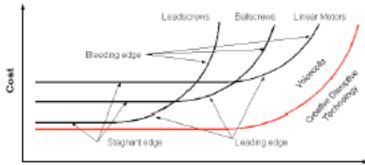
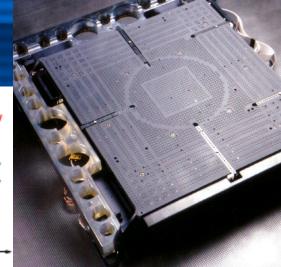
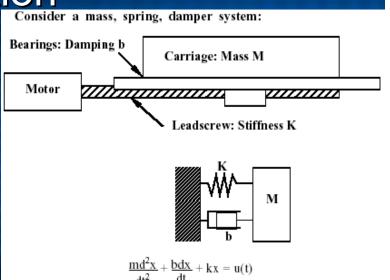

Selecting the right actuators in machine design Manu Prakash, 5 April 2004



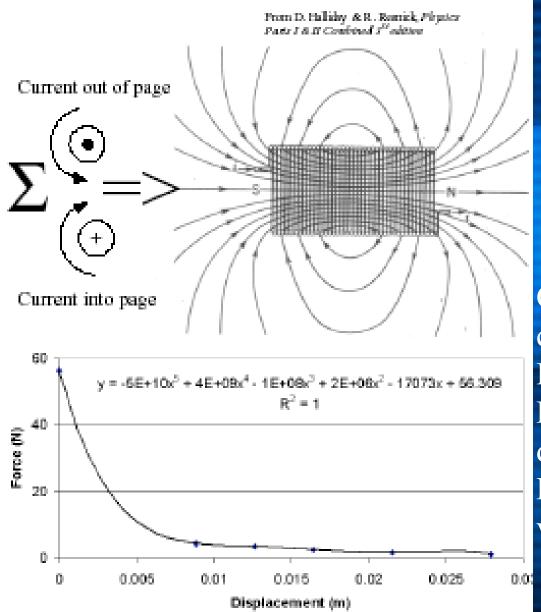
Electroactive Polymer (EAP) Actuators as Artificial Muscles Reality Petrolial, and Dalimpo


Federal Ball Colors

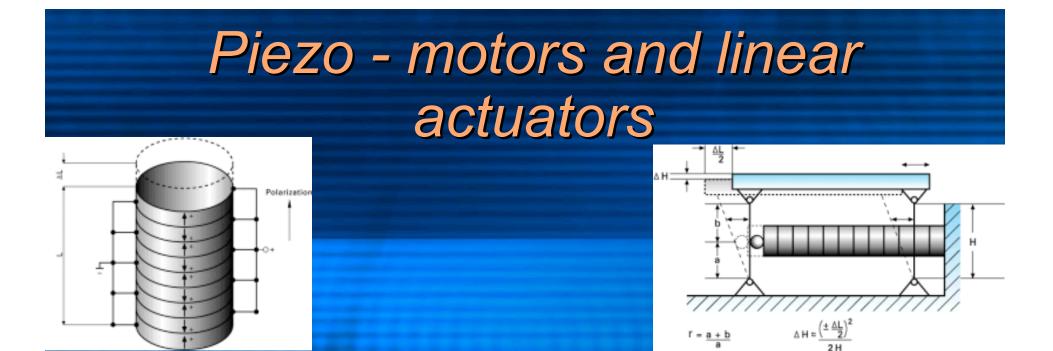
Performance



Designing a Servo system


 Servo mechanism intricately linked with mechanical design

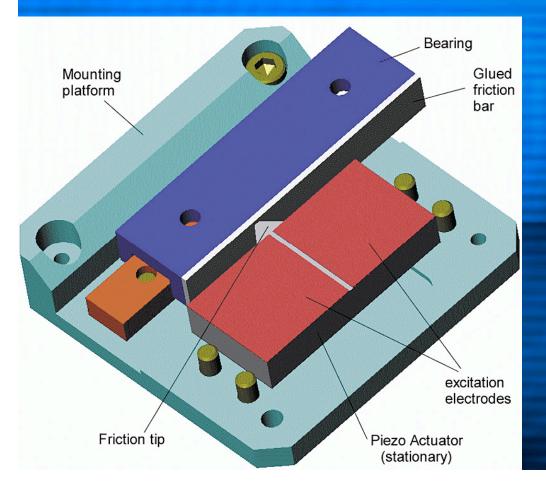
- Build a dynamic model of mechanical system
- Determine transfer function
- Size components accordingly



