The Physics of Information Technology

Neil Gershenfeld

revised draft: February 9, 2022
© Cambridge University Press
Contents

Preface ix

1 Introduction 1

2 Interactions, Units, and Magnitudes 3
 2.1 Units 3
 2.2 Particles and Forces 7
 2.3 Orders of Magnitude 10
 2.4 Selected References 12
 2.5 Problems 12

3 Noise in Physical Systems 14
 3.1 Random Variables 14
 3.1.1 Expectation Values 14
 3.1.2 Spectral Theorems 15
 3.2 Probability Distributions 18
 3.2.1 Binomial 18
 3.2.2 Poisson 18
 3.2.3 Gaussian 19
 3.2.4 Central Limit Theorem 21
 3.3 Noise Mechanisms 22
 3.3.1 Shot Noise 22
 3.3.2 Johnson Noise 23
 3.3.3 $1/f$ Noise and Switching Noise 24
 3.3.4 Amplifier Noise 25
 3.4 Thermodynamics and Noise 27
 3.4.1 Thermodynamics and Statistical Mechanics 27
 3.4.2 Equipartition Theorem 30
 3.4.3 Fluctuation–Dissipation Theorem 31
 3.5 Selected References 34
 3.6 Problems 35

4 Information in Physical Systems 36
 4.1 Information 36
<table>
<thead>
<tr>
<th>4.2 Channel Capacity</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3 The Gaussian Channel</td>
<td>42</td>
</tr>
<tr>
<td>4.4 Fisher Information</td>
<td>45</td>
</tr>
<tr>
<td>4.5 Information and Thermodynamics</td>
<td>48</td>
</tr>
<tr>
<td>4.6 Selected References</td>
<td>49</td>
</tr>
<tr>
<td>4.7 Problems</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5 Logic and Computation</th>
<th>51</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Logic</td>
<td>53</td>
</tr>
<tr>
<td>5.2 Computation</td>
<td>53</td>
</tr>
<tr>
<td>5.3 Problems</td>
<td>53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6 Electromagnetic Fields and Waves</th>
<th>54</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Vector Calculus</td>
<td>54</td>
</tr>
<tr>
<td>6.1.1 Vectors</td>
<td>54</td>
</tr>
<tr>
<td>6.1.2 Differential Operators</td>
<td>56</td>
</tr>
<tr>
<td>6.1.3 Integral Relationships</td>
<td>58</td>
</tr>
<tr>
<td>6.2 Statics</td>
<td>59</td>
</tr>
<tr>
<td>6.2.1 Electrostatics</td>
<td>59</td>
</tr>
<tr>
<td>6.2.2 Magnetostatics</td>
<td>63</td>
</tr>
<tr>
<td>6.2.3 Multipoles</td>
<td>66</td>
</tr>
<tr>
<td>6.3 Dynamics</td>
<td>69</td>
</tr>
<tr>
<td>6.3.1 Maxwell's Equations</td>
<td>69</td>
</tr>
<tr>
<td>6.3.2 Boundary Conditions</td>
<td>71</td>
</tr>
<tr>
<td>6.3.3 Electromagnetic Units</td>
<td>72</td>
</tr>
<tr>
<td>6.4 Radiation and Energy</td>
<td>74</td>
</tr>
<tr>
<td>6.4.1 Waves</td>
<td>74</td>
</tr>
<tr>
<td>6.4.2 Electromagnetic Energy</td>
<td>76</td>
</tr>
<tr>
<td>6.5 Selected References</td>
<td>77</td>
</tr>
<tr>
<td>6.6 Problems</td>
<td>77</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7 Circuits, Transmission Lines, and Waveguides</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Circuits</td>
<td>80</td>
</tr>
<tr>
<td>7.1.1 Current and Voltage</td>
<td>80</td>
</tr>
<tr>
<td>7.1.2 Kirchhoff’s Laws</td>
<td>81</td>
</tr>
<tr>
<td>7.1.3 Resistance</td>
<td>81</td>
</tr>
<tr>
<td>7.1.4 Power</td>
<td>83</td>
</tr>
<tr>
<td>7.1.5 Capacitance</td>
<td>83</td>
</tr>
<tr>
<td>7.1.6 Inductance</td>
<td>84</td>
</tr>
<tr>
<td>7.2 Wires and Transmission Lines</td>
<td>85</td>
</tr>
<tr>
<td>7.2.1 Skin Depth</td>
<td>85</td>
</tr>
<tr>
<td>7.2.2 Transmission Lines</td>
<td>87</td>
</tr>
<tr>
<td>7.2.3 Wave Solutions</td>
<td>89</td>
</tr>
<tr>
<td>7.2.4 Reflections and Terminations</td>
<td>91</td>
</tr>
<tr>
<td>7.3 Waveguides</td>
<td>94</td>
</tr>
<tr>
<td>7.3.1 Governing Equations</td>
<td>94</td>
</tr>
</tbody>
</table>
Contents

