
SOFTWAREPRACTICE AND EXPERIENCE, VOL. 2, 397-400 (1972)

Computer Recreations
by

PAUL BRATLEY AND JEAN MILL0

D6partement d 'Informatique, University of Montreal, Montreal, Canada

Self- Reproducing Programs*t

It has been known for some years that certain systems are capable of creating independent
copies of themselves, given a suitable supply of raw material in their environment. For
instance, von Neumannl introduced the notion of a cellular space and envisaged an auto-
maton embedded in the space which is capable of building a copy of itself and then setting
the copy to work independently. Further work on these lines has been reported by Codd,2
Myhil13 and others. Besides these abstract automata, real mechanical systems which are
capable of self-reproduction have been built, for instance by P e n r o ~ e . ~

Since there is an obvious relationship between the programs which can be written in a
given programming language on the one hand, and the algorithms which can be imple-
mented by a particular class of abstract automata on the other, the question naturally arises:
In what programming languages can self-reproducing programs be written ? We first make
some attempt to define what we mean by 'self-reproducing' in this context and then exhibit
some programs which have the desired property. In particular, we show that self-reproducing
programs can be written in SNOBOL, LISP, FORTRAN and ALGOL 60.

No formal definition of self-reproducibility will be attempted, but we lay down the
following ground rules.

(I) A self-reproducing program must produce a copy of itself which is in some sense
exact. For instance, in the examples which follow, the SNOBOL program actually
punches a deck of cards identical to the source program deck; the LISP program
prints a list with the same structure as itself; and the FORTRAN program writes
on to tape card images identical to the source deck. No brackets or string quotes
are lost; if the original program necessarily contains continuation lines then so does
the copy and so forth.

(2) No data files may be read or written by the program (with the exception, perhaps, of
a file on which the copy is produced).

(3) The program must not depend essentially on a knowledge of the internal representa-
tion of any particular character, numerical value or other data object, nor must it make
any special assumptions about the compiler which is to be used.

Certain trivial cases can be dismissed with little ado. Firstly, it seems extremely likely that
self-reproducing programs can be written in the assembly language of any normal digital

* This work was supported in part by a grant from the National Research Council of Canada.
t so is delighted to print this article in place of his own regular contribution.

Received 21 June 1972

397
@ 1972 by John Wiley & Sons, Ltd.

398 COMPUTER RECREATIONS

computer. (We except, for instance, curious devices fit only for missile guidance systems.)
A little care is needed to avoid violating rule (3) above, but that is all.

Secondly, it is easy to invent programming languages in which self-reproduction is pos-
sible. For instance, let L be the language with the following definition:

(a) A program in L is any string of characters followed by an end-of-file mark.
(b) The effect of any program in L at execution time is for each character in the string

Then clearly any program in L is a self-reproducing program: self-reproduction is not
merely possible, but indeed inevitable. (L, trivial though it is, provokes one or two amusing
questions. For instance, most computer systems possess an L-interpreter, in the shape of a
utility 'copy' routine. Would it ever be worth while providing an L-compiler for strings of
text which will be reproduced frequently ?)

Our original question is therefore only interesting if we restrict our attention to widely
known and well standardized programming languages.

Four examples of self-reproducing programs are given as Figures 1-4. The first three
programs have actually been run on the University of Montreal's CDC 6400, using standard
compilers available on the system. The fourth program, in ALGOL 60, has not been tested
on a machine, since on the one hand the representation of ALGOL used by the 6400's
compiler differs considerably from the reference language and, on the other, the 1 / 0
procedures oifered by our system are not those used in the example.

The simplest example, Figure 1, is a SNOBOL4 program which writes its own text on to
the card punch. The program obeys the rules for writing SNOBOL programs presented in
Reference 5 . Once it has been pointed out that the variable A contains the text of line 4,
while B contains the text of line 5 , no further explanation should be required.

to generate a copy of itself on the output medium.

x = 6 " ' ; y = " 6 "

A = "PUNCH = ' X = 'Y X Y'; Y = ' X Y X ; PUNCH = 'A = ' X A X "
B = "PUNCH = ' B = 'X B X; PUNCH = A; PUNCH = B;END"
PUNCH = ' X = 'Y X Y '; Y = ' X Y X ; PUNCH = ' A = ' X A X
PUNCH = 'B = ' X B X; PUNCH = A ; PUNCH = B;END

Figure I . Self-reproducing SNOBOL program

Next, Figure 2 is a self-reproducing LISP6 program. It consists essentially of the defini-
tion and call of a function C which, among other things, uses GET to print out its own
definition.

DEFINE ((
(C (PROG (A)
(PRINT (QUOTE DEFINE))
(PRINT (LIST(LIST(LXST(QU0TE C) (GET(QU0TE C) (QUOTE EXPR))))))
(PRINT (QUOTE C))
(PRINT (LIST A))
(PRINT (QUOTE STOP))
(PRINT (QUOTE FIN))))))
C (NIL)
STOP
FIN

Figure 2. Self-reproducing LISP program

Figure 3 is a FORTRAN program which writes its own text as card images on unit 99.
Except for the first line, which is necessary if the program is to run on the CDC 6400, the

COMPUTER RECREATIONS 399

program is in ANSI FORTRAN as specified in Reference 7. It was convenient to make use
of the knowledge that one machine word would hold ten Hollerith characters, but the pro-
gram does not depend crucially upon this fact: the spirit of our rule (3) is therefore observed.
The structure of the program is obvious.

