The Physics of Information Technology

Neil Gershenfeld

revised draft: February 5, 2013
Contents

Preface

1 Introduction

2 Interactions, Units, and Magnitudes
 2.1 Units
 2.2 Particles and Forces
 2.3 Orders of Magnitude
 2.4 Selected References
 2.5 Problems

3 Noise in Physical Systems
 3.1 Random Variables
 3.1.1 Expectation Values
 3.1.2 Spectral Theorems
 3.2 Probability Distributions
 3.2.1 Binomial
 3.2.2 Poisson
 3.2.3 Gaussian
 3.2.4 Central Limit Theorem
 3.3 Noise Mechanisms
 3.3.1 Shot Noise
 3.3.2 Johnson Noise
 3.3.3 1/f Noise and Switching Noise
 3.3.4 Amplifier Noise
 3.4 Thermodynamics and Noise
 3.4.1 Thermodynamics and Statistical Mechanics
 3.4.2 Equipartition Theorem
 3.4.3 Fluctuation–Dissipation Theorem
 3.5 Selected References
 3.6 Problems

4 Information in Physical Systems
 4.1 Information
Contents

4.2 Channel Capacity ... 41
4.3 The Gaussian Channel 43
4.4 Fisher Information .. 46
4.5 Information and Thermodynamics 49
4.6 Selected References 50
4.7 Problems .. 50

5 Logic and Computation ... 52
5.1 Logic ... 54
5.2 Computation .. 54
5.3 Problems .. 54

6 Electromagnetic Fields and Waves 55
6.1 Vector Calculus ... 55
 6.1.1 Vectors ... 55
 6.1.2 Differential Operators 57
 6.1.3 Integral Relationships 59
6.2 Statics .. 60
 6.2.1 Electrostatics ... 60
 6.2.2 Magnetostatics 64
 6.2.3 Multipoles ... 67
6.3 Dynamics .. 70
 6.3.1 Maxwell’s Equations 70
 6.3.2 Boundary Conditions 71
 6.3.3 Electromagnetic Units 74
6.4 Radiation and Energy .. 74
 6.4.1 Waves ... 74
 6.4.2 Electromagnetic Energy 76
6.5 Selected References 78
6.6 Problems .. 78

7 Circuits, Transmission Lines, and Waveguides 80
7.1 Circuits ... 80
 7.1.1 Current and Voltage 80
 7.1.2 Kirchhoff’s Laws 81
 7.1.3 Resistance ... 81
 7.1.4 Power .. 83
 7.1.5 Capacitance .. 83
 7.1.6 Inductance .. 84
7.2 Wires and Transmission Lines 85
 7.2.1 Skin Depth .. 85
 7.2.2 Transmission Lines 87
 7.2.3 Wave Solutions 89
 7.2.4 Reflections and Terminations 91
7.3 Waveguides .. 94
 7.3.1 Governing Equations 94
Contents

7.3.2 Rectangular Waveguides ... 96
7.3.3 Circular Waveguides ... 97
7.3.4 Dielectric Waveguides and Fiber Optics 97
7.4 Selected References .. 99
7.5 Problems ... 100

8 Antennas .. 102
 8.1 Time-Dependent Potentials ... 102
 8.2 Dipole Radiation .. 106
 8.2.1 Infinitesimal Length .. 106
 8.2.2 Finite Length .. 108
 8.3 Duality and Reciprocity ... 110
 8.4 Antenna Types ... 113
 8.5 Selected References .. 115
 8.6 Problems ... 115

9 Optics .. 116
 9.1 Reflection and Refraction .. 116
 9.2 Geometrical Optics ... 121
 9.2.1 Ray Matrices ... 123
 9.2.2 Optical Transforms .. 124
 9.3 Beyond Geometrical Optics ... 126
 9.3.1 Gaussian Optics .. 126
 9.3.2 Nonlinear Optics ... 127
 9.3.3 Metamaterials ... 129
 9.3.4 Confocal Imaging .. 129
 9.4 Selected References .. 130
 9.5 Problems ... 130

10 Lensless Imaging and Inverse Problems 132
 10.1 Matched Filters and Synthetic Lenses 132
 10.2 Coherent Imaging ... 135
 10.3 Computed Tomography ... 138
 10.4 Magnetic Resonance Imaging 139
 10.5 Inverse Problems .. 142
 10.6 Selected References .. 143
 10.7 Problems ... 143

11 Semiconductor Materials and Devices 145
 11.1 Quantum Statistical Mechanics 145
 11.2 Electronic Structure .. 147
 11.3 Junctions, Diodes, and Transistors 155
 11.4 Logic ... 160
 11.5 Limits ... 165
 11.6 Selected References .. 167
 11.7 Problems ... 168
12 Optical Materials and Devices 169