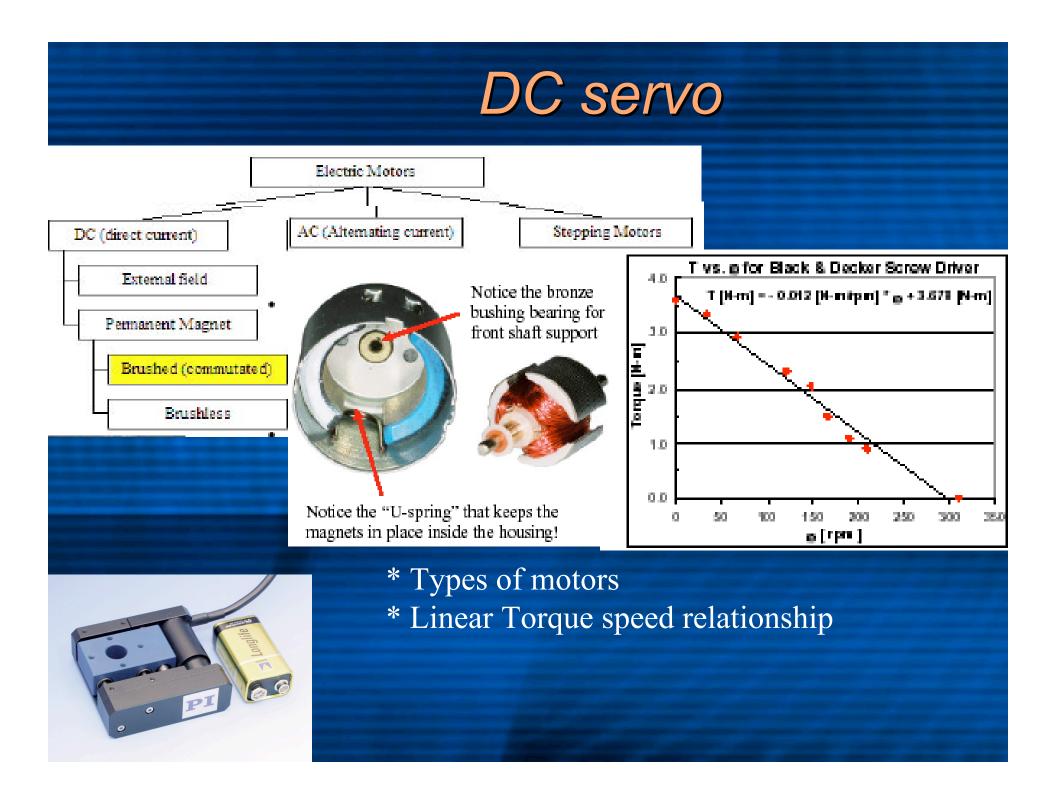
Coil wrapped around a magnetic circuit Easy to build, low cost. Force decreases drastically with distance x Miniature solenoid valves - lee valves

2.007 notes Prof. Slocum Solenoid force xls

Material : polycrystalline ferroelectric ceramic materials such as BaTiO3 and Lead Zirconate Titanate (Piezo) Applied potential produces a deformation and vice versa in the crystal Stacking is used to get large (still order of microns) range of motion nm order resolution, with very high stiffness. Very good for nano and micro manipulaiton stages see eg.



<u>Vendors :</u> <u>http://www.physikinstrumente.de</u> http://www.piezojena.com



Ultrasonic piezo motors

Show video : PI

Smallest large range translation stages 0.1 micron resolution with range dependening on size of friction bed Velocity upto 800mm/sec achievable

Stepper motor

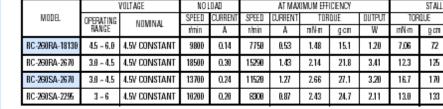
Both rotary and linear stepper Interesting linear 2D sawyer motor picture Resolution depends on least Turn possible Provides decent open loop performance Popular in stepper stages in lithography

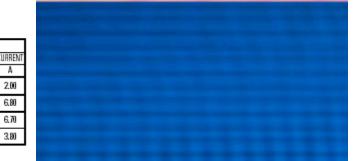
http://www.azorescorp.com/sawyermotorstage.htm

High resolution DC motors

DC motors driving a micrometer with a very fine lead screw
Sub-micron resolution achievable
Friction needs to be accounted for in the desgin (repetability)