7.3.2 Rectangular Waveguides 96
7.3.3 Circular Waveguides 97
7.3.4 Dielectric Waveguides and Fiber Optics 97
7.4 Selected References .. 99
7.5 Problems ... 100

8 Antennas .. 102
8.1 Time-Dependent Potentials 102
8.2 Dipole Radiation ... 106
 8.2.1 Infinitesimal Length 106
 8.2.2 Finite Length .. 108
8.3 Duality and Reciprocity 110
8.4 Antenna Types .. 113
8.5 Selected References .. 115
8.6 Problems ... 115

9 Optics ... 116
9.1 Reflection and Refraction 116
9.2 Geometrical Optics ... 121
 9.2.1 Ray Matrices .. 123
 9.2.2 Optical Transforms 124
9.3 Beyond Geometrical Optics 126
 9.3.1 Gaussian Optics 126
 9.3.2 Nonlinear Optics 127
9.4 Metamaterials ... 129
 9.4.1 Negative Indices 129
 9.4.2 Anomalous Dispersion 129
 9.4.3 Perfect Lenses .. 131
 9.4.4 Cloaking .. 131
9.5 Selected References .. 132
9.6 Problems ... 132

10 Lensless Imaging and Inverse Problems 134
10.1 Matched Filters and Synthetic Lenses 134
10.2 Coherent Imaging ... 137
10.3 Computed Tomography 140
10.4 Magnetic Resonance Imaging 141
10.5 Inverse Problems ... 143
10.6 Computational Imaging 145
 10.6.1 Confocal ... 145
 10.6.2 Near-Field ... 146
 10.6.3 Ultrafast ... 146
 10.6.4 Single-Pixel ... 146
 10.6.5 Light Fields .. 146
10.7 Selected References .. 146
10.8 Problems ... 146
Contents

11 Semiconductor Materials and Devices 148

11.1 Quantum Statistical Mechanics 148
11.2 Electronic Structure 150
11.3 Junctions, Diodes, and Transistors 158
11.4 Logic 163
11.5 Limits 168
11.6 Selected References 171
11.7 Problems 171

12 Optical Materials and Devices 173

12.1 Generation 173
 12.1.1 Incandescence 173
 12.1.2 Luminescence 175
12.2 Detection 179
12.3 Modulation 183
 12.3.1 Polarization 184
 12.3.2 Liquid Crystals 186
 12.3.3 AOM, EOM 189
 12.3.4 Smoke and Mirrors 191
12.4 Selected References 194
12.5 Problems 195

13 Magnetic Materials and Devices 196

13.1 Magnetism 196
 13.1.1 Diamagnetism 198
 13.1.2 Paramagnetism 199
 13.1.3 Ferro-, antiferro-, and ferri-magnetism 201
13.2 Magnetic Recording 206
 13.2.1 Magnetic Media 206
 13.2.2 Magnetic Recording 207
 13.2.3 Recording Systems 209
13.3 Hall Effect 210
 13.3.1 Classical 210
 13.3.2 Quantum 211
13.4 Spintronics 211
13.5 Selected References 213
13.6 Problems 213

14 Transducers 214

14.1 Many-Body Effects 214
 14.1.1 Superconductivity 215
 14.1.2 Junctions and Interferometers 218
14.2 Non-Equilibrium Thermodynamics 220
 14.2.1 Thermoelectricity 222
 14.2.2 Piezoelectricity 225
14.3 Relativity 226
14.3.1 Clocks .. 226
14.3.2 Time .. 229
14.3.3 Position 232
14.4 Selected References 234
14.5 Problems 235

15 Measurement and Coding 236
 15.1 Instrumentation 236
 15.1.1 Amplifiers 236
 15.1.2 Operational Amplifiers 236
 15.1.3 Grounding, Shielding, and Leads 240
 15.1.4 Bridges 242
 15.1.5 Network Analyzers 243
 15.2 Modulation and Detection 243
 15.2.1 Synchronous Detection 244
 15.2.2 Phase Detection and Encoding 246
 15.2.3 Spread Spectrum 249
 15.2.4 Digitization 253
 15.3 Coding 254
 15.3.1 Compression 255
 15.3.2 Error Correction 257
 15.3.3 Channel Coding 259
 15.3.4 Cryptography 260
 15.4 Sensing 261
 15.4.1 Analog Logic 261
 15.4.2 Compressed Sensing 262
 15.5 Selected References 263
 15.6 Problems 264

