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3.1 
 
a. 
The binomial distribution is 𝑝!(𝑥) =

!!
(!$%)!%!

𝑝%(1 − 𝑝)!$% 

Stirling’s approximation is ln(𝑛!) ≈ 𝑛 ∗ ln(𝑛) − 𝑛 

From this, we want to derive the Poisson distribution: 𝑝(𝑥) = '!"(#

%!
 

Where 𝑁 = 𝑛𝑝 and we can assume that 𝑛 is very large, 𝑥 is small, and 𝑝 is small.  
Because the Stirling approximation is written in terms of the natural logarithm, I’m going to 
start by natural logging both sides of the binomial distribution: 

ln(𝑝!(𝑥)) = ln /
𝑛!

(𝑛 − 𝑥)! 𝑥! 𝑝
%(1 − 𝑝)!$%0	 

= 𝑛 ln(𝑛) − 𝑛 − (𝑛 − 𝑥)(ln(𝑛 − 𝑥) − 𝑛 + 𝑥) − ln(𝑥!) + 𝑥 ln(𝑝) + (𝑛 − 𝑥)ln	(1 − 𝑝) 
Because 𝑝 is small, we can use: ln	(1 + 𝑥) ≈ 𝑥 on the last term. And because 𝑥 is small, we will 
drop it out from 𝑛 − 𝑥 terms. 
Simplifying, 

= 𝑥(ln(𝑛) + ln(𝑝)) − 𝑝𝑛 − ln	(𝑥!) 
At which point, we’ll de-log. 

𝑝(𝑥) = 𝑒)*(!+)#𝑒$+!𝑒)*(%!) = (𝑛𝑝)%𝑒$+!
1
𝑥! =

𝑒$(𝑁%

𝑥! 	 
b. 
Next, we want 〈𝑥(𝑥 − 1)… (𝑥 − 𝑚 + 1)〉 = 𝑁, 
So we know that 〈𝑓(𝑥)〉 = ∫𝑓(𝑥)𝑝(𝑥)𝑑𝑥. Rewriting for discrete space with 𝑓 as our factorial 
moments: 

〈𝑥(𝑥 − 1)… (𝑥 − 𝑚 + 1)〉 = ;<𝑥(𝑥 − 1)… (𝑥 − 𝑚 + 1)=
𝑒$(𝑁%

𝑥!

-

%./

 

We also know that ∑ '!"(#

%!
-
%./ = 1, so we want a way to rewrite the above sum in that format. 

 
Let’s dick around with numbers for a bit: let 𝑚 = 5. Then (𝑥(𝑥 − 1)(𝑥 − 2)(𝑥 − 3)(𝑥 − 4)). If 
we start summing that, from 𝑥 = 0, a useful thing shows up: for 𝑥 < 5, the product will be zero 
because one of the sequences will be equal to zero. This means we can shift the bounds of the 
sum.  

;<𝑥(𝑥 − 1)… (𝑥 − 𝑚 + 1)=
𝑒$(𝑁%

𝑥!

-

%./

= ;<𝑥(𝑥 − 1)… (𝑥 − 𝑚 + 1)=
𝑒$(𝑁%

𝑥!

-

%.,

 

Next, Wikipedia says that a factorial moment is defined as <𝑥(𝑥 − 1)… (𝑥 − 𝑚 + 1)= = %!
(%$,)!

 

So we have: 



; /
𝑥!

(𝑥 − 𝑚)!0
𝑒$(𝑁%

𝑥!

-

%.,

= ;
𝑒$(𝑁%

(𝑥 − 𝑚)!

-

%.,

 

Which looks suspiciously close to the format we want! Based on the denominator, we should 
make the variable substitution 𝑎 = 𝑥 −𝑚. 

;
𝑒$(𝑁%

(𝑥 − 𝑚)!

-

%.,

=;
𝑒$(𝑁01,

(𝑎)! =
-

0./

;
𝑒$(𝑁0𝑁,

(𝑎)!

-

0./

 

𝑁, has no 𝑎 dependence, so we can pull it out. 

= 𝑁,;
𝑒$(𝑁0

(𝑎)!

