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4.1 
 

𝐻(𝑝) = −'𝑝! log(𝑝!)
"

!#$

 

 
Continuity 
 
The sum of a continuous function is also continuous. We know that 𝑓(𝑝) = 𝑝 log(𝑝) is a 
continuous function, so 𝐻(𝑝) is continuous.  
 
If this does not feel one-hundo sufficient, we can quickly show that 𝑓(𝑝) is continuous with a 
little epsilon-delta. Recall: 𝑓(𝑥) is continuous if given an 𝜖 > 0, there exists 𝛿 > 0 s.t. if 
|𝑥 − 𝑐| < 𝛿, then |𝑓(𝑥) − 𝑓(𝑐)| < 𝜖.  
 
We will do this for 𝑓(𝑝) = log 𝑝 because 𝑝 is continuous and the product of two continuous 
functions is also continuous. We have: 

| log(𝑝) − log	(𝑐)| < 𝜖 
log(𝑐) − 𝜖 < log(𝑝) < log(𝑐) + 𝜖 

Raise everything by e: 
𝑐𝑒%& < 𝑝 < 𝑐𝑒&  

We subtract c from everything: 
𝑐𝑒%& − 𝑐 < 𝑝 − 𝑐 < 𝑐𝑒& − 𝑐 

This gives us bounds for 𝛿. 
 
Non-negativity 
 
We know that 0 ≤ 𝑝! ≤ 1, which means that log(𝑝!) ≤ 0. So, −𝑝! log(𝑝!) will always be 
positive.  
 
Boundedness 
 
Or, 𝐻(𝑝) ≤ 𝐶(𝑋). 𝐻(𝑝) = 𝐶(𝑋) when all values are equally likely.  
 
First, we show that 𝐻(𝑝) is monotonic, specifically that it does not decrease.  
 
We can do this inductively on by summing over intervals from 𝑖 = 1 to 𝑖 = 𝑘, where 𝑘 < 𝑋 and 
comparing against the 𝑘 + 1 sum, which must always be greater than or equal to the prior sum 
for 𝐻(𝑝) to be not decreasing. Good writing! 



 
Let’s consider the 𝑘 = 1 case first: 
 

−𝑝$ log(𝑝$) ≥ −𝑝$ log(𝑝$) − 𝑝' log(𝑝') 
 
This is true based on our non-negativity constraint. A non-negative value is always greater than 
or equal to itself minus a non-negative value.  
 
Let’s then consider the 𝑘 + 1 case assuming case 𝑘 to be true.  
Then we want to show that −∑ 𝑝! log 𝑝!()'

!#$ ≥ −∑ 𝑝! log 𝑝!()$
!#$  

−'𝑝! log 𝑝!

()'

!#$

= −?'𝑝! log 𝑝!

(

!#$

@ − 𝑝()$ log(𝑝()$) − 𝑝()' log 𝑝()'

= −?'𝑝! log 𝑝!

()$

!#$

@ − 𝑝()' log 𝑝()' 

So it follows that the 𝑘 + 1 case is greater than or equal to the prior step on the basis of non-
negativity and the assumption of truth for case k. The gives us monotonicity, or that the 
equation does not decrease. Next, we will find the maximum of this, which will give us C.  
 
We know that ∑ 𝑝!"

!#$ = 1, since this is normalized. The maximum 𝐻(𝑝) occurs when all the 
values are equally likely, i.e. when the distribution is flat: 𝑝! = 1/𝑋. So, 

𝐻*(𝑝) = −'
1
𝑋 log B

1
𝑋C

"

!#$

= − log
1
𝑋 

This gives us our maximum value. I actually think that based on how the problem is stated this 
alone (without the potentially problematic inductive proof) is sufficient.  
 
Another way for doing this is using Lagrange multipliers (see 
http://underactuated.csail.mit.edu/optimization.html#section2), which are a way of solving 
optimization problems subject to equality constraints.  
 