12.1 Generation ... 169
12.1.1 Incandescence .. 169
12.1.2 Luminescence: LEDs, Lasers, and Flat Panels 171
12.2 Detection .. 176
12.3 Modulation .. 181
12.3.1 Polarization .. 181
12.3.2 Liquid Crystals 183
12.3.3 Smoke and Mirrors 187
12.4 Selected References 190
12.5 Problems .. 190

13 Magnetic Materials and Devices 192

13.1 Magnetism ... 192
13.1.1 Diamagnetism 194
13.1.2 Paramagnetism 195
13.1.3 Ferro-, antiferro-, and ferri-magnetism 197
13.2 Magnetic Recording 202
13.2.1 Magnetic Media 202
13.2.2 Magnetic Recording 203
13.2.3 Recording Systems 205
13.3 Spintronics .. 206
13.4 Selected References 206
13.5 Problems .. 207

14 Measurement and Coding 208

14.1 Instrumentation 209
14.1.1 Amplifiers ... 209
14.1.2 Grounding, Shielding, and Leads 212
14.1.3 Bridges ... 215
14.2 Modulation and Detection 216
14.2.1 Synchronous Detection 216
14.2.2 Phase Detection and Encoding 218
14.2.3 Spread Spectrum 222
14.2.4 Digitization 225
14.3 Coding ... 227
14.3.1 Compression 228
14.3.2 Error Correction 230
14.3.3 Channel Coding 232
14.3.4 Cryptography 233
14.4 Selected References 234
14.5 Problems .. 235

15 Transducers 236

15.1 Many-Body Effects 236
15.1.1 Superconductivity 237
15.1.2 SQUIDs ... 240
15.2 Non-Equilibrium Thermodynamics 241
 15.2.1 Thermoelectricity 244
 15.2.2 Piezoelectricity 247
15.3 Relativity ... 248
 15.3.1 Clocks .. 248
 15.3.2 Time ... 251
 15.3.3 Position .. 254
15.4 Selected References 256
15.5 Problems ... 256

16 Quantum Computing and Communications 257
 16.1 Quantum Mechanics 258
 16.1.1 States and Operators 258
 16.1.2 Angular Momentum 264
 16.1.3 Density Matrices 268
 16.2 Information .. 271
 16.3 Communications 274
 16.3.1 Cryptography 274
 16.3.2 Circuits .. 275
 16.3.3 Teleportation 276
 16.3.4 Error Correction 278
 16.4 Computation ... 280
 16.4.1 Searching 281
 16.4.2 Transforms and Factoring 283
 16.4.3 Simulation 286
 16.4.4 Experimental Implementation 287
 16.5 Selected References 289
 16.6 Problems .. 290

Appendix 1 Problem Solutions 291
 A1.1 Introduction ... 291
 A1.2 Interactions, Units, and Magnitudes 291
 A1.3 Noise in Physical Systems 297
 A1.4 Information in Physical Systems 303
 A1.5 Electromagnetic Fields and Waves 308
 A1.6 Circuits, Transmission Lines, and Wave Guides 314
 A1.7 Antennas .. 318
 A1.8 Optics ... 321
 A1.9 Lensless Imaging and Inverse Problems 327
 A1.10 Semiconductor Materials and Devices 333
 A1.11 Generating, Modulating, and Detecting Light 338
 A1.12 Magnetic Materials and Devices 342
 A1.13 Measurement and Coding 346
 A1.14 Transducers .. 351
 A1.15 Quantum Computing and Communication 355
2 Interactions, Units, and Magnitudes

Modern information technology operates over a spectacular range of scales; bits from a memory cell with a size of 10^{-7} meters might be sent 10^7 meters to a geosynchronous satellite. It is important to be comfortable with the orders of magnitudes and associated interaction mechanisms that are useful in practice. Our first task will be to review the definitions of important units, then survey the types of forces, and finally look at typical numbers in various regimes.

2.1 UNITS

Many powers of ten have been named because it is much easier to say something like “a femtosecond optical pulse” than “a 0.000 000 000 000 001 second optical pulse” when referring to typical phenomena at that scale (a cycle of light takes on the order of a femtosecond). The dizzying growth of our ability to work with large and small systems pushes the bounds of this nomenclature; data from terabyte storage systems is read out into femtofarad memory cells. It is well worth memorizing the prefixes in Table 2.1.