-

0./

 

The sum is now in the same form as before, which we know is normalized.  
= 𝑁, 

c. 
 

𝜎2 = 〈(𝑥 − 〈𝑥〉)2〉 
= 〈𝑥2 − 2𝑥〈𝑥〉 + 〈𝑥〉2〉 = 〈𝑥2〉 − 2〈𝑥〉2 + 〈𝑥〉2 = 〈𝑥2〉 − 〈𝑥〉2 

Of these two, what we don’t know is what 〈𝑥2〉 is. The derivation in b gives us a hint though. 
For 𝑚 = 2, 〈𝑥(𝑥 − 1)〉 = 𝑁2 
Or, 〈𝑥2〉 − 〈𝑥〉 = 𝑁2 

〈𝑥2〉 = 𝑁2 + 𝑁 
So: 

𝜎2 = 〈𝑥2〉 − 〈𝑥〉2 = 𝑁2 + 𝑁 − 𝑁2 = 𝑁 
𝜎 = √𝑁 

𝜎
〈𝑥〉 =

√𝑁
𝑁 =

1
√𝑁

 

3.2  
 

𝜎
〈𝑥〉 =

1
√𝑁

 

Our previous answer: fractional error goes down as the square root of samples increases. For 
this, our fractional error is 1% or 0.01. 

0.01 =
1
√𝑁

 

10$2 = 𝑁$32 
𝑁 = 104 

1 part per million: 

10$5 = 𝑁$32 
𝑁 = 1032 

Watts = Joules/second 

𝐸 =
ℎ𝑐
𝜆  

For visible light: 



𝐸 = 6.6 ∗ 10$64 ∗ 3 ∗
107

500 ∗ 10$8 = 0.04 ∗ 10$39 = 4 ∗ 10$38𝐽 
→ 4 ∗ 10$38𝑊 

3.3 
 
a. 
20kHz bandwidth 
Source impedance: 10kOhm 
SNR w/ respect to source Johnson noise is 20dB 

〈𝑉!:;<'2 〉 = 4𝑘𝑇𝑅Δ𝑓 = 4 ∗ 1.38 ∗ 10$26 ∗ 300 ∗ 10 ∗ 106 ∗ 20 ∗ 106 = 3.3 ∗ 10$32 

𝑆𝑁𝑅 = 10 log3/ Z
〈𝑉<;=!0>2 〉
〈𝑉!:;<'2 〉 [	 

20 = 10 log3/ Z
〈𝑉<;=!0>2 〉
3.3 ∗ 10$32[ 

102 =
〈𝑉<;=!0>2 〉
3.3 ∗ 10$32 

〈𝑉<;=!0>2 〉 = 3.3 ∗ 10$3/ 
𝑉<;=!0> = 1.2 ∗ 10$?[𝑉] 

b. 

Δ𝑓 =
1
4𝑅𝐶 

〈𝑉!2〉 = 4𝑘𝑇𝑅
1
4𝑅𝐶 =

𝑘𝑇
𝐶 	 

10$32 =
𝑘𝑇
𝐶 → 𝐶 = 4.4 ∗ 10$8[𝐹] 

c. 
RMS shot noise 1% of current.  

〈𝐼!2〉 = 2𝑞〈𝐼〉Δ𝑓 
0.005 ∗ 𝑞 ∗ 4 ∗ 𝑅 ∗ 𝐶 = 〈𝐼〉 
〈𝐼〉 = 1.4 ∗ 10$2?[𝐴] 
〈𝐼!2〉 = 64 ∗ 10$35〈𝐼〉 
𝐼@AB = 8 ∗ 10$7c〈𝐼〉 
𝐼@AB = 0.01〈𝐼〉 

〈𝐼〉 = 64 ∗ 10$3/[𝐴] 
3.4 

𝑥 = 0, 𝑥 = 1 
𝛼	𝑑𝑡	is 0 → 1 in dt 
𝛽	𝑑𝑡 is 1 → 0 in dt  
 
We want:  

𝑑
𝑑𝑡 �⃗� = 𝐴 ∗ �⃗� 

Where 𝑝 = i𝑝/(𝑡)𝑝3(𝑡)
j 



𝑝/(𝑡) is the probability of being in state zero and 𝑝3(𝑡) is the probability of being in state one.  
 