16 Quantum Computing and Communications 266
 16.1 Quantum Mechanics 267
 16.1.1 States and Operators 267
 16.1.2 Angular Momentum 273
 16.1.3 Density Matrices 277
 16.2 Information 280
 16.3 Communications 283
 16.3.1 Cryptography 283
 16.3.2 Circuits 284
 16.3.3 Teleportation 285
 16.3.4 Error Correction 287
 16.4 Computation 289
 16.4.1 Searching 290
 16.4.2 Transforms and Factoring 292
 16.4.3 Simulation 295
 16.4.4 Optimization 296
 16.4.5 Experimental Implementation 296
Contents

16.5 Selected References ... 298
16.6 Problems ... 299

Appendix 1 Problem Solutions 301
A1.1 Introduction .. 301
A1.2 Interactions, Units, and Magnitudes 301
A1.3 Noise in Physical Systems 307
A1.4 Information in Physical Systems 313
A1.5 Electromagnetic Fields and Waves 318
A1.6 Circuits, Transmission Lines, and Wave Guides 326
A1.7 Antennas .. 330
A1.8 Optics .. 333
A1.9 Lensless Imaging and Inverse Problems 340
A1.10 Semiconductor Materials and Devices 346
A1.11 Optical Materials and Devices 351
A1.12 Magnetic Materials and Devices 356
A1.13 Transducers .. 360
A1.14 Measurement and Coding 364
A1.15 Quantum Computing and Communication 374

Bibliography 379
Index 396
2 Interactions, Units, and Magnitudes

Modern information technology operates over a spectacular range of scales; bits from a memory cell with a size of 10^{-8} meters might be sent 10^7 meters to a geosynchronous satellite. It is important to be comfortable with the orders of magnitudes and associated interaction mechanisms that are useful in practice. Our first task will be to review the definitions of important units, then survey the types of forces, and finally look at typical numbers in various regimes.

2.1 Units

Many powers of ten have been named because it is much easier to say something like “a femtosecond optical pulse” than “a 0.000 000 000 000 001 second optical pulse” when referring to typical phenomena at that scale (a cycle of light takes on the order of a femtosecond). The dizzying growth of our ability to work with large and small systems pushes the bounds of this nomenclature; data from exabyte storage systems is read out into femtofarad memory cells. It is well worth memorizing the prefixes in Table 2.1.

<table>
<thead>
<tr>
<th>Magnitude</th>
<th>Prefix</th>
<th>Symbol</th>
<th>Magnitude</th>
<th>Prefix</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-24}</td>
<td>yocto</td>
<td>y</td>
<td>10^{24}</td>
<td>yotto</td>
<td>Y</td>
</tr>
<tr>
<td>10^{-21}</td>
<td>zepto</td>
<td>z</td>
<td>10^{21}</td>
<td>zetta</td>
<td>Z</td>
</tr>
<tr>
<td>10^{-18}</td>
<td>atto</td>
<td>a</td>
<td>10^{18}</td>
<td>exa</td>
<td>E</td>
</tr>
<tr>
<td>10^{-15}</td>
<td>femto</td>
<td>f</td>
<td>10^{15}</td>
<td>peta</td>
<td>P</td>
</tr>
<tr>
<td>10^{-12}</td>
<td>pico</td>
<td>p</td>
<td>10^{12}</td>
<td>tera</td>
<td>T</td>
</tr>
<tr>
<td>10^{-9}</td>
<td>nano</td>
<td>n</td>
<td>10^{9}</td>
<td>giga</td>
<td>G</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>micro</td>
<td>µ</td>
<td>10^{6}</td>
<td>mega</td>
<td>M</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>milli</td>
<td>m</td>
<td>10^{3}</td>
<td>kilo</td>
<td>k</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>centi</td>
<td>c</td>
<td>10^{2}</td>
<td>hecto</td>
<td>h</td>
</tr>
<tr>
<td>10^{-1}</td>
<td>deci</td>
<td>d</td>
<td>10^{1}</td>
<td>deka</td>
<td>da</td>
</tr>
</tbody>
</table>

Physical quantities must of course be measured in a system of units; there are many alternatives that are matched to different regimes and applications. Because of their interrelationships it is necessary only to define a small number of fundamental quantities to
be able to derive all of the other ones. The choice of which fundamental definitions to use changes over time to reflect technological progress; once atomic clocks made it possible to measure time with great precision (small variance) and accuracy (small bias), it became more reliable to define the meter in terms of time and the speed of light rather than a reference bar kept at the Bureau International des Poids et Mesures (BIPM, http://www.bipm.org) in Sèvres, France [Giacomo, 1984]. More recently, a great source of frustration in the metrology community [Girard, 1994] was removed when the definition of the kilogram based on a platinum–iridium cylinder held at BIPM was replaced by one based on fundamental physical constants [Stock et al., 2019].