The problem is given as (as per the link above): 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒+𝑙(𝒛)	𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	𝜙(𝒛) = 0 
To do this, we define the Lagrangian function: 

𝐿(𝒛, 𝜆) = 𝑙(𝒛) + 𝜆,𝜙(𝒛) 
Where 𝜆 is a vector of the Lagrange multipliers.  
For 𝒛∗ to be optimal, ./

.𝒛
= 0 and ./

.1
= 0.  

 
We can now apply this to the problem at hand: Frankly, it is a big pain to type the summations, 
so appreciate this bonus. 
 



𝐿 = −'𝑝! log(𝑝!)
"

!#$

− 𝜆 ?'𝑝!

"

!#$

− 1@ 

The partials are then: 
𝜕𝐿
𝜕𝑝!

= 0 = − log(𝑝!) − 1 − 𝜆 

And 
𝜕𝐿
𝜕𝜆 = 0 

(because of normalization).  
 
So we have:  

log(𝑝!) = −1 − 𝜆 
Or: 

𝑝! = 𝑒%$%1 
Which via normalization means that 𝑝! =

$
"

 as we previously reasoned, and 𝐻*(𝑝) = − log $
"

 
 
Additive independence 
 
 

𝐻(𝑝, 𝑞) = −''𝑝!𝑞2 log(𝑝!𝑞2)
3

2#$

"

!#$

 

= −''𝑝!𝑞2 log(𝑝!)
3

2#$

"

!#$

−''𝑝!𝑞2 log(𝑞2)
3

2#$

"

!#$

 

Recall that the sum over p or q is normalized. 

= −'𝑝! log(𝑝!)
"

!#$

−'𝑞2 logV𝑞2W
3

2#$

 

= 𝐻(𝑝) + 𝐻(𝑞) 
 
 
 
4.2  
 
We are given 𝐼(𝑥, 𝑦) = 𝐻(𝑥) + 𝐻(𝑦) − 𝐻(𝑥, 𝑦) and we want to demonstrate the relationship 
between that and: 

'𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

4,6

 

To do this, we shall do everyone’s favorite thing and split up the logarithm according to those 
logarithm rules.  



'𝑝(𝑥, 𝑦) log
𝑝(𝑥, 𝑦)
𝑝(𝑥)𝑝(𝑦)

4,6

 

='𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)
4,6

−'𝑝(𝑥, 𝑦) log 𝑝(𝑥)
4,6

−'𝑝(𝑥, 𝑦) log 𝑝(𝑦)
4,6

 

The last two terms have the logs split out in their variable dependence. Because we have 
normalized probability, this means we can sum over either x or y in those terms to further 
simplify: 

='𝑝(𝑥, 𝑦) log 𝑝(𝑥, 𝑦)
4,6

−'𝑝(𝑥) log 𝑝(𝑥)
4

−'𝑝(𝑦) log 𝑝(𝑦)
6

 

These summations now look like the definition of entropy! 	

𝐻(𝑝) = −'𝑝! log(𝑝!)
"

!#$

 

So: 
= −𝐻(𝑥, 𝑦) + 𝐻(𝑥) + 𝐻(𝑦) = 𝐼(𝑥, 𝑦) 

4.3  
 
Small probability 𝜖 of making a bit error.  
 
a. 
 
For an error to be made we need at least 2/3 to fail. The probability of 2/3 occurring per 
instance is 𝜖'(1 − 𝜖) and there are 3 ways for this to happen, i.e. 110, 011, 101. The probability 
of 3/3 occurring is  𝜖7 and there is only 1 way for this to happen: 111.  
 
So the overall probability is 3𝜖'(1 − 𝜖) + 𝜖7. We are given that 𝜖 is quite small; this is likely a 
hint that it is time to drop some terms, so we’re down to: 3𝜖'. 
 
b. 
 