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Magnitude</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-24}</td>
<td>yocto</td>
<td>y</td>
<td>10^{24}</td>
<td>yotto</td>
<td>Y</td>
</tr>
<tr>
<td>10^{-21}</td>
<td>zepto</td>
<td>z</td>
<td>10^{21}</td>
<td>zetta</td>
<td>Z</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>atto</td>
<td>a</td>
<td>10^{18}</td>
<td>exa</td>
<td>E</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
<td>10^{15}</td>
<td>peta</td>
<td>P</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
<td>10^{9}</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
<td>10^{6}</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
<td>10^{3}</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
<td>10^{2}</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
<td>10^{1}</td>
<td>deka</td>
<td>da</td>
</tr>
</tbody>
</table>

Physical quantities must of course be measured in a system of units; there are many alternatives that are matched to different regimes and applications. Because of their inter-relationships it is necessary only to define a small number of fundamental quantities to
be able to derive all of the other ones. The choice of which fundamental definitions to use changes over time to reflect technological progress; once atomic clocks made it possible to measure time with great precision (small variance) and accuracy (small bias), it became more reliable to define the meter in terms of time and the speed of light rather than a reference bar kept at the Bureau International des Poids et Mesures (BIPM, http://www.bipm.org) in Sevres, France. The kilogram is still defined in terms of a platinum–iridium cylinder held at BIPM instead of a fundamental physical process, a source of great frustration in the metrology community. Aside from the difficulty in duplicating it, the accumulation of contaminants on the surface increases the mass by about 1 part in 10^9 per year, requiring that it be measured only after a special cleaning procedure [Girard, 1994].

The most common set of base defined quantities in use is the *Système International d’Unités* (SI) [BIPM, 1998]:

- **length**: meter (m)
 - The meter is the length of path traveled by light in vacuum during a time interval of $1/299792458$ of a second.

- **mass**: kilogram (kg)
 - The kilogram is the unit of mass; it is equal to the mass of the international prototype of the kilogram.

- **time**: second (s)
 - The second is the duration of 9192631770 periods of the radiation corresponding to the transition between the two hyperfine levels of the ground state of the cesium-133 atom.

- **current**: ampere (A)
 - The ampere is that constant current which, if maintained in two straight parallel conductors of infinite length, of negligible circular cross-section, and placed 1 meter apart in vacuum, would produce between these conductors a force equal to 2×10^{-7} newtons per meter of length. (See Problem 6.4.)

- **temperature**: kelvin (K)
 - The kelvin, the unit of thermodynamic temperature, is the fraction of $1/273.16$ of the thermodynamic temperature of the triple point of water. (Temperatures in degrees Celsius are equal to temperatures in Kelvin + 273.15. The triple point is the temperature and pressure at which the liquid, solid, and gas phases of water co-exist. It is fixed at 0.01 °C, and provides a more reliable reference than the original centigrade definition of 0 °C as the freezing point of water at atmospheric pressure.)

- **quantity**: mole (mol)
 - The mole is the amount of substance of a system which contains as many elementary entities as there are atoms in 0.012 kg of carbon 12 (i.e., Avogadro’s constant $6.022 \ldots \times 10^{23}$).

- **intensity**: candela (cd)
 - The candela is the luminous intensity, in a given direction, of a source that emits monochromatic radiation of frequency 540×10^{12} hertz and that has a radiant intensity in the direction of $1/683$ watts per steradian. (The frequency corresponds to the wavelength of 555 nm where the eye is most sensitive, the
factor of 683 comes from matching an earlier definition based on the emission from solidifying platinum, and a steradian is the solid angle subtended by a unit area on the surface of a sphere with unit radius; see Chapter 12 for more on luminosity.)

From these seven fundamental units many other ones are derived in terms of them, including:

- **Capacitance**: farad $F \left(\text{m}^{-2} \cdot \text{kg}^{-1} \cdot \text{s}^{4} \cdot \text{A}^{2} \right)$

 The farad is the capacitance of a capacitor between the plates of which there appears a difference of potential of 1 volt when it is charged by a quantity of electricity equal to 1 coulomb.

- **Charge**: coulomb $C \left(\text{A} \cdot \text{s} \right)$

 The coulomb is the quantity of electricity transported in 1 second by a current of 1 ampere.

- **Energy**: joule $J \left(\text{m}^{2} \cdot \text{kg} \cdot \text{s}^{-2} \right)$

 The joule is the work done when the point of application of a force of 1 newton is displaced a distance of 1 meter in the direction of the force. (Remember that energy equals force times distance.)

- **Force**: newton $N \left(\text{m} \cdot \text{kg} \cdot \text{s}^{-2} \right)$

 The newton is that force which, when applied to a body having a mass of 1 kilogram, gives it an acceleration of 1 meter per second squared. (Remember that force equals mass times acceleration.)

- **Illuminance**: lux $\text{lx} \left(\text{cd} \cdot \text{m}^{-2} \right)$

 The lux is equal to an illuminance of 1 lumen per square meter.

- **Inductance**: henry $H \left(\text{m}^{2} \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-2} \right)$

 The henry is the inductance of a closed circuit in which an electromotive force of 1 volt is produced when the electric current in the circuit varies uniformly at a rate of 1 ampere per second.