The most common set of base defined quantities in use is the Système International d’Unités (SI) [BIPM, 2019]. It is based on seven physical constants that were originally measured and are now taken as fixed (there is no uncertainty in these values):

\[
\begin{align*}
\Delta \nu_{\text{Cs}} &= 9 192 631 770 \text{ Hz: the unperturbed ground state hyperfine transition frequency of the cesium 133 atom} \\
\nu_c &= 299 792 458 \text{ m/s: the speed of light in vacuum} \\
h &= 6.626 070 15 \times 10^{-34} \text{ J·s: the Planck constant} \\
e &= 1.602 176 634 \times 10^{-19} \text{ C: the elementary charge} \\
k &= 1.380 649 \times 10^{-23} \text{ J/K: the Boltzmann constant} \\
N_A &= 6.022 140 76 \times 10^{23} \text{ mol}^{-1}: \text{ the Avogadro constant} \\
K_{\text{cd}} &= 683 \text{ lm/W: the luminous efficacy of monochromatic radiation of frequency 540 \times 10^{12} \text{ Hz}}
\end{align*}
\]

These constants then define seven base units (which were previously themselves taken as fundamental):

time: second (s)
- It is defined by taking the fixed numerical value of the cesium frequency \(\Delta \nu_{\text{Cs}} \), the unperturbed ground-state hyperfine transition frequency of the cesium 133 atom, to be 9 192 631 770 when expressed in the unit Hz, which is equal to s\(^{-1}\).

length: meter (m)
- It is defined by taking the fixed numerical value of the speed of light in vacuum \(c \) to be 299 792 458 when expressed in the unit m·s\(^{-1}\), where the second is defined in terms of \(\Delta \nu_{\text{Cs}} \).

mass: kilogram (kg)
- It is defined by taking the fixed numerical value of the Planck constant \(h \) to be 6.626 070 15 \times 10^{-34} when expressed in the unit J·s, which is equal to kg·m\(^2\)·s\(^{-1}\), where the metre and the second are defined in terms of \(c \) and \(\Delta \nu_{\text{Cs}} \).

electric current: ampere (A)
- It is defined by taking the fixed numerical value of the elementary charge \(e \) to be 1.602 176 634 \times 10^{-19} when expressed in the unit C, which is equal to A·s, where the second is defined in terms of \(\Delta \nu_{\text{Cs}} \).

temperature: kelvin (K)
- It is defined by taking the fixed numerical value of the Boltzmann constant \(k \) to be 1.380 649 \times 10^{-23} when expressed in the unit J·K\(^{-1}\), which is equal to kg·m\(^2\)·s\(^{-2}\)·K\(^{-1}\), where the kilogram, meter and second are defined in terms of \(h, c \) and \(\Delta \nu_{\text{Cs}} \).
amount of substance: *mole* (mol)

One mole contains exactly 6.022 140 76 ×10^{23} elementary entities. This number is the fixed numerical value of the Avogadro constant, \(N_A\), when expressed in the unit \(\text{mol}^{-1}\) and is called the Avogadro number. The amount of substance, symbol \(n\), of a system is a measure of the number of specified elementary entities. An elementary entity may be an atom, a molecule, an ion, an electron, any other particle or specified group of particles.

luminous intensity: *candela* (cd)

It is defined by taking the fixed numerical value of the luminous efficacy of monochromatic radiation of frequency 540 ×10^{12} Hz, \(K_{\text{cd}}\), to be 683 when expressed in the unit \(\text{lm} \cdot \text{W}^{-1}\), which is equal to \(\text{cd} \cdot \text{sr} \cdot \text{W}^{-1}\), or \(\text{cd} \cdot \text{sr} \cdot \text{kg}^{-1} \cdot \text{m}^{-2} \cdot \text{s}^{3}\), where the kilogram, metre and second are defined in terms of \(h\), \(c\) and \(\Delta \nu_{\text{Cs}}\).

And then a number of other quantities are defined with these units (most of which we’ll be using in coming chapters):

plane angle: *radian* (rad, m/m, the ratio of circular arc length to radius)

solid angle: *steradian* (sr, \(m^2/m^2\), the ratio of spherical area to square radius)

frequency: *hertz* (Hz, \(s^{-1}\))

force: *newton* (N, \(kg \cdot m \cdot s^{-2}\))

pressure, stress: *pascal* (Pa, \(N/m^2 = kg \cdot m^{-1} \cdot s^{-2}\))

electric charge: *coulomb* (C, \(A\cdot s\))

electric potential difference: *volt* (V, \(W/A = kg \cdot m^2 \cdot s^{-3} \cdot A^{-1}\))