eg. motor data sheet

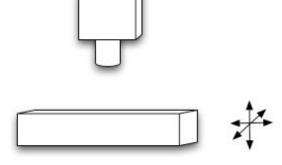



OUTPUT: APPROX 0.4W~20W

カーボンブラシ

http://www.mabuchi-motor.co.jp

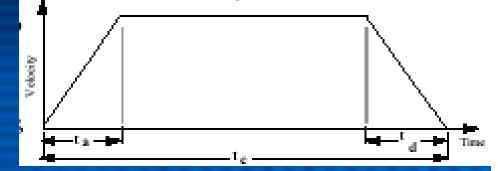
代表的用途 家電機器:マッサージャー/パイプレーター 玩具・模型:ラジコン



the second second	RC-26 RC-26
RE Series DC Motors	-
Time & and	5

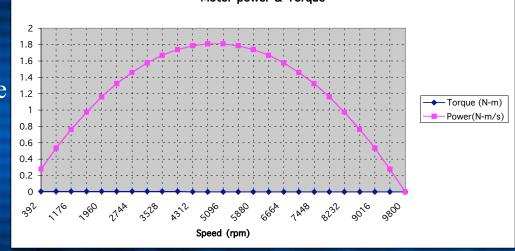
			201422	564 SOB	201500	20/15/1.2	281510	261542
$1\lambda 5$	itor Sata (provisional)							
1	Assigned power rating	W	0.5	0.5	0.5	0.5	0.5	0.5
- 2	Nominal solarge	Voe	P .4.	4.2	6.0	7.2	G.D	12.0
- 3	No load speed	rpin	14500	14700	13900	14900	15000	16200
- 4	Stal torque	main	0.859	0.895	0.624	0.822	0.920	0.859
- 5	Speed /torque gradient	rpm/mNn	10000	17000	17500	15600	16800	15900
- 6	No load current	пA	20	11	7	7	5	5
- 7	Starting current	mA.	581	.340	207	157	105	1.90
	Terminal resistance	Otm	4.12	12.3	29.0	38.5	54.5	92.2
- 19	Max permissible speed	rpm	22000	22000	22000	22000	22000	22000
10	Max. continuous current	лA	411	227	155	134	113	86.5
11	Max, continuous torque	mhin	0.625	0.625	0.616	0.595	0.625	0.593
12	Max, power output at nominal voltage	mW.	5121	.3.219	292	2119	255	2770
12	Max. efficiency		68.	68	67	97	68	67
14	Torque contatant	mBm/A	1.53	2.63	3,95	4.45	5.55	6.52
15	Speed constant	rpm / V	6240	2620	2400	2150	1720	1400
10	wechanical time constant		6	6	6	6	6	6
17	Potor inertia	gern ²	0.037	0.026	0.035	0.029	0.096	0.025
18	Terminal inductorios	nit	0.04	0.13	0.299	0.36	0.56	0.55
19	Thermal realitance housing-ambient	K/W	45	-42	46	43	40	45
20	Thermal realitance rotor-housing	K/W	22	22	22	22	52	22
21	Thermal time constant vinding		3	2	9	3	3	2

Case study : micromilling


Concept : fixed spindle XYZ micro motion stage Range = 20mm XY, 10mm Z Resolution = 0.1 micron XY translation max, speed = 5mm/sec M stage ~ 0.5 kg Spindle rpm > 10,000 rpm Tool size = 10 mils and below Micro milling Cutting force Fc = 100mN(independent of feed rate) Acceleration time ta = 1sec

P r-cutting = $(F \text{ cut})^2 / M$; based on cutting force P r-cutting = 0.5 * 10-2 W/sec

P r-load = (Mload * a+ Ff)*a ; based on inertial load Ff being friction forces; assumed 0.1N P r-load ~ 0.5 * 10-4 W/sec (smaller than cutting power rate)


Case study contd.

Now P load = P r-load * ta = 0.5 * 10 - 2 W $P_{\text{moto}} > 2 P_{\text{ load}}$ $P_{\text{motor}} \sim 10 - 2 \text{ W}$

For a lead screw carriage system, $\omega = 6 \times 10^{4} \times V_{load} / L$ where L (mm/rev) is lead screw lead.Let L =1 mm/rev $\omega = 300$ revolutions / minute From plot, torque roughly 6.77 mN

Motor power-speed torque plot can be made.

Actuator matrix

Size	Piezo O(cm- mm)	Solenoids O(cm)	Stepper O(cm)	DC/servo O(cm)	Ultrasonic piezoO(cm)	Hybrid	Airmotor O(cm)
	and						
range	O(um) Usually motion amplified	O(mm-cm)	Dependent O(cm - m)	Dependent O(um- m)	O(mm)	O(mm)	Dependent O(cm-m)
resolu tion	nm resolution	Binary usually	micron	nm with lead screws	nm resolution	nm	microns
force	High O(50N)	O(50 N)	medium	medium	Medium-low	high	high
stiffne ss	Very high	High, sharply falls with x	medium	medium	low	high	-
Power density	low	Medium-high	Medium-high	Medium-high	low	low	Very high
risk	Amplification hard ; high voltages; small range	Force falls with distance	heat produced ; thermal isolation of machine	Thermal isolation	Low stiffness;	-	High pressures
cost	High	medium	Medium-high	-	high	high	medium