- **Luminous Flux**: lumen $\text{lm} \left(\text{cd} \right)$

 The lumen is the luminous flux emitted within a unit solid angle of 1 steradian by a point source having a uniform intensity of 1 candela.

- **Magnetic Flux**: weber $\text{Wb} \left(\text{m}^{2} \cdot \text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-1} \right)$

 The weber is the magnetic flux which, linking a circuit of 1 turn, produces in it an electromotive force of 1 volt as it is reduced to zero at a uniform rate in 1 second.

- **Magnetic Flux Density**: tesla $T \left(\text{kg} \cdot \text{s}^{-2} \cdot \text{A}^{-1} \right)$

 The tesla is the magnetic flux density given by a magnetic flux of 1 weber per square meter.

- **Power**: watt $W \left(\text{m}^{2} \cdot \text{kg} \cdot \text{s}^{-3} \right)$

 The watt is the power which gives rise to the production of energy at the rate of 1 joule per second.

- **Pressure**: pascal $\text{Pa} \left(\text{m}^{-1} \cdot \text{kg} \cdot \text{s}^{-2} \right)$

 The pascal is the pressure of 1 newton per square meter.

- **Potential**: volt $V \left(\text{m}^{2} \cdot \text{kg} \cdot \text{s}^{-3} \cdot \text{A}^{-1} \right)$

 The volt is the difference of electric potential between two points of a conductor.
Interactions, Units, and Magnitudes

Table 2.2. Selected conversion factors.

<table>
<thead>
<tr>
<th>Unit</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 dyne (gm·cm·s⁻²)</td>
<td>1 x 10⁻⁵ N</td>
</tr>
<tr>
<td>1 erg (gm·cm²·s⁻²)</td>
<td>1 x 10⁻⁷ J</td>
</tr>
<tr>
<td>1 horsepower (hp)</td>
<td>745.7 W</td>
</tr>
<tr>
<td>1 atmosphere (atm)</td>
<td>101325 Pa</td>
</tr>
<tr>
<td>1 ton (short)</td>
<td>2000 pounds</td>
</tr>
<tr>
<td></td>
<td>907.18474 kg</td>
</tr>
<tr>
<td>1 electron volt (eV)</td>
<td>1.602176462 x 10⁻¹⁹ J</td>
</tr>
<tr>
<td>1 amu</td>
<td>1.66053873 x 10⁻²⁷ kg</td>
</tr>
<tr>
<td>1 angstrom (Å)</td>
<td>1 x 10⁻¹⁰ m</td>
</tr>
<tr>
<td>1 fermi (fm)</td>
<td>1 x 10⁻¹⁵ m</td>
</tr>
<tr>
<td>1 parsec (pc)</td>
<td>3.085678 x 10¹⁶ m</td>
</tr>
<tr>
<td>1 mile (mi)</td>
<td>1609.344 m</td>
</tr>
<tr>
<td>1 foot (ft)</td>
<td>0.3048 m</td>
</tr>
<tr>
<td>1 inch (in)</td>
<td>0.0254 m</td>
</tr>
<tr>
<td>1 liter (L)</td>
<td>0.001 m³</td>
</tr>
<tr>
<td>1 pound (lb)</td>
<td>0.45359237 kg</td>
</tr>
<tr>
<td>1 pound-force (lbf)</td>
<td>4.44822 N</td>
</tr>
</tbody>
</table>

carrying a constant current of 1 ampere, when the power dissipated between these points is equal to 1 watt.

resistance: ohm Ω (m²·kg·s⁻³·A⁻²)

The ohm is the electric resistance between two points of a conductor when a constant difference of potential of 1 volt, applied between these two points, produces in this conductor a current of 1 ampere. (These derivative definitions of the volt and ohm have more recently been replaced by fundamental ones fixing them in terms of the voltage across a Josephson junction and the resistance steps in the quantum Hall effect [Zimmerman, 1998], and capacitance may be defined by counting electrons on a Single-Electron Tunneling (SET) device [Keller et al., 1999].)

It is important to pay attention to the units in these definitions. Many errors in calculations can be caught by making sure that the final units are correct, and it can be possible to make a rough estimate of an answer to a problem simply by collecting relevant terms with the right units (this is the subject of dimensional analysis). Electromagnetic units are particularly confusing; we will consider them in more detail in Chapter 6. The SI system is also called MKS because it bases its units on the meter, the kilogram, and the second. For some problems it will be more convenient to use CGS units (based on the centimeter, the gram, and the second); MKS is more common in engineering and CGS in physics. A number of other units have been defined by characteristic features or by historical practice; some that will be useful later are given in Table 2.2.