capacitance: *farad* (F, \(C/V = kg^{-1} \cdot m^{-2} \cdot s^4 \cdot A^2\))

electric resistance: *ohm* (\(\Omega\), \(V/A = kg \cdot m^2 \cdot s^{-3} \cdot A^{-2}\))

electric conductance: *siemens* (S, \(A/V = kg^{-1} \cdot m^{-2} \cdot s^3 \cdot A^2\))

magnetic flux: *weber* (Wb, \(V \cdot s = kg \cdot m^2 \cdot s^{-2} \cdot A^{-1}\))

magnetic flux density: *tesla* (T, \(Wb/m^2 = kg \cdot s^{-2} \cdot A^{-1}\))

inductance: *henry* (H, \(Wb/A = kg \cdot m^2 \cdot s^{-2} \cdot A^{-2}\))

Celsius temperature: *degree Celsius* (°C, \(K = °C+273.15\))

luminous flux: *lumen* (lm, \(cd \cdot sr = cd\))

illuminance: *lux* (lx, \(lm/m^2 = cd \cdot m^{-2}\))

activity referred to a radionuclide: *becquerel* (Bq, \(s^{-1}\))

absorbed dose, kerma: *gray* (Gy, \(J/kg = m^2 \cdot s^{-2}\))

dose equivalent: *sievert* (Sv, \(J/kg = m^2 \cdot s^{-2}\))

catalytic activity: *katal* (kat, \(mol \cdot s^{-1}\))

It is important to pay attention to the units in these definitions. Many errors in calculations can be caught by making sure that the final units are correct, and it can be possible to make a rough estimate of an answer to a problem simply by collecting relevant terms with the right units (this is the subject of *dimensional analysis*). Electromagnetic units are particularly confusing; we will consider them in more detail in Chapter 6. The SI system is also called *MKS* because it bases its units on the meter, the kilogram, and the second. For some problems it will be more convenient to use *CGS* units (based on the
centimeter, the gram, and the second); MKS is more common in engineering and CGS in physics. A number of other units have been defined by characteristic features or by historical practice; some that will be useful later are given in Table 2.2.

It’s often more relevant to know the value on one quantity relative to another one, rather than the value itself. The ratio of two values X_1 and X_2, measured in decibels (dB), is defined to be

$$ dB = 20 \log_{10} \frac{X_1}{X_2} $$ \hspace{1cm} (2.1)

If the power (energy per time) in two signals is P_1 and P_2, then

$$ dB = 10 \log_{10} \frac{P_1}{P_2} $$ \hspace{1cm} (2.2)

This is because the power is the mean square amplitude (Chapter 3), and so to be consistent with equation (2.1) a factor of 2 is brought in to account for the exponent. An increase of 10 db therefore represents an increase by a factor of 10 in the relative power of two signals, or a factor of 3.2 in their values. A change of 3 dB in power is a change by a factor of 2.

The name decibel comes from Bell Labs. Engineers there working on the telephone system found it convenient to measure the gain or loss of devices on a logarithmic scale. Because the log of a product of two numbers is equal to the sum of their logs, this let them find the overall gain of a system by adding the logs of the components, and using logarithms also made it more convenient to express large numbers. They called the base-10 logarithm the bel in honor of Alexander Graham Bell; multiplying by 10 to bring up one more significant digit gave them a tenth-bel, or a decibel.

Some decibel reference levels occur so commonly that they are given names; popular ones include:

- dBV measures an electrical signal relative to 1 volt
• dBm measures relative to a 1 mW signal. The power will depend on the (usually unspecified) load, which traditionally is 50 Ω for radiofrequency signals and 600 Ω for audio ones (loads will be covered in Chapter 7). In audio recording, this is also called the Volume Unit or VU.

• dBspl, for Sound Pressure Level (or just SPL), measures sound pressure relative to a reference of 2×10^{-5} Pa, the softest sound that the ear can perceive. The sound of a jet taking off is about 140 dBspl.

Finally, we’ll be using a number of fundamental observed constants in nature, including the gravitational constant ($G = 6.673(10) \times 10^{-11}$ m3·kg$^{-1}$·s$^{-2}$), the electron mass (m_e) = $9.10938188(72) \times 10^{-31}$ kg, and the proton mass (m_p) = $1.67262158(13) \times 10^{-27}$ kg. In this list the digits in parentheses are the standard deviation uncertainty (see Chapter 3) in the corresponding digits, so that for example the error in the value for G is 0.010×10^{-11} (which, compared to the other constants, is an embarrassingly large uncertainty [Gundlach et al., 1996]). Calculating these from first principles remains an open Nobel-prize-worthy problem.

