrational games using techniques
from statistical physics.

William G. Macready is Director of Product Development at D-Wave Systems,
Vancouver, BC, Canada, a company commercializing quantum computing for
optimization. At D-Wave, he is responsible for developing algorithms which
exploit quantum mechanical effects in superconducting electronics. Prior
to D-Wave, he was a Senior Scientist at the NASA Ames Research Center,
Moffett Field, CA, where he worked on machine learning, data analysis and
distributed optimization applications. His primary interests lie in applications
of probabilistic inference to problems in learning, optimization, and control.
He has published in a variety of fields including physics, machine learning,
optimization, economics, and molecular biology.



	toc
	Coevolutionary Free Lunches
	David H. Wolpert and William G. Macready
	I. I NTRODUCTION
	II. B ACKGROUND
	III. M OTIVATION
	A. Self Play
	B. Bandit Problems

	IV. G ENERALIZED O PTIMIZATION F RAMEWORK
	A. Formal Specification of Generalization Optimization
	B. Examples of the Framework
	Example 1: One example of GO is the scenario considered in the o
	Example 2: The formal specification of two-player self-play in t
	Example 3: Another example is the $k$ -armed bandit problem intr
	Example 4: In the general biological coevolution scenario [ 6 ],


	V. A PPLICATION TO S ELF -P LAY
	A. Definitions


	TABLE I E XHAUSTIVE E NUMERATION OF A LL P OSSIBLE F UNCTIONS $f
	B. An Exhaustive Example
	VI. C ONSTRUCTION OF F REE L UNCHES
	A. Algorithms Having Different Expected Performance
	Summary of Results: For reference, we summarize these results, a

	B. Performance Difference


	Fig.€1. Expected performance of algorithm $a_1$ (indicated as $\
	Fig.€2. The fraction of functions in the continuum limit where a
	C. Other Champion-Selection Criteria
	D. Better Training Algorithms

	TABLE II E XHAUSTIVE E NUMERATION OF A LL 16 P OSSIBLE A GENT P 
	VII. R OLE OF THE A NTAGONIST ' S I NTELLIGENCE
	VIII. C ONCLUSION
	A. Performance Comparison


	TABLE III M ULTIPLICITIES O CCURRING W HEN C ONVERTING THE S UM 
	B. Determination of $\pi_{k,r}(\mathtilde{g})$: Distinct $Y$

	Fig.€3. Row 1 indicates the $Y$ values obtainable on a particula
	Fig.€4. Row 1 indicates the $Y$ values obtainable on a particula
	C. Determination of $\pi_{k,r}(\mathtilde{g})$: Nondistinct $Y$
	D. Continuum Limit
	A CKNOWLEDGMENT
	R. J. Aumann and S. Hart, Handbook of Game Theory with Economic 
	N. Barricelli, Numerical testing of evolution theories: Part II:
	A. Bucci and J. B. Pollack, Order-theoretic analysis of coevolut
	K. Chellapilla and D. B. Fogel, Evolution neural networks, games
	S. Christensen and F. Oppacher, What can we learn from no free l
	Y. Cohen, T. L. Vincent, and J. S. Brown, A G-function approach 
	D. W. Corne and J. D. Knowles, No free lunch, free leftovers the
	E. D. de Jong and J. B. Pollack, Ideal evaluation from coevoluti
	S. Droste, T. Jansen, and I. Wegener, Optimization with randomiz
	T. M. English, Optimization is easy and learning is hard in the 
	S. L. Epstein, Toward an ideal trainer, Mach. Learn., vol. 15, 
	S. G. Ficici and J. B. Pollack, A game-theoretic approach to the
	D. B. Fogel and A. Ghozeil, A note on representations and variat
	D. B. Fogel, T. J. Hays, S. L. Hahn, and J. Quon, A self-learnin
	L. J. Fogel and G. H. Burgin, Competitive goal-seeking through e
	A. Franz, K. H. Hoffmann, and P. Salamon, Best possible strategy
	D. Fudenberg and J. Tirole, Game Theory . Cambridge, MA: MIT Pre
	W. D. Hillis, Coevolving parasites improce simulated evolution a
	J. H. Holland, Adaptation in Natural and Artificial Systems . Ca
	C. Igel and M. Toussaint, A no-free-lunch theorem for nonuniform
	M. Koeppen, D. H. Wolpert, and W. G. Macready, Remarks on a rece
	W. G. Macready and D. H. Wolpert, What makes an optimization pro
	J. Maynard Smith, Evolution and the Theory of Games . Cambridge,
	M. Oltean, Searching for a practical evidence for the no free lu
	S. Parsons and M. Wooldridge, Game theory and decision theory in
	N. J. Radcliffe and P. D. Surry, Fundamental limitations on sear
	J. Reed, R. Toombs, and N. Barricelli, Simulation of biological 
	C. Schumacher, M. D. Vose, and L. D. Whitley, The no free lunch 
	D. Whitley, A free lunch proof for gray versus binary encodings,
	D. H. Wolpert, The relationship between PAC and the statistical 
	D. H. Wolpert and W. G. Macready, No free lunch theorems for opt