Let’s reason through an example case, to see how the matrix should look. If we start in state 
zero, then 𝑝/(𝑡) = 1 because we’re literally at zero, and 𝑝3(𝑡) = 0, because we are not at one. 
In the next time step, we will either stay at zero or transition to one. Because 𝛼	𝑑𝑡	is probability 
of 0 → 1 in dt, this means that  𝑝3(𝑡 + 𝑑𝑡) = 𝛼𝑑𝑡	𝑝/(𝑡) for this initial condition. We can do the 
opposite starting condition to see that 𝑝/(𝑡 + 𝑑𝑡) = 𝛽𝑑𝑡	𝑝3(𝑡). Our matrix will be 2x2, so we 
still need to reason out the other two slots. These are occupied the likelihood of staying in the 
same state, so 1 − 𝛼𝑑𝑡 and 1 − 𝛽𝑑𝑡 respectively.  
 
This means that: 

𝑝/(𝑡 + 𝑑𝑡) = 1 − 𝛼𝑑𝑡 ∗ 𝑝/(𝑡) + 𝛼𝑑𝑡 ∗ 𝑝3(𝑡) 
𝑝3(𝑡 + 𝑑𝑡) = 1 − 𝛽𝑑𝑡 ∗ 𝑝3(𝑡) + 𝛼𝑑𝑡 ∗ 𝑝/(𝑡) 

 
The definition of a derivative is given by 

𝑓′(𝑥) = lim
C→/

𝑓(𝑥 + ℎ) − 𝑓(𝑥)
ℎ  

Forcing the probabilities into this (we’ll just do for 𝑝/(𝑡) since it’ll look ~the same): 
𝑑
𝑑𝑡 𝑝/

(𝑡) = lim
EF→/

Z
<(1 − 𝛼𝑑𝑡) ∗ 𝑝/(𝑡) + 𝛼𝑑𝑡 ∗ 𝑝3(𝑡) − 𝑝/(𝑡)=

𝑑𝑡 	[	 

𝑑𝑡 drops out for some of the terms, letting us pull out −𝛼𝑝/ and 𝛼𝑝3 from the limit. This ends 
up nicely leaving behind +$(F)$+$(F)

EF
 in the limit, haha.  
𝑑
𝑑𝑡 𝑝/

(𝑡) = −𝛼𝑝/(𝑡) + 𝛼𝑝3(𝑡) 
Analogously,  

𝑑
𝑑𝑡 𝑝3

(𝑡) = −𝛽𝑝3(𝑡) + 𝛽𝑝/(𝑡) 
Putting it in a matrix form: 
 

𝑑
𝑑𝑡 i

𝑝/(𝑡)
𝑝3(𝑡)

j = i−𝛼 𝛽
𝛼 −𝛽j i

𝑝/(𝑡)
𝑝3(𝑡)

j 

 
And that’s part one of six lmao. 
 
Next, we want to solve this by diagonalizing the matrix. Solving this flavor of differential 
equation using diagonal matrixes leverages that it’s easy to solve a differential equation of the 
form: 

𝑢G = 𝐷𝑢 
Where 𝐷 is a diagonal matrix. We can get our equation into this form using a variable 
substitution. I will admit that the logic for this feels circular and I have to convince myself of the 
validity frequently.  
 
Our current form is : 

𝑝G = 𝐴𝑝 



And what we want to solve is 	
𝑢G = 𝐷𝑢 

If 𝐴 is diagonalizable, then: 
𝑝G = 𝑃𝐷𝑃$3𝑝 

 
The lower case p and uppercase P are collectively a problem, no? 
 
Let’s expand the u equation: 

𝑢G = 𝐷𝑢 = 𝑃$3𝐴𝑃𝑢 
Multiply both sides by 𝑃 

𝑃𝑢G = 𝐴𝑃𝑢 
This suggests that if 𝑃𝑢G = 𝑝′ is true, then the substitution we want to make is 𝑝 = 𝑃𝑢 
We can check through this quickly: 

𝑃G = 𝑃𝑢G = 𝑃𝐷𝑢 = 𝑃𝐷𝑃$3𝑝 = 𝐴𝑝 
So it we’re good! 
 