Each fundamental constant can appear in many different types of measurements, and these are done by many different groups, leading to multiple values that unfortunately don’t always agree to within their careful error estimates. For this reason, the International Council of Scientific Unions in 1966 formed the Committee on Data for Science and Technology (CODATA) to do global optimizations over all these data to come up with an internally-consistent set of values [Mohr et al., 2016].

2.2 PARTICLES AND FORCES

The world is built out of elementary particles and their interactions. There are a number of natural divisions in organization, energy, and length that occur between the structure of the nucleus of an atom and the structure of the universe; it will be useful to briefly survey this range in order to understand the relevant regimes for present and prospective information technologies.

This story starts with quantum mechanics, the laws that govern things that are very small. Around 1900 Max Planck was led by his inability to explain the spectrum of light from a hot oven to propose that the energy of light is quantized in units of $E = h \nu = hc/\lambda$, where ν is the frequency and λ is the wavelength; $h = 6.626 \ldots \times 10^{-34}$ J·s is now called Planck’s constant. From there, in 1905 Einstein introduced the notion of massless photons as the discrete constituents of light, and in 1924 de Broglie suggested that the wavelength relationship applies to massive as well as massless particles by $\lambda = h/p$, λ is the de Broglie wavelength, and is a consequence of the wave–particle duality: all quantum particles behave as both waves and particles. An electron, or a photon, can diffract like a wave from a periodic grating, but a detector will register the arrival of individual particles. Quantum effects usually become significant when the de Broglie wavelength becomes comparable to the size of an object.

Quantum mechanical particles can be either fermions (such as an electron) or bosons (such as a photon). Fermions and bosons are as unlike as anything can be in our universe. We will later see that bosons are particles that exist in states that are symmetric under the
interchange of particles, they have an integer spin quantum number, and multiple bosons can be in the same quantum state. Fermions have half-integer spin, exist in states that are antisymmetric under particle interchange, and only one fermion can be in a particular quantum state. Spin is an abstract property of a quantum particle, but it behaves just like an angular momentum (as if the particle is spinning).

Particles can interact through four possible forces: gravitational, electromagnetic, weak, and strong. The first two are familiar because they have infinite range; the latter two operate on short ranges and are associated with nuclear and subnuclear processes (the characteristic lengths are approximately 10^{-15} m for the strong force and 10^{-18} m for the weak force). The electromagnetic force is so significant because of its strength: if a quantum atom was held together by gravitational forces alone (like a miniature solar system) its size would be on the order of 10^{23} m instead of 10^{-10} m. The macroscopic forces that we feel, such as the hardness of a wall, are transmitted to us by the electromagnetic force through the electrons in our atoms interacting with electrons in the adjoining atoms in the surface, but can be much more simply described in terms of fictitious effective forces (“the wall is hard”).

All forces were originally thought to be transmitted by an intervening medium, the long-sought ether for electromagnetic forces. We now understand that forces operate by the exchange of spin-1 gauge bosons – the photon for the electromagnetic interaction (electric and magnetic fields), the W^\pm and Z^0 bosons for the weak interaction, and eight gluons for the strong interaction (there is not yet a successful quantum theory of gravity). Particle masses arise from interactions with the Higgs field [Aad et al., 2012]. Quantum ElectroDynamics (QED) is the theory of the quantum electromagnetic interaction, and Quantum ChromoDynamics (QCD) the theory of the strong interaction. The weak and electromagnetic interactions are united in the electroweak theory, which, along with QCD is the basis for the Standard Model, the current summary of our understanding of particle physics. This amalgam of experimental observations and theoretical inferences successfully predicts most observed behavior extremely accurately, with two important catches: the theory has 20 or so adjustable parameters that must be determined from experiments, and it cannot explain gravitation.

The most fundamental massive particles that we are aware of are the quarks and leptons. There’s no reason to assume that there’s nothing below them (i.e., turtles all the way down); there’s just not a compelling reason right now to believe that there is. Quarks and leptons appear in the scattering experiments used to study particle physics to be point-particles without internal structure, and are spin-1/2 fermions. The leptons interact through the electromagnetic and weak interactions, and come in pairs: the electron and the electron neutrino (e^-, ν_e), the muon and its neutrino (μ^-, ν_μ), and the tau lepton and its neutrino (τ^-, ν_τ). Muons and tau leptons are unstable, and therefore are seen only in accelerators, particle decay products, and cosmic rays. Because neutrinos interact only through the weak force they can pass unhindered though a light-year of lead. They were originally thought to be massless, but their small observed mass is a cosmologically-significant deviation from the Standard Model [Aker et al., 2019].