PROGRAM A (TAPE99)
DIMENSION M(64)
DATA (M(I), I = 1, 64)/

llOH WRIT,lOHE (99, l)M ,10H ,10H s

110H ,10H ,10H ,10H
110H 1 FORM,lOHAT(6X,18HP ,lOHROGRAM A (,10HTAPE99),/,:
110H6XJ 5HD IME,l OHNS ION M(64,l OH),/,6X, ,10H 9

llOH 119HD,lOHATA (M(I), ,lOHI = 1,64)/,/ ,lOH,15(5X,lH1,
llOH,4(3HlOH,A ,lOHlO,lH,),/) ,lOH,SX,lHl, ,10H ,
110H 13(3H,1 OHlOH,AlO,lH ,lOH,),3HlOH,A ,lOHlO,lH/) ,
llOH ,10H ,10H ,1OH Y

110H WRIT,lOHE (99,2)M ,10H ,10H ,
llOH ,1OH ,1OH ,10H D

llOH 2 FORM,lOHAT(SAlO) ,10H ,10H ,
llOH ,10H ,10H ,1OH #

llOH STOP,lOH ,10H ,1OH 9

llOH ,10H ,10H ,lOH ,
llOH END,lOH ,10H ,10H 9

llOH ,1OH ,10H ,10H I
WRITE (99, l)M

1 FORMAT(6X,lBHPROGRAM A (TAPE99),/,6X,lSHDIMENSION M(64),/,6X,
11 9HDATA (M(I), I = 1,64)/,/,15(5X,lH1,4(3H10H,A10,1 H,),/),SX,lHl,
13 (3H1 OH,AlO, 1 H,),3H1 OH,AlO, 1 H/)
WRITE (99,2)M

STOP
END

2 FORM*AT(SAlO)

Figure 3. Self-reproducing FORTRAN program

Finally, Figure 4 is a program in ALGOL 608 which writes its own text on to channel 1.
The input-output procedures used are those suggested in Reference 9. These procedures
do not allow one to specify such details as line-feed and carriage-return, but on the other

begin procedure p(a) ; string a ;
begin outstring (I , a);
outsymbol (I , " ' I , 1) ; outstring (I , a);
outsymbol (I , " ", 2) ; outstring (I , ') end')
end;

p ('begin procedure $(a); string a;
begin outstring (I , a);
outsymbol (I , " ", I) ; outstring (I , a);
outsymbol (I , " ", 2) ; outstring (I , ') end')
end;

#('I end
Figure 4. Self-reproducing ALGOL program

hand they make no restrictions on the length of lines. The reader is therefore asked to
imagine that the self-reproducing program is typed simply as one continuous sequence of
ALGOL basic symbols, and that the output will be produced in the same form. It is
interesting to note that we were unable to write a self-reproducing ALGOL program using

400 COMPUTER RECREATIONS

only the input-output procedures suggested in Reference 10, which are essentially the ones
offered by the CDC system. The stumbling block is the apparent impossibility of printing
or punching a single closing string quote. An opening string quote can be printed by some
such instruction as

output 1 (chan, ‘ S ’ , “”)
but this trick will not work in the other case. I n the example we present, the procedure
outsymbol is used to get round this difficulty.

The example in ALGOL probably brings out most clearly the structure of the three
programs which reproduce their text on an external medium. If one ignores for a moment
all considerations of line-length, spacing and so forth, then a ‘general’ self-reproducing
program has the following structure:

string = ‘print (‘string = ’)

print (‘string = ’)
print (open quotes)
print (string)
print (close quotes)
print (string)

print (open quotes)
print (string) print (close quotes) print (string)’

Once this has been noticed, then the details of any particular representation or language can
often be filled in easily.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the help given them by Hamish Dewar, of Edinburgh
University, whose self-reproducing program in IMP encouraged attempts to find such
programs in other languages, and by their colleague Olivier Lecarme, who wrote a self-
reproducing program for the CDC 6400 ALGOL compiler, and also a self-reproducing
program in PL/1. Indeed, if this article has been limited to four examples, it was not because
others were not forthcoming. On the contrary, there is something about this particular
problem which excites keen programmers, so that research in self-reproducing program
design is now under way for practically every compiler on our system.

REFERENCES
1. J. von Neumann, Theory of Self-reproducing Automata (Ed. A. W. Burks), University of Illinois

2. E. F. Codd, Cellular Automata, Academic Press, New York, 1968.
3. J. Myhill, ‘The abstract theory of self-reproduction’, in Views on General Systems Theory (Ed.

4. L. S. Penrose, ‘Self-reproducing machines’, Sci. Am. 200, 105-114 (1959).
5 . R. E. Griswold, J. F. Poage and I . P. Polonsky, The S N O B O L 4 Programming Language, Prentice-

6. J . McCarthy (Chairman), LISP 1.5 Programmer’s Manual, M.I.T. Press, Cambridge, Massachusetts,

7. ‘FORTRAN vs basic FORTRAN’, Comm. A C M , 7 , 590-625 (1964).
8. P. Naur (Chairman), ‘Revised report on the algorithmic language ALGOL 60’, Comm. ACM, 6,

9. ‘Report on input-output procedures for ALGOL 60’, IFIP/WG 2.1, Comm. A C M , 7, 628-629

10. D. E. Knuth (Chairman), ‘A proposal for input-output conventions in ALGOL 60’’ Comm. ACM,

Press, Urbana, 1966.

M. D. Mesarovic), Wiley, New York, 1964, Chap. 7.

Hall, Englewood Cliffs, N.J., 1968.

1968.

1-17 (1963).

(1 964).

7, 273-283 (1964).