It's often more relevant to know the value on one quantity relative to another one, rather than the value itself. The ratio of two values \(X_1 \) and \(X_2 \), measured in decibels
2.1 Units

(dB), is defined to be

\[dB = 20 \log_{10} \frac{X_1}{X_2}. \]

(2.1)

If the power (energy per time) in two signals is \(P_1 \) and \(P_2 \), then

\[dB = 10 \log_{10} \frac{P_1}{P_2}. \]

(2.2)

This is because the power is the mean square amplitude (Chapter 3), and so to be consistent with equation (2.1) a factor of 2 is brought in to account for the exponent. An increase of 10 dB therefore represents an increase by a factor of 10 in the relative power of two signals, or a factor of 3.2 in their values. A change of 3 dB in power is a change by a factor of 2.

The name decibel comes from Bell Labs. Engineers there working on the telephone system found it convenient to measure the gain or loss of devices on a logarithmic scale. Because the log of a product of two numbers is equal to the sum of their logs, this let them find the overall gain of a system by adding the logs of the components, and using logarithms also made it more convenient to express large numbers. They called the base-10 logarithm the bel in honor of Alexander Graham Bell; multiplying by 10 to bring up one more significant digit gave them a tenth-bel, or a decibel.

Some decibel reference levels occur so commonly that they are given names; popular ones include:

- **dBV** measures an electrical signal relative to 1 volt
- **dBm** measures relative to a 1 mW signal. The power will depend on the (usually unspecified) load, which traditionally is 50 Ω for radiofrequency signals and 600 Ω for audio ones (loads will be covered in Chapter 7). In audio recording, this is also called the Volume Unit or VU.
- **dBspl**, for Sound Pressure Level (or just SPL), measures sound pressure relative to a reference of \(2 \times 10^{-5} \) Pa, the softest sound that the ear can perceive. The sound of a jet taking off is about 140 dBspl.

Finally, there are a number of fundamental observed constants in nature that we will use, shown in Table 2.3. In this list the digits in parentheses are the standard deviation uncertainty (see Chapter 3) in the corresponding digits, so that for example the error in the value for \(G \) is \(0.010 \times 10^{-11} \) (which, compared to the other constants, is an embarrassingly large uncertainty [Gundlach et al., 1996]).

The speed of light no longer really belongs here, because its value has been defined exactly as part of the SI system. All the others are determined by exquisite metrology experiments. Each fundamental constant can appear in many different types of measurements, and these are done by many different groups, leading to multiple values that unfortunately don’t always agree to within their careful error estimates. For this reason, the International Council of Scientific Unions in 1966 formed the Committee on Data for Science and Technology (CODATA) to do global optimizations over all these data to come up with an internally-consistent set of values; the most recent adjustment was done in 2006 [Mohr et al., 2008].
Table 2.3. Selected fundamental constants.

<table>
<thead>
<tr>
<th>Constant</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gravitational constant (G)</td>
<td>$6.673(10) \times 10^{-11}$ m3·kg$^{-1}$·s$^{-2}$</td>
</tr>
<tr>
<td>Speed of light (c)</td>
<td>2.99792458×10^8 m/s</td>
</tr>
<tr>
<td>Elementary charge (e)</td>
<td>$1.60217662(63) \times 10^{-19}$ C</td>
</tr>
<tr>
<td>Boltzmann constant (k)</td>
<td>$1.3806503(24) \times 10^{-23}$ J/K</td>
</tr>
<tr>
<td>Planck constant (\hbar)</td>
<td>$6.62606876(52) \times 10^{-34}$ J·s</td>
</tr>
<tr>
<td>$\hbar = h/2\pi$</td>
<td>$1.054571596(82) \times 10^{-34}$ J·s</td>
</tr>
<tr>
<td>Avogadro constant (N_A)</td>
<td>$6.02214199(47) \times 10^{23}$ mol$^{-1}$</td>
</tr>
<tr>
<td>Electron mass (m_e)</td>
<td>$9.10938188(72) \times 10^{-31}$ kg</td>
</tr>
<tr>
<td>Proton mass (m_p)</td>
<td>$1.67262158(13) \times 10^{-27}$ kg</td>
</tr>
<tr>
<td>Gas constant (R)</td>
<td>$8.314472(15)$ J·mol$^{-1}$·K$^{-1}$</td>
</tr>
<tr>
<td>Vacuum permittivity (ε_0)</td>
<td>$10^7/(4\pi c^2) = 8.854188 \ldots \times 10^{-12}$ F/m</td>
</tr>
<tr>
<td>Vacuum permeability (μ_0)</td>
<td>$4\pi \times 10^{-7}$ H/m</td>
</tr>
</tbody>
</table>

2.2 PARTICLES AND FORCES

The world is built out of elementary particles and their interactions. There are a number of natural divisions in organization, energy, and length that occur between the structure of the nucleus of an atom and the structure of the universe; it will be useful to briefly survey this range in order to understand the relevant regimes for present and prospective information technologies.