To diagonalize the matrix, we first will find its eigenvalues.  

|𝐴 − 𝜆𝐼| = 0 

ri−𝛼 − 𝜆 𝛽
𝛼 −𝛽 − 𝜆jr = 𝛼𝛽 + 𝛽𝜆 + 𝛼𝜆 + 𝜆2 − 𝛼𝛽 = 𝜆2 + 𝜆(𝛼 + 𝛽) = 𝜆(𝜆 + (𝛼 + 𝛽)) 

From this, we have two unique eigenvalues (so the matrix is diagonalizable!), 𝜆 = 0	or 𝜆 =
−(𝛼 + 𝛽).  
 
Let’s find some eigenvectors: 

(𝐴 − 𝜆;𝐼)𝑣; = 0 
For 𝜆 = −(𝛼 + 𝛽) 

i−𝛼 𝛽
𝛼 −𝛽j − i

−(𝛼 + 𝛽) 0
0 −(𝛼 + 𝛽)j = t𝛽 𝛽

𝛼 𝛼u 

 

t𝛽 𝛽
𝛼 𝛼u t

𝑣3
𝑣2u = 0 

𝛽𝑣3 + 𝛽𝑣2 = 0 
𝛼𝑣3 + 𝛼𝑣2 = 0 
𝑣3 = −𝑣2 

For 𝜆 = 0 

i−𝛼 𝛽
𝛼 −𝛽j t

𝑣3
𝑣2u = 0 

−𝛼𝑣3 + 𝛽𝑣2 = 0 
𝛼𝑣3 − 𝛽𝑣2 = 0 

𝑣2 =
𝛼
𝛽 𝑣3 

So: 

𝑣/vvvv⃗ = w
1
𝛼
𝛽
x 



𝑣3vvvv⃗ = t 1−1u 
We know that 𝑃 is made by stacking our eigenvectors with the corresponding entries in 𝐷 as 
the eigenvalues. We can manually back this out too, but that’s just more effort at this point.  
 
SO: 
 

𝑃 = i 1 1
𝛼/𝛽 −1j 

 

𝐷 = i0 0
0 −(𝛼 + 𝛽)j 

 
Now we shall revisit our mess of u, D, p, P from earlier! 
 

𝑢G = i0 0
0 −(𝛼 + 𝛽)j 𝑢 

 
This is a recognizable form of ODE, the solution is given by: 
 

𝑢 = i
𝑐3

𝑐2𝑒$(H1I)F
j 

Now we use our	𝑝 = 𝑃𝑢 relationship: 

t
𝑝/
𝑝3u = i 1 1

𝛼/𝛽 −1j i
𝑐3

𝑐2𝑒$(H1I)F
j 

This gives us  
𝑝/(𝑡) = 𝑐3 + 𝑐2𝑒$(H1I)F 
𝑝3(𝑡) =

𝛼
𝛽 𝑐3 − 𝑐2𝑒

$(H1I)F 

𝑐3, 𝑐2 will be given to us by the initial condition, when 𝑡 = 0. 
𝑝/(0) = 𝑐3 + 𝑐2 

𝑝3(0) =
𝛼
𝛽 𝑐3 − 𝑐2 

Solving for 𝑐3, 𝑐2 in terms of 𝑝/(0) and 𝑝3(0): (It’s a lot of algebra I don’t want to re-type) 
 

𝑐2 =
𝛼𝑝/(0) − 𝛽𝑝3(0)

𝛼 + 𝛽  

𝑐3 =
𝛽

𝛼 + 𝛽 (𝑝/
(0) + 𝑝3(0)) 

Woo. 

𝑝/(𝑡) =
𝛽

𝛼 + 𝛽 (𝑝/
(0) + 𝑝3(0)) +

𝛽
𝛼 + 𝛽 (𝑝/

(0) + 𝑝3(0))𝑒$(H1I)F 

𝑝3(𝑡) =
𝛼

𝛼 + 𝛽 (𝑝/
(0) + 𝑝3(0)) −

𝛽
𝛼 + 𝛽 (𝑝/

(0) + 𝑝3(0))𝑒$(H1I)F 



What a mess. But, 𝑝/(0), 𝑝3(0) can only be some combination of 1 or 0, strictly speaking, so 
this is cleaner than it looks. In fact, 𝑝/(0) +	𝑝3(0) necessarily have to sum to 1, so we can drop 
them out the above equations.  
 

