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PSET 4 
6.1 
 
We are to prove 𝐴 × $𝐵&⃗ × 𝐶( = 𝐵&⃗ $𝐴 ∙ 𝐶( − 𝐶$𝐴 ∙ 𝐵&⃗ ( using the summations convention.  
I.e., we have: 
 

$𝐵&⃗ × 𝐶(
!
= 𝜖!"#𝐵"𝐶# 

Or, with a little switch of indexes: 
-𝐴 × $𝐵&⃗ × 𝐶(.

!
= 𝜖!"#𝐴" -$𝐵&⃗ × 𝐶(#. = 𝜖!"#𝐴"𝜖#$%𝐵$𝐶% 

 
Full disclosure, I do not enjoy the summations convention notation! It is hard to read! It is 
difficult to remember! Doing it this way saves us a few lines of easy algebra (and a lot of typing) 
but at what cost, I say? At what cost?  
 
We are given: 
 

𝜖!"#𝜖#$% = 𝛿!$𝛿"% − 𝛿!%𝛿"$  
Where 𝛿!"  is Kroenecker delta. (This is why we picked the above set of indexes).  
 
We are not in matrix land, so we can do a little re-shuffle: 

𝜖!"#𝐴"𝜖#$%𝐵$𝐶% = 𝜖!"#𝜖#$%𝐴"𝐵$𝐶% = (𝛿!$𝛿"% − 𝛿!%𝛿"$)𝐴"𝐵$𝐶% 
= 𝛿!$𝛿"%𝐴"𝐵$𝐶% − 𝛿!%𝛿"$𝐴"𝐵$𝐶% 
= 𝛿!$𝛿"%𝐴"𝐵$𝐶% − 𝛿!%𝛿"$𝐴"𝐵$𝐶% 

 
The 𝛿!"  enables us to do a little change of indices:  
𝛿!$  is one only when 𝑖 = 𝑙, so 𝐵$ = 𝐵!. Similarly 𝛿"% = 1 only when 𝑗 = 𝑚, so we can switch 
𝐶% = 𝐶". We can do the same for the other half of the equation. 
 	

= 𝐴"𝐵!𝐶" − 𝐴"𝐵"𝐶! 	
= 𝐵!$𝐴"𝐶"( − 𝐶!(𝐴"𝐵") 
= 𝐵!$𝐴 ∙ 𝐶( − 𝐶!(𝐴 ∙ 𝐵&⃗ ) 

Therefore, 
𝐴 × $𝐵&⃗ × 𝐶( = 𝐵&⃗ $𝐴 ∙ 𝐶( − 𝐶$𝐴 ∙ 𝐵&⃗ ( 

For ∇= 𝐴 = 𝐵&⃗  and 𝐶 = 𝐸, the identity: 
∇ × (∇ × 𝐸) = ∇(∇ ∙ 𝐸) − ∇&𝐸 

Follows immediately.  
 
6.2 
 



a. 
 
Here we use Gauss’ law to find the capacitance between two parallel plates of area A, potential 
V, and distance D. We ignore boundary effects.  
 
We start by finding 𝐸. (I’m neglecting arrows and such for typing convenience.) 
 
Let 𝑄 be the charge on each plate. Then the charge density 𝜌 = '

(
.  

 
We can write Gauss’ law as 𝜙) =

'
*
 (the electric flux through a surface is proportional to the 

enclosed charge). You can also do this by writing out the integrals and integrating over a 
rectangular section across a plate.  
 
Or:  
 

𝐸𝐴 =
𝑄
𝜖  

 

𝐸 =
𝑄
𝐴𝜖 =

𝜌
𝜖  

 
We can then find potential 𝑉, which is the work done by the field over distance 𝑑, i.e., 
 

𝑉 =
𝜌
𝜖 𝑑 

Capacitance is then: 

𝐶 =
𝑄
𝑉 =

𝑄
𝑄
𝐴𝜖 𝑑

=
𝐴𝜖
𝑑  

 
b. 
 
The internal displacement current will be +

+,
𝐷 

 
𝜕
𝜕𝑡 𝐷 =

𝜕
𝜕𝑡 𝜖𝐸 =

𝜕
𝜕𝑡 B

𝑄
𝐴C =

1
𝐴
𝜕