This story starts with quantum mechanics, the laws that govern things that are very small. Around 1900 Max Planck was led by his inability to explain the spectrum of light from a hot oven to propose that the energy of light is quantized in units of $E = h\nu = hc/\lambda$, where ν is the frequency and λ is the wavelength; $h = 6.626 \ldots \times 10^{-34}$ J·s is now called Planck’s constant. From there, in 1905 Einstein introduced the notion of massless photons as the discrete constituents of light, and in 1924 de Broglie suggested that the wavelength relationship applies to massive as well as massless particles by $\lambda = h/p$; λ is the de Broglie wavelength, and is a consequence of the wave–particle duality: all quantum particles behave as both waves and particles. An electron, or a photon, can diffract like a wave from a periodic grating, but a detector will register the arrival of individual particles. Quantum effects usually become significant when the de Broglie wavelength becomes comparable to the size of an object.

Quantum mechanical particles can be either fermions (such as an electron) or bosons (such as a photon). Fermions and bosons are as unlike as anything can be in our universe. We will later see that bosons are particles that exist in states that are symmetric under the interchange of particles, they have an integer spin quantum number, and multiple bosons can be in the same quantum state. Fermions have half-integer spin, exist in states that are antisymmetric under particle interchange, and only one fermion can be in a particular quantum state. Spin is an abstract property of a quantum particle, but it behaves just like an angular momentum (as if the particle is spinning).

Particles can interact through four possible forces: gravitational, electromagnetic, weak, and strong. The first two are familiar because they have infinite range; the latter two operate on short ranges and are associated with nuclear and subnuclear processes (the characteristic lengths are approximately 10^{-15} m for the strong force and 10^{-18} m for the
The electromagnetic force is so significant because of its strength: if a quantum atom was held together by gravitational forces alone (like a miniature solar system) its size would be on the order of 10^{-23} m instead of 10^{-10} m. The macroscopic forces that we feel, such as the hardness of a wall, are transmitted to us by the electromagnetic force through the electrons in our atoms interacting with electrons in the adjoining atoms in the surface, but can be much more simply described in terms of fictitious effective forces (“the wall is hard”).

All forces were originally thought to be transmitted by an intervening medium, the long-sought ether for electromagnetic forces. We now understand that forces operate by the exchange of spin-1 gauge bosons – the photon for the electromagnetic interaction (electric and magnetic fields), the W^\pm and Z^0 bosons for the weak interaction, and eight gluons for the strong interaction (there is not yet a successful quantum theory of gravity). Quantum Electrodynamics (QED) is the theory of the quantum electromagnetic interaction, and Quantum Chromodynamics (QCD) the theory of the strong interaction. The weak and electromagnetic interactions are united in the electroweak theory, which, along with QCD is the basis for the Standard Model, the current summary of our understanding of particle physics. This amalgam of experimental observations and theoretical inferences successfully predicts most observed behavior extremely accurately, with two important catches: the theory has 20 or so adjustable parameters that must be determined from experiments, and it cannot explain gravitation. String theory [Giveon & Kutasov, 1999], a reformulation of particle theory that starts from loops rather than points as the primitive mathematical entity, appears to address both these limitations, and so is of intense interest in the theoretical physics community even though it is still far from being able to make experimentally testable predictions.

The most fundamental massive particles that we are aware of are the quarks and leptons. There’s no reason to assume that there’s nothing below them (i.e., turtles all the way down); there’s just not a compelling reason right now to believe that there is. Quarks and leptons appear in the scattering experiments used to study particle physics to be point-particles without internal structure, and are spin-1/2 fermions. The leptons interact through the electromagnetic and weak interactions, and come in pairs: the electron and the electron neutrino (e^-, ν_e), the muon and its neutrino (μ^-, ν_μ), and the tau lepton and its neutrino (τ^-, ν_τ). Muons and tau leptons are unstable, and therefore are seen only in accelerators, particle decay products, and cosmic rays. Because neutrinos interact only through the weak force, they can pass unhindered through a light-year of lead. But they are profoundly important for the energy balance of the universe, and if they have mass [Fukuda, 1998] it will have enormous implications for the fate of the universe. Quarks interact through the strong as well as weak and electromagnetic interactions, and they come in pairs: up and down, charm and strange, and top and bottom. These fanciful names are just labels for the underlying abstract states. The first member of each pair has charge $+2/3$, the second member has charge $-1/3$, and each charge flavor comes in three colors (once again, flavor and color are just descriptive names for quantum numbers).

Quarks combine to form hadrons; the best-known of which are the two nucleons. A proton comprises two ups and a down, and the neutron an up and two downs. The nucleons, along with their excited states, are called baryons and are fermions. Transitions between baryon states can absorb or emit spin-1 boson hadrons, called mesons. The size
of hadrons is on the order of 10^{-15} m, and the energy difference between excited states is on the order of 10^6 eV (1 GeV).

