πŸ”Š

Noise in physical systems

Problem 3.1

a) Derive 3.19 from binomial distribution using stirling’s approximation

⁍⁍

average number of events = N = np β‡’ p = N and therefore the binomial distribution is

⁍⁍

using stirlings approximation. If x is small i guess whatever applies to n! will also apply to (n-x)!

⁍⁍

The first term - if you divide the numerator and denominator by n and realize the n is a large number while x is small it just becomes 1

=1βˆ—Nxx!ex(1βˆ’p)(nβˆ’x)=Nxx!ex(1βˆ’p)n(1βˆ’p)x= 1*\frac{N^x}{x!e^x}(1-p)^{(n-x)} \\ = \frac{N^x}{x!e^x}\frac{(1-p)^{n}}{(1-p)^x}

p = N/n and since x is small we assume x→0 that means e^x and (1-p)^x both are 1

⁍⁍

(1-p)^n is the taylor expanision for e^-N

⁍⁍

which is the 3.19 we wanted to derive.

b) Deriving 3.18 - factorial moments

⁍⁍

so the second term would be zero for anything that is less than m so

⁍⁍

and

⁍⁍

and p(x) is the poisson distribution we derived in 3.1 and based on Based on 3.17 - normalization for indeendent occurrences

=βˆ‘x=m+∞(eβˆ’N)N(xβˆ’m)(xβˆ’m)!Nm=Nm= \sum_{x=m}^{+\infty}(e^{-N})\frac{N^(x-m)}{(x-m)!}N^m \\ = N^m ο»Ώ

c) so to find the mean <x> we can write it as a factorial moment from earlier but m = 1 so basically it will be only one term. That way <x> = N or we can write the whole thing over again and start the summer from x=1 and splitting N into NxN^(x-1)

To find the variance = Οƒ2=<x2>βˆ’<x>2\sigma^2 = <x^2>-<x>^2ο»Ώ

Starting with finding the first term of the variance

=βˆ‘x=0+∞(x2)eβˆ’NNxx!=βˆ‘x=0+∞(x)eβˆ’NN(xβˆ’1)N1(xβˆ’1)!=Neβˆ’Nβˆ‘x=1+∞(xβˆ’1+1)N(xβˆ’1)(xβˆ’1)!=Neβˆ’N(βˆ‘x=1+∞(xβˆ’1)N(xβˆ’1)(xβˆ’1)!+βˆ‘x=1+∞(1)N(xβˆ’1)(xβˆ’1)!)=Neβˆ’N(NeN+eN)=N2+N= \sum_{x=0}^{+\infty}(x^2)e^{-N}\frac{N^x}{x!} \\ = \sum_{x=0}^{+\infty}(x)e^{-N}\frac{N^{(x-1)}N^1}{(x-1)!} \\ = Ne^{-N} \sum_{x=1}^{+\infty}(x-1+1)\frac{N^{(x-1)}}{(x-1)!} \\ = Ne^{-N} (\sum_{x=1}^{+\infty}(x-1)\frac{N^{(x-1)}}{(x-1)!}+\sum_{x=1}^{+\infty}(1)\frac{N^{(x-1)}}{(x-1)!}) \\ = Ne^{-N}(Ne^{N}+e^N) \\ = N^2+N

so the variance is Οƒ2=N2+Nβˆ’N2=N\sigma^2 = N^2+N-N^2 = Nο»Ώ and the standard deviation is Οƒ=(N)\sigma = \sqrt(N)ο»Ώ

so Οƒ<x>=1(N)\frac{\sigma}{<x>} = \frac{1}{\sqrt(N)}ο»Ώ

Problem 3.2

3.19 we just derived above - estimate of the expected error in a counting measurement

⁍⁍

For 1% , N = (1/0.01)^2 = 10^4

For 1 part in million , N = (1/10^-6)^2 = 10^12

Energy per photon = h*f = 6.626x10^(-34) x 4x10^14 = 26.504x10^(-20)

So for 1% = 26.504x10^-16

For 1 part in million = 26.504x10^(-20)x10^12 = 26.504x10^(-8) W

Problem 3.3

a) SNR = 20dB

20=20log10vsignalvnoise=10vnoise=vsignal=vsignalRMS=10βˆ—(4kTRdF)=10βˆ—(4βˆ—1.38βˆ—10(βˆ’23)βˆ—293βˆ—104βˆ—20βˆ—103=1.7985βˆ—10βˆ’520 = 20 log_{10}\frac{v_{signal}}{v_{noise}} \\ = 10v_{noise} = v_{signal} \\ = v_{signalRMS} = 10*\sqrt(4kTRdF) \\ = 10* \sqrt(4*1.38*10^(-23)*293*10^4*20*10^3 \\ = 1.7985*10^{-5}ο»Ώ

b) PE energy in circuit with capacitance =cv2/2=kT/2= cv^2 /2 = kT/2ο»Ώ

v2=kT/CC=1.38βˆ—10βˆ’23βˆ—293/1.79βˆ—1.79βˆ—10βˆ’10=1.26βˆ—10βˆ’12v^2 = kT/C \\ C = 1.38*10^{-23} *293 / 1.79*1.79*10^-10 \\ = 1.26*10^{-12}ο»Ώ

c) \sqrt(2*q*I*df) = 1/100*I β‡’ I^2*10^{-4} = 2*q*I*20 β‡’ I = 2*q*20*10^3*10^4 = 3.2*10^{-19}*20*10^7 = 6.4*10^-9