𝑝/(𝑡) =
𝛽

𝛼 + 𝛽 +
𝛽

𝛼 + 𝛽 𝑒
$(H1I)F 

𝑝3(𝑡) =
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)F 

 
And there we go, I don’t have it in me to separate the factor out.  
 
Unendingly, we are now to find the autocorrelation.  

〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 
We recall that 〈𝑓(𝑥)〉 = ∫𝑓(𝑥)𝑝(𝑥)𝑑𝑥 which in this case will be a sum. 

〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 =;𝑥(𝑡)𝑥(𝑡 + 𝜏)𝑝(𝑡)𝑝(𝑡 + 𝜏)
%

 

𝑥(𝑡) can only be 1 or 0. 𝑥(𝑡 + 𝜏) will also only ever be 1 or 0.  
We have the following combinations: 00, 10, 01, 11 
 
Since we’re summing over a product, only the 11 combo doesn’t result in zero. It results in 1. 
 

〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 = 	𝑝(𝑡)𝑝(𝑡 + 𝜏) 
  
Since both states have to be at x=1, we’re only looking at 𝑝3 here. We are now asking of the 
probability for x=1 once we’ve stepped forward by tau.  

𝑝3(𝑡) =
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)(F) 

 

𝑝3(𝑡 + 𝜏) =
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)(F1J) 

This gets really messy if we just multiply them.  
 
So let’s instead say that the outcome of this should be the same for any 𝑡, so let’s pick 𝑡 = 0 
 

𝑝3(0) =
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)(/) =

𝛼
𝛼 + 𝛽 

 

𝑝3(0 + 𝜏) =
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)(/1J) 

𝑝(𝑡)𝑝(𝑡 + 𝜏) =
𝛼

𝛼 + 𝛽 /
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)(J)0 

And that’s the autocorrelation.  
 



A Lorentzian power spectrum is: 
 

𝑆(𝑓) =
2𝜏

1 + (2𝜋𝑓𝜏)2 

Wiener-Khinchin relates power spectrum to autocorrelation as the inverse FT of it: 
 

〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉 = | 𝑆(𝑓)𝑒$;2KLJ𝑑𝑓
-

$-
 

Or: 

𝑆(𝑓) = | 〈𝑥(𝑡)𝑥(𝑡 + 𝜏)〉𝑒;2KLJ𝑑𝜏
-

$-
 

= |
𝛼

𝛼 + 𝛽 /
𝛼

𝛼 + 𝛽 −
𝛽

𝛼 + 𝛽 𝑒
$(H1I)(J)0 𝑒;2KLJ𝑑𝜏

-

$-
 

Well, isn’t that nasty.  
 
We know that this is the FT of a delta function.  ∫ 𝑒;2K%M𝑑𝑥-

$- = 𝛿(𝑦)  
 
 

=
1

(𝛼 + 𝛽)2| <𝛼2𝑒$;2KLJ − 𝛼𝛽𝑒$;2KLJ𝑒$(H1I)(J)=𝑑𝜏
-

$-
 

The first portion of the integral is a delta function:  
 

=
𝛼2

(𝛼 + 𝛽)2 Z𝛿
(𝑓) −

𝛽
𝛼| <𝑒;2KLJ𝑒$(H1I)(J)=𝑑𝜏

-

$-
[ 

Evaluating the integral in MATLAB gives: 
−𝑒J(2K;L$H$I)

𝛼 + 𝛽 − 2𝜋𝑖𝑓 �
∞
−∞ 

 
This doesn’t evaluate well or come out to the right format. I have some sense we can do 
something about the infinities on the basis of the autocorrelation being symmetric (i.e., 𝑎(𝑥) =
𝑎(−𝑥) = 𝑎(|𝑥|)) but the form of this is not a Lorentzian, so I’m pausing for now.   