Now we do this three times and majority vote on the outcome. This is the same as above but 
our new probability is 3𝜖'. Again, ignoring the cubes, we get: 

3 ∗ (3𝜖')' = 27𝜖8 
 
c. 
We’re sticking with 3𝜖' for 𝑁 = 1. 
Looking at this almost pattern, it looks like this will go something like: 

39𝜖'(9) 
Or ∝ 𝑒'9 for large N.  
 
4.4  
 



𝐻 = −` 𝑝(𝑥) logV𝑝(𝑥)W 𝑑𝑥
<

%<
 

Let’s use the natural logarithm because life does not need to be painful. 

𝐻 = −` 𝑝(𝑥) lnVp(x)W 𝑑𝑥
<

%<
 

𝑝(𝑥) =
1

√2𝜋𝜎'
𝑒(%4%4!)"/'>"  

𝐻 = −
1

√2𝜋𝜎'
` 𝑒(%4%4!)"/'>" lnV𝑒(%4%4!)"/'>"W 𝑑𝑥
<

%<
 

= −
1

√2𝜋𝜎'
` 𝑒

(%4%4!)"
'>" (

−𝑥 − 𝑥?
2𝜎' − 2 ln(2𝜋𝜎'))𝑑𝑥

<

%<
 

From the first term, we see that this integral actually evaluates to the 〈(𝑥 − 𝑥?)'〉 since it 
defines the variance. And for the second term, the natural log will pull out as it has no x 
dependence. This leaves only the awkward exponential to evaluate. With some help from 
MATLAB, this all comes to: 

=
1
2 ln 2𝜋𝜎

' +
1
2 

 
4.5 
 
Bandwidth: 3300Hz 
SNR =20dB 
 
a. 
 
Capacity is given by: 
 

𝐶 = Δ𝑓 log' B1 +
𝑆

𝑁?Δ𝑓
C 

Our latter term is given by: 

20𝑑𝐵 = 10 log$?
𝑆
𝑁 →

𝑆
𝑁 = 10' 

𝐶 = 22 ∗ 107	𝑏𝑖𝑡/𝑠 
b. 
 

𝐶 = 10@ 

10@ = 3300 log' B1 +
𝑆
𝑁C 

2
$?#
77?? − 1 = 𝑆/𝑁 
≈ 2$?$ ≈ 10$?%  
→ 	10A𝑑𝐵 

 
4.6 



We want to show 𝑓(𝑥$, … 𝑥B) = 𝑛%$∑ 𝑥!B
!#$  is an estimator for the mean that is unbiased and 

achieves the Cramér-Rao bound.  
 
(𝑥$, … 𝑥B) is drawn from Gaussian distribution with variance 𝜎' and unknown mean value 𝑥? 
 
Unbiased 
 
We want 〈𝑓(𝑥$, … 𝑥B)〉 = 𝑥? 

〈𝑓(𝑥)〉 = `𝑓(𝑥)𝑝(𝑥)𝑑𝑥 

Our probability in this case is given by: 

𝑝(𝑥$, … 𝑥9) =p𝑝(𝑥B)
9

B#$

 

〈𝑓(𝑥)〉 = `?𝑛%$'𝑥!

B

!#$

@?p𝑝(𝑥B)
9

B#$

@𝑑𝑥$…𝑑𝑥9 

Oh no! 
Anyways, I’m already not writing this down rigorously, but: each 𝑥!  is its own thing, so it is 
equivalent to think of this integral as the sum of many integrals over each individual 𝑥! , 𝑝!  
pairing: 

〈𝑓(𝑥)〉 ='
1
𝑛`𝑥!𝑝!𝑑𝑥!

B

!#$

 

This integral term is now the expected value for 𝑥! . 

〈𝑓(𝑥)〉 ='
1
𝑛
〈𝑥!〉

B

!#$

= 𝑥? 

This is as we desire.  
 
Cramér-Rao 
 
(From the text), this states that 𝜎'(𝑓) ≥ $

C(D)
 So we need to find the Fisher information and the 

variance of the estimator.  
 
I am tired now so I do not think I will do this today! <3  