The nucleus of an atom is made up of some number of protons and neutrons, bound into ground and excited states by the strong interaction. Typical nuclear sizes are on the order of 10^{-14} m, and energies for nuclear excitations are on the order of 10^6 eV (1 MeV). Atoms consist of a nucleus and electrons bound by the electromagnetic interaction; typical sizes are on the order of 1 ångström ($1\text{ Å}, 10^{-10}\text{ m}$) and the energy difference between states is on the order of 1 eV. Notice the large difference in size between the atom and the nucleus: atoms are mostly empty space. Atoms can exist in different isotopes that have the same number of protons but differing numbers of neutrons, and ions are atoms that have had electrons removed or added.

Atoms can bond to form molecules; bond energies are on the order of 1 eV and bond lengths are on the order of 1 Å. Molecular sizes range from simple diatomic molecules up to enormous biological molecules with 10^6–10^9 atoms. Large molecules fold into complex shapes; this is called their tertiary structure. These shapes are responsible for the geometrical constraints in molecular interactions that govern many biochemical pathways. Predicting tertiary structure is one of the most difficult challenges in chemistry.

Macroscopic materials are described by the arrangement of their constituent atoms, and include crystals (which have complete long-range ordering), liquids and glasses (which have short-range order but little long-range order), and gases (which have little short-range order). There are also very interesting intermediate cases, such as quasicrystals that have deterministic translational order without translational periodicity [DiVincenzo & Steinhardt, 1991], and liquid crystals that maintain orientational but not translational ordering [Chandrasekhar, 1992]. Most solids do not contain just a single phase; there are usually defects and boundaries between different kinds of domains.

The atomic weight of an element is equal to the number of grams equal to one mole ($N_A \approx 10^{23}$) of atoms. It is approximately equal to the number of protons and neutrons in an atom, but differs because of the mix of naturally occurring isotopes. 22.4 liters of an ideal gas at a pressure of 1 atmosphere and at room temperature will also contain a mole of atoms.

The structure of a material at more fundamental levels will be invisible and can be ignored unless energies are larger than its characteristic excitations. Although we will rarely need to descend below atomic structure, there are a number of important applications of nuclear transitions, such as nuclear power and the use of nuclear probes to characterize materials.

2.3 ORDERS OF MAGNITUDE

Understanding what is possible and what is preposterous requires being familiar with the range of meaningful numbers for each unit; the following lists include some significant ones:

Time

10^{-43} s: the Planck time (Problem 2.7)
2.3 Orders of Magnitude

\(10^{-15}\) s: this is the period of visible light, and a typical time scale for chemical reactions
\(10^{-12}\) s: shortest logic gate delay
\(10^{-9}\) s: atomic excitations and molecular rotations typically have lifetimes on the order of nanoseconds, and this is a characteristic computer clock cycle
\(10^{-3}\) s: the shortest time difference that is consciously perceptible by people
\(10^{17}\) s: the approximate age of the observable universe

Power and Energy

1 eV: atomic excitations
\(10^6\) eV: nuclear excitations
\(10^9\) eV: subnuclear excitations
\(10^{28}\) eV: the Planck energy
10 W: laptop computer
100 W: workstation; human
1000 W: house
\(10^4\) W: car
\(10^5\) W: building
\(10^7\) W: supercomputer
\(10^{26}\) W: luminosity of the sun
\(10^{-12}\) W/m²: softest sound that can be heard
1 W/m²: loudest sound that can be tolerated
\(10^7\) J/kg: energy density of food
\(10^9\) J: energy in a ton of TNT
\(10^{20}\) J: energy consumption in the US per year

Temperature

\(10^{-9}\) K: laser-cooled gas
2.75 K: microwave background radiation from the Big Bang
77 K: liquid nitrogen
300 K: room temperature
6000 K: surface of the sun

Mass

\(10^{-27}\) kg: proton mass
\(10^{-12}\) kg: typical cell
\(10^{-5}\) kg: small insect
\(10^{16}\) kg: Earth’s biomass
\(5.98 \times 10^{24}\) kg: the mass of the Earth
\(10^{42}\) kg: approximate mass of the Milky Way

Length

\(10^{-35}\) m: the Planck distance
\(10^{-15}\) m: size of a proton
10^{-10} \text{ m}: \text{size of an atom}

4 \times 10^5 \text{ m}: \text{height of a Low Earth Orbit satellite above the surface}

6.378 \times 10^6 \text{ m}: \text{radius of the Earth}

4 \times 10^7 \text{ m}: \text{height of a geosynchronous satellite above the equator}