Quarks interact through the strong as well as weak and electromagnetic interactions, and they come in pairs: up and down, charm and strange, and top and bottom. These fanciful names are just labels for the underlying abstract states. The first member of each pair has charge $+2/3$, the second member has charge $-1/3$, and each charge flavor
Quarks combine to form hadrons; the best-known of which are the two nucleons. A proton comprises two up quarks and a down, and the neutron an up and two downs. The nucleons, along with their excited states, are called baryons and are fermions. Transitions between baryon states can absorb or emit spin-1 boson hadrons, called mesons. The size of hadrons is on the order of 10^{-15} m, and the energy difference between excited states is on the order of 10^8 electron volts (1 GeV).

The nucleus of an atom is made up of some number of protons and neutrons, bound into ground and excited states by the strong interaction. Typical nuclear sizes are on the order of 10^{-14} m, and energies for nuclear excitations are on the order of 10^6 eV (1 MeV). Atoms consist of a nucleus and electrons bound by the electromagnetic interaction; typical sizes are on the order of 1 angstrom (Å, 10^{-10} m) and the energy difference between states is on the order of 1 eV. Notice the large difference in size between the atom and the nucleus: atoms are mostly empty space. Atoms can exist in different isotopes that have the same number of protons but differing numbers of neutrons, and ions are atoms that have had electrons removed or added.

Atoms can bond to form molecules; bond energies are on the order of 1 eV and bond lengths are on the order of 1 Å. Molecular sizes range from simple diatomic molecules up to enormous biological molecules with 10^6–10^9 atoms. Large molecules fold into complex shapes; this progresses from the primary structure of a coding sequence, to the secondary structure of geometrical motifs, to the tertiary structure of functional units, to the quaternary structure of molecular assemblies [Goodsell, 2009]. Predicting this folding was one of the most difficult challenges in molecular biology [R.Evans et al., 2018], but has become tractable through machine learning [Jumper et al., 2021].

Macroscopic materials are described by the arrangement of their constituent atoms, and include crystals (which have complete long-range ordering), liquids and glasses (which have short-range order but little long-range order), and gases (which have little short-range order). There are also very interesting intermediate cases, such as quasiperiodic alloys called quasicrystals that have deterministic translational order without translational periodicity [DiVincenzo & Steinhardt, 1991], and liquid crystals that maintain orientational but not translational ordering [Chandrasekhar, 1992]. Most solids do not contain just a single phase; there are usually defects and boundaries between different kinds of domains.

The atomic weight of an element is equal to the number of grams equal to one mole ($N_A \approx 10^{23}$) of atoms. It is approximately equal to the number of protons and neutrons in an atom, but differs because of the mix of naturally occurring isotopes. 22.4 liters of an ideal gas at a pressure of 1 atmosphere and at room temperature will also contain a mole of atoms. The structure of a material at more fundamental levels will be invisible and can be ignored unless energies are larger than its characteristic excitations. Although we will rarely need to descend below atomic structure, there are a number of important applications of nuclear transitions, such as nuclear power and the use of nuclear probes to characterize materials.
2.3 ORDERS OF MAGNITUDE

Understanding what is possible and what is preposterous requires being familiar with the range of meaningful numbers for each unit; the following lists include some significant ones:

Time

- 10^{-43} s: the Planck time (Problem 2.7)
- 10^{-15} s: this is the period of visible light, and a typical time scale for chemical reactions
- 10^{-12} s: shortest logic gate delay
- 10^{-9} s: atomic excitations and molecular rotations typically have lifetimes on the order of nanoseconds, and this is a characteristic computer clock cycle
- 10^{-3} s: the shortest time difference that is consciously perceptible by people
- 10^{17} s: the approximate age of the observable universe

Power and Energy

- 1 eV: atomic excitations
- 10^6 eV: nuclear excitations
- 10^9 eV: subnuclear excitations
- 10^{28} eV: the Planck energy
- 10 W: laptop computer
- 100 W: workstation; human
- 1000 W: house
- 10^4 W: car
- 10^5 W: building
- 10^7 W: supercomputer
- 10^{26} W: luminosity of the sun
- 10^{-12} W/m²: softest sound that can be heard
- 1 W/m²: loudest sound that can be tolerated
- 10^2 J/kg: energy density of food
- 10^9 J: energy in a ton of TNT
- 10^{20} J: energy consumption in the US per year

Temperature

- 10^{-9} K: laser-cooled gas
- 2.75 K: microwave background radiation from the Big Bang
- 77 K: liquid nitrogen
- 300 K: room temperature
- 6000 K: surface of the sun

Mass

- 10^{-27} kg: proton mass
- 10^{-12} kg: typical cell
- 10^{-5} kg: small insect
10^{16} \text{ kg: Earth’s biomass}
5.98 \times 10^{24} \text{ kg: the mass of the Earth}
10^{52} \text{ kg: approximate mass of the Milky Way}

