Miana Smith
PIT 2022

PSET 12
15.1
a.

By Kirchhoff's Law for current, we know that the sum of all the current entering a junction is zero. As always we have Ohm's law: $V=I R$ and "Ohm's law" for capacitors: $I=C \frac{d V}{d t}$. We apply these for each of the following scenarios

$v_{o}(t)=-\frac{1}{R C} \int_{0}^{t} v_{\text {in }}(t) d t+v_{o}(0)$
\quad Figure 1
Image source: http://www.ee.nmt.edu/~wedeward/EE212L/SP04/lab09.html
Differentiator:

$$
\begin{gathered}
\frac{d V_{\text {in }}}{d t} C+\frac{V_{\text {out }}}{R}=0 \\
V_{\text {out }}=-R C \frac{d V_{\text {in }}}{d t}
\end{gathered}
$$

Integrator:

$$
\begin{gathered}
\frac{d V_{\text {out }}}{d t} C+\frac{V_{\text {in }}}{R}=0 \\
V_{\text {out }}=\int \frac{V_{\text {in }}}{R C} d t
\end{gathered}
$$

Image from text.
Summing:

$$
\begin{aligned}
& \frac{V_{1}}{R_{\text {in }}}+\frac{V_{2}}{R_{\text {in }}}+\cdots \frac{V_{n}}{R_{\text {in }}}+\frac{V_{\text {out }}}{R_{\text {out }}}=0 \\
& V_{\text {out }}=-\frac{R_{\text {out }}}{R_{\text {in }}}\left(V_{1}+V_{2} \ldots V_{n}\right)
\end{aligned}
$$

Differential:

We know that the voltage across the two inputs should be the same, i.e.:

$$
\begin{gathered}
\frac{V_{2}-V_{+}}{R_{\text {in }}}=\frac{V_{+}}{R_{\text {out }}} \\
\frac{V_{1}-V_{-}}{R_{\text {in }}}=\frac{V_{-}-V_{\text {out }}}{R_{\text {out }}}
\end{gathered}
$$

And $V_{+}=V_{-}$.

$$
\frac{R_{\text {out }} V_{2}}{R_{\text {in }}+R_{\text {out }}}=V_{+}
$$

Then:

$$
\begin{gathered}
\frac{V_{1}-\frac{R_{\text {out }} V_{2}}{R_{\text {in }}+R_{\text {out }}}}{R_{\text {in }}}=\frac{\frac{R_{\text {out }} V_{2}}{R_{\text {in }}+R_{\text {out }}}-V_{\text {out }}}{R_{\text {out }}} \\
\frac{V_{1}}{R_{\text {in }}}-\frac{R_{\text {out }} V_{2}}{R_{\text {in }}\left(R_{\text {in }}+R_{\text {out }}\right)}-\frac{R_{\text {out }} V_{2}}{R_{\text {out }}\left(R_{\text {in }}+R_{\text {out }}\right)}=-\frac{V_{\text {out }}}{R_{\text {out }}} \\
\frac{V_{1}}{R_{\text {in }}}-\frac{V_{2}}{R_{\text {in }}}=-\frac{V_{\text {out }}}{R_{\text {out }}} \\
V_{\text {out }}=\frac{R_{\text {out }}}{R_{\text {in }}}\left(V_{2}-V_{1}\right)
\end{gathered}
$$

b.
c.

Transimpedance:

Then, $I_{\text {in }}+\frac{V_{\text {out }}}{R_{\text {out }}}=0$, or $V_{\text {out }}=-R_{\text {out }}^{\overline{-\bar{t}} I_{\text {in }}}$
Transconductance:

Then, $\frac{V_{\text {in }}}{R_{\text {in }}}+I_{\text {out }}=0$, or: $I_{\text {out }}=-\frac{V_{\text {in }}}{R_{\text {in }}}$
d.

We are to derive:

$$
\frac{d V_{f}}{d t}=-\frac{R_{O}}{R_{I}} \frac{d V_{P D}}{d t}-\frac{V_{P D}}{R_{I} C}
$$

By balancing currents into the non-inverting node of 15.9, shown below.

15.2

See code.
15.3

Lock-in frequency: 100 kHz
Bandpass filter Q: 50 (ratio of center frequency to the distance at which power is reduced by factor of 2)
Input detector: flat response up to 1 MHz
Output filter time constant: 1s
We will estimate the noise reduction at each stage for a signal corrupted by additive white noise.
15.4
a.

We are given that an order N Linear Feedback Shift Register (LFSR) satisfies the recursion relation:

$$
x_{n}=\sum_{i=1}^{N} a_{i} x_{i-1} \bmod (2)
$$

The text further gives us that for order 4 maximal LSFR, the i values for which $a_{i}=1$ (and not 0) are 1 and 4. So:

$$
x_{4}=a_{1} x_{0}+a_{2} x_{1}+a_{3} x_{2}+a_{4} x_{3}=x_{0}+x_{3}
$$

Or:

$$
x_{n}=x_{n-4}+x_{n-1}
$$

According to Google, a maximal LFSR will cycle through all its possible states, of which it has $2^{N}-1$, or 15 .

Step	$X(n)$	$X(n-1)(a=1)$	$X(n-2)(a=0)$	$X(n-3)(a=0)$	$X(n-4)(a=1)$
1	0	1	1	1	1
2	1	0	1	1	1
3	0	1	0	1	1
4	1	0	1	0	1
5	1	1	0	1	0
6	0	1	1	0	1
7	0	0	1	1	0
8	1	0	0	1	1
9	0	1	0	0	1
10	0	0	1	0	0
11	0	0	0	1	0
12	1	0	0	0	1
13	1	1	0	0	0
14	1	1	1	0	0
15	1	1	1	1	0

b.

Chip rate: 1 GHz .

Age of the universe: $13.8^{*} 10^{\wedge} 9$ years, 1 year is $3.15^{*} 10^{\wedge} 8$ seconds, so the universe is $43^{*} 10^{\wedge} 17 \mathrm{~s}$.

So this comes out to this many steps:

$$
\begin{gathered}
1 * 10^{9}\left[\frac{1}{s}\right] * 43 * 10^{17}[s]=43 * 10^{26} \\
2^{N}=43 * 10^{26} \\
N=91
\end{gathered}
$$

c.

$$
10 * \log _{10} 2^{91}=273[d B]
$$

15.5

For 8-bit:

$$
20 \log _{10} 2^{8}=48.2
$$

For 16-bit:

$$
20 \log _{10} 2^{16}=96.3
$$

15.6

The message 0010011100 (c1,c2) was received from a noisy channel, if it was sent by the convolutional coder in 15.20 , etc.

Oh no? What is a trellis. I cry.
15.7

See code.