10^{11} \text{ m}: \text{distance from the Earth to the Sun}

10^{20} \text{ m}: \text{Milky Way radius}

10^{26} \text{ m}: \text{size of the observable universe}

\textbf{Electromagnetic spectrum}

< 0.1 \text{ Å}: \text{gamma rays}

0.1–100 \text{ Å}: \text{X-rays}

100–4000 \text{ Å}: \text{UV (atomic ionization energy)}

4000–7000 \text{ Å}: \text{visible (this coincides with a transmission band through the atmosphere, and corresponds to 10^{14}–10^{15} \text{ Hz})}

0.7–100 \mu\text{m}: \text{IR (thermal radiation)}

0.01–10 \text{ cm}: \text{microwave (GHz)}

0.1–10^3 \text{ m}: \text{radio (MHz–kHz)}

\textbf{Magnetic and Electric Fields}

10^{-12} \text{ tesla}: \text{magnetic field needed for radio reception}

10^{-6} \text{ tesla}: \text{magnetic field generated by a cordless phone}

3 \times 10^{-5} \text{ tesla}: \text{magnetic field at the Earth’s surface}

20 \text{ tesla}: \text{large superconducting/normal hybrid magnet}

10^4 \text{ A}: \text{lightning bolt current}

10^9 \text{ V}: \text{potential across a lightning bolt}

3 \times 10^6 \text{ V/m}: \text{breakdown voltage in air}

\textbf{Number}

10^5: \text{number of DNA bases in a bacteriophage}

4 \times 10^6: \text{bytes in the Bible}

10^9: \text{number of DNA bases in a mammal}

10^{13}: \text{number of synapses in the human cortex}

10^{14}: \text{bytes passing through the Internet backbone during December, 1994}

10^{80}: \text{approximate number of atoms in the universe}

\section*{2.4 Selected References}

This is a handy summary of units, conversion factors, and governing equations.

A Who’s Who of interesting physical phenomena.
2.5 Problems

The Morrisons provide a marvelous tour through the characteristic phenomena at many length scales.

A nice introduction to particles and forces.

2.5 PROBLEMS

(2.1) (a) How many atoms are there in a yoctomole?

(b) How many seconds are there in a nanocentury? Is the value near that of any important constants?

(2.2) A large data storage system holds on the order of a petabyte. How tall would a 1 petabyte stack of CDs be? How does that compare to the height of a tall building?

(2.3) If all the atoms in our universe were used to write an enormous binary number, using one atom per bit, what would that number be (converted to base 10)?

(2.4) Compare the gravitational acceleration due to the mass of the Earth at its surface to that produced by a 1 kg mass at a distance of 1 m. Express their ratio in decibels.

(2.5) (a) Approximately estimate the chemical energy in a ton of TNT. You can assume that nitrogen is the primary component; think about what kind of energy is released in a chemical reaction, where it is stored, and how much there is.

(b) Estimate how much uranium would be needed to make a nuclear explosion equal to the energy in a chemical explosion in 10000 tons of TNT (once again, think about where the energy is stored).

(c) Compare this to the rest mass energy \(E = mc^2 \) of that amount of material (Chapter 15), which gives the maximum amount of energy that could be liberated from it.

(2.6) (a) What is the approximate de Broglie wavelength of a thrown baseball?

(b) Of a molecule of nitrogen gas at room temperature and pressure? (This requires either the result of Section 3.4.2, or dimensional analysis.)

(c) What is the typical distance between the molecules in this gas?

(d) If the volume of the gas is kept constant as it is cooled, at what temperature does the wavelength become comparable to the distance between the molecules?

(2.7) (a) The potential energy of a mass \(m \) a distance \(r \) from a mass \(M \) is \(-GMm/r \). What is the escape velocity required to climb out of that potential?

(b) Since nothing can travel faster than the speed of light (Chapter 15), what is the radius within which nothing can escape from the mass?

(c) If the rest energy of a mass \(M \) is converted into a photon, what is its wavelength?

(d) For what mass does its equivalent wavelength equal the size within which light cannot escape?

(e) What is the corresponding size?

(f) What is the energy?
(g) What is the period?

(2.8) Consider a pyramid of height H and a square base of side length L. A sphere is placed so that its center is at the center of the square at the base of the pyramid, and so that it is tangent to all of the edges of the pyramid (intersecting each edge at just one point).

(a) How high is the pyramid in terms of L?

(b) What is the volume of the space common to the sphere and the pyramid?

(This question comes from an entrance examination for humanities students at Tokyo University [*Economist*, 1993].)
Bibliography

[Barenco et al., 1995] Barenco, Adriano, Bennett, Charles H., Cleve, Richard, DiVincenzo,

Bibliography

Bibliography

Experimental Pulse NMR: A Nuts and Bolts Approach. Reading: Addison-Wesley.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Title</th>
<th>Publisher</th>
</tr>
</thead>
</table>

Bibliography

Bibliography