Length

10^{-35} \text{ m: the Planck distance}
10^{-15} \text{ m: size of a proton}
10^{-10} \text{ m: size of an atom}
4 \times 10^3 \text{ m: height of a Low Earth Orbit satellite above the surface}
6.378 \times 10^6 \text{ m: radius of the Earth}
4 \times 10^7 \text{ m: height of a geosynchronous satellite above the equator}
10^{11} \text{ m: distance from the Earth to the Sun}
10^{20} \text{ m: Milky Way radius}
10^{26} \text{ m: size of the observable universe}

Electromagnetic spectrum

< 0.1 \text{ Å: gamma rays}
0.1–100 \text{ Å: X-rays}
100–4000 \text{ Å: UV (atomic ionization energy)}
4000–7000 \text{ Å: visible (this coincides with a transmission band through the atmosphere, and corresponds to } 10^{14}–10^{15} \text{ Hz)}
0.7–100 \mu\text{m: IR (thermal radiation)}
0.01–10 \text{ cm: microwave (GHz)}
0.1–10^3 \text{ m: radio (MHz–kHz)}

Magnetic and Electric Fields

10^{-12} \text{ tesla: magnetic field needed for radio reception}
10^{-6} \text{ tesla: magnetic field generated by a cordless phone}
3 \times 10^{-5} \text{ tesla: magnetic field at the Earth’s surface}
20 \text{ tesla: large superconducting/normal hybrid magnet}
10^4 \text{ A: lightning bolt current}
10^8 \text{ V: potential across a lightning bolt}
3 \times 10^6 \text{ V/m: breakdown voltage in air}

Number

10^5: number of DNA bases in a bacteriophage
4 \times 10^6: bytes in the Bible
10^9: number of DNA bases in a mammal
10^{13}: number of synapses in the human cortex
10^{21}: bytes passing through the Internet in 2016
10^{80}: approximate number of atoms in the universe
2.4 SELECTED REFERENCES

This is a handy summary of units, conversion factors, and governing equations.

A Who’s Who of interesting physical phenomena.

The Morrisons provide a marvelous tour through the characteristic phenomena at many length scales.

A nice introduction to particles and forces.

2.5 PROBLEMS

(2.1) (a) How many atoms are there in a yoctomole?
(b) How many seconds are there in a nanocentury? Is the value near that of any important constants?

(2.2) A large data storage system holds on the order of an exabyte. How tall would a 1 exabyte stack of DVDs be? How does that compare to the distance from Earth to space?

(2.3) If all the atoms in our universe were used to write an enormous binary number, using one atom per bit, what would that number be (converted to base 10)?

(2.4) Compare the gravitational acceleration due to the mass of the Earth at its surface to that produced by a 1 kg mass at a distance of 1 m. Express their ratio in decibels.

(2.5) (a) Approximately estimate the chemical energy in a ton of TNT. You can assume that nitrogen is the primary component; think about what kind of energy is released in a chemical reaction, where it is stored, and how much there is.
(b) Estimate how much uranium would be needed to make a nuclear explosion equal to the energy in a chemical explosion in 10 000 tons of TNT (once again, think about where the energy is stored).
(c) Compare this to the rest mass energy \(E = mc^2 \) of that amount of material (Chapter 14), which gives the maximum amount of energy that could be liberated from it.

(2.6) (a) What is the approximate de Broglie wavelength of a thrown baseball?
(b) Of a molecule of nitrogen gas at room temperature and pressure? (This requires either the result of Section 3.4.2, or dimensional analysis.)
(c) What is the typical distance between the molecules in this gas?
(d) If the volume of the gas is kept constant as it is cooled, at what temperature does the wavelength become comparable to the distance between the molecules?

(2.7) (a) The potential energy of a mass \(m \) a distance \(r \) from a mass \(M \) is \(-GMm/r\). What is the escape velocity required to climb out of that potential?

(b) Since nothing can travel faster than the speed of light (Chapter 14), what is the radius within which nothing can escape from the mass?

(c) If the rest energy of a mass \(M \) is converted into a photon, what is its wavelength?

(d) For what mass does its equivalent wavelength equal the size within which light cannot escape?

(e) What is the corresponding size?

(f) What is the energy?

(g) What is the period?

(2.8) Consider a pyramid of height \(H \) and a square base of side length \(L \). A sphere is placed so that its center is at the center of the square at the base of the pyramid, and so that it is tangent to all of the edges of the pyramid (intersecting each edge at just one point).

(a) How high is the pyramid in terms of \(L \)?

(b) What is the volume of the space common to the sphere and the pyramid?

(This question comes from an entrance examination for humanities students at Tokyo University [Economist, 1993].)