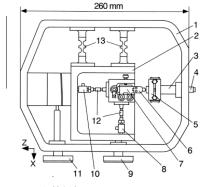
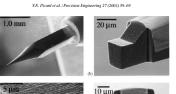
FRADPARC for Pocket Milling Machine


Functional Requirements	Design Parameters	Analysis	References	Risks	Counter Measures
1. 6axis / 3axis milling machine	Physics of operation		1. Electrochemical Machining, Philippe Allongue et al.	Large range for compliant mechanism	Double stage - different
 Range X, Y = 2cm 	Subtractive :	Modeling of machining process	Science Vol 289 July 2000		actuators
Z = 1cm	Rotating tool based machining	eg. Optimization of tool geometry for small tools	FIB shaped microtools , Picard	motor package size for high rpm ??	Larger package
3. Tolerance = 100nm	Electrochemical milling with ultrashort voltage pulses	Stress analysis on tools for micromachining	Precision Engineering 27(2003), 59-69 3. Construction and testing of nanomachining		
4. Total size = 5cm by 5cm by 5cm	Aditive		instrument, Gao et al. Precision Engineering 24(2000) 320-328		
	Two photon absorptive polymerization				
	Mechanics for stage	FEM analysis	4. Tool geometry study in micromachining, F Z Fang et al.,		
	Compliant mechanism based 6 DOF stage	First Order calculations	J. Micromech. Microeng. 13(2003) 726-731		

Compliant mechanism based 6 DOF stage Air bearing based XY stage (size consideration ??) Pneumatic motor for compact spindle First Order calculations Kinematic Models Configur

parallel Vs. serial mechanisms for XYZ stage

X riding on Y- workpiece , Bridge for Z -tool Workpiece fixed, XYZ tool


Polar

1: Main frame

- 2: Sub-frame
- 3: PZT
- 4: Capacitance probe
- 5: Sample holder
- 6: Tool shank and tool
- 7: Tool holder
- 8: Cutting force sensor
- 9: Y-directional fine positioning system
- 10: Thrust force sensor
- 11: Z-directional fine positioning system
- 12: Force decoupling flexures
- 13: Main flexures

Fig. 2. Schematic of the nanomachining instrument.

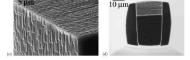
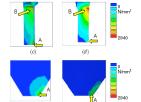



Fig. 3. (a) Low magnification view of a single crystal diamond tool shank and junction with mandrel. The tool cutting edges are fabricated on the last ~30 µm near the top. (b) Perspective-view, high magnification scanning electron micrograph of the same diamond tool showing the FIB-shaped facets. (c) Left side cutting edge of same microsol. This image shows the intersection of three FIB-shapted facets. (a) Left side

(e) (f)

Figure 6. Simulation analysis of various tool geometries. (a) Calculated stress of two-flute end-mills, 0.1 mm in diameter and 0.3 mm in flute length, (I) room in analysis of (0.4 c) calculated stress of Δ -type end-mills with straight body, 0.1 mm in diameter and 0.3 mm in in body length, (I) calculated stress OF bype end-mills with straight body, 0.1 mm in diameter and 0.3 mm in body length, (c) calculated stress of Δ -type end-mills with type end-mills with straight body, 0.1 mm in diameter and 0.3 mm in body length, (c) calculated stress of Δ -type end-mills with type end-mills with uppered body, 0.1 mm in diameter d end-mills with type end body of 1 mm in diameter.