Additive Manufacturing Standards

Evan Malone
NextFab Organization
May 4, 2009

Purpose of Standards

- make the development, manufacturing and supply of products and services more efficient, safer and cleaner
- facilitate trade between countries and make it fairer
- provide governments with a technical base for health, safety and environmental legislation, and conformity assessment
- share technological advances and good management practice
- disseminate innovation
- safeguard consumers, and users in general, of products and services
- make life simpler by providing solutions to common problems

http://www.iso.org/iso/about/discover-iso_what-standards-do.htm

Standards Evolution

- Internal Standards
 - Product quality control = better yields, lower costs, better reputation
- Supply Chains
 - For open-loop MFG, consistent output requires consistent inputs
- Spontaneous Industry-wide
 - Promote specialization, reduce costs of competition
- Standards Organization Products
 - Foster inter-industry exchange
 - Typ. Voluntary compliance
- Governmental Adoption
 - Develop own / adopt from Stds. Orgs
 - Public health & safety
 - "Picking winners" / corruption

Standards Organizations

- International
 - BIPM (Private non-profit)
 - Maintains SI units system by international treaty (Metre Convention)
 - ISO (Private non-profit)
 - The UN of standards orgs HQ in Geneva
 - NGO network of national standards institutes in 161 nations
 - 1 member / nation, some governmental, some industry partnerships
 - SAE International (Private non-profit)
 - ASTM International (Private non-profit)
 - IEEE (Private non-profit)
 - IEC International Electrotechnical Commission (Private non-profit)
- National (US)
 - ANSI (Private non-profit)
 - NIST (Governmental)
 - EIA (Private non-profit trace association)
 - ECA The Electronic Components, Assemblies, and Materials Association
 - GEIA The Government Electronics and Information Technology Association
 - JEDEC The JEDEC Solid State Technology division, formerly Joint Electron Devices Engineering Councils
 - TIA The Telecommunications Industry Association
 - ISA Internet Security Alliance
- Industry Groups
 - USB Specification HP, Intel, LSI, Microsoft, NEC, ST-Ericsson, etc.

Additive Manufacturing Standards

- From Standards Orgs:
 - SAE Intl. AMS4999- Titanium Alloy Laser Deposited Products 6al 4v –
 Annealed
 - ISO laser sintering of test specimens? (cannot find)
- Industry-wide "Spontaneous"
 - STL "Stereolithography format" (see http://www.ennex.com/~fabbers/StL.asp)
 - Developed by 3D Systems for STereoLithography in 1989 for CAD data export
 - Triangular tesselation of surface
 - No microstructure or material heterogeneity supported
 - SLC "Slice format" (see http://rpdrc.ic.polyu.edu.hk/old-files/slc_introduction.htm)
 - Developed by 3D Systems for data transfer for machine control
 - Describes stack of slices, with layer thickness, and pw. Linear boundaries
- Failed (academic)
 - SIF Solid Interchange Format (S. McMains, UC Berkely, ca. 1998)
 (http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.575)
 - Briefly pursued by NIST initiative in 1998

Product Model Data Standards

- IGES Initial Graphics Exchange Specification (NIST, USA)
 - Includes "product data" not just geometry
- ISO 10303 STEP Standard for the Exchange of Product Model Data
 - International follow on to IGES
 - Very (too?) generic see
 http://www.steptools.com/library/standard/step_2.html
 - Connect CAD to CAE and CAM in streamlined way
- Functional Representation "F-Rep"
 - http://hyperfun.org/wiki/doku.php?id=hyperfun:main
 - Allows for complex, multi-material, multi-scale designs
 - No good design tools available

CAM/Automation Standards

- ISO TC184 Automation Systems and Integration
 - TC 184/SC 1 Physical device control
 - TC 184/SC 2 Robots and robotic devices
 - TC 184/SC 4 Industrial data
 - TC 184/SC 5 Architecture, communications and integration frameworks
- EIA RS274D / ISO 6983 "G-Code"
 - Explicit low level commands to machine for motion and aux. actions
 - Mid-level commands like offsetting and arcs
 - No semantic content
- ISO 14649-1:2003 "STEP NC" (http://www.steptools.com/library/stepnc/)
 - Industrial automation systems and integration -- Physical device control -- Data model for computerized numerical controllers
 - Define "process steps" rather than low level motion commands
 - Allows semantic content, e.g. reference to part geometry
 - Trying to replace G-Code and place more intelligence in machine tool
- PLCOpen Open Automation Standard, TC2 committee on Function Blocks, TF Motion Control
 - http://www.plcopen.org/pages/tc2 motion control/
 - International
- IEC 61131-3
 - Programming languages for Programmable Controllers (Industrial Controllers)
 - See e.g. CoDeSys (http://www.3s-software.com/)

Why Formal AM Standards?

- No dedicated technical committees in industry or standards orgs
- Industry size is increasing > \$10⁹ (\$1.2B, 2008)
- Some existing standards inapplicable or restrictive
 - ABS from FDM process != extruded, cast, etc.
 - STL does not handle microstructure, heterogeneity, etc.
- Acceptance hindered by product variability

ASTM F42

- 1998: NIST sees need for standards in RP
 - http://www.mel.nist.gov/msidlibrary/summary/9818.html
- 1999-2007
 - **—** 3
- 2008: SME Rapid Technologies Additive Manufacturing (RTAM) sees need for standards in RP
 - selected ASTM after review of standards developing organizations (worldwide)
 - 14 individuals met Nov 2008 for preliminaries
 - Identified 4 key areas:
 - Terminology
 - Testing
 - Materials
 - Process-specific specs
 - 80+ industry / academic met in January '09 and formed ASTM F42 Additive Manufacturing

F42 Members

- 3D Systems Corporation
- Air Force Research Laboratory
- Arcam AB
- Aspect
- ASTM International
- BMW Group
- C.R.P. Technology
- Cornell University
- Custom-Fit
- Denel Dynamics
- Edmonds Community College
- EOS GmbH
- EOS of North America, Inc.
- Exatech, Inc.
- Fab@Home Project / NextFab Organization
- Forecast3D / Directed MFG Forecast3D / Directed MFG
- GE Aviation
- GE Global Research
- General Pattern
- Georgia Institute of Technology
- Honeywell
- Huntsman
- INSPIRE
- Loughborough University
- Materialise NV
- Medical Modeling, Inc.
- Met-L-Flo, Inc.
- NASA Huntsville
- Naval Air Warfare Center

- NCMS
- NIST
- North Carolina State University
- Objet Geometries
- Paramount Industries, Inc.
- Prototypes Plus R
- apid Quality Manufacturing, Inc.
- RPM and Associates, Inc.
- Saddleback Community College
- Siemens AG
- Society of Manufacturing Engineers
- Stratasys, Inc.
- Stryker Orthopaedics
- The Ex One Company, LLC
- University of Texas at Austin
- University of Tokyo
- Utah State University
- V.K.G. Wholers Associates Z Corporation

Check out ASTM.org to join..

ASTM F42 Structure

- Subcommittee on Terminology
 - Unify acronyms/process names (v. contentious)
 - Define terminology
- Subcommittee on Test Methods
 - How to measure standards compliance
- Subcommittee on Processes
 - What process params need to be monitored? Allowed ranges?
- Subcommittee on Materials
 - AM-specific materials issues, e.g. powder material morphology
- Subcommittee on Design
 - Design for AM
 - Data formats and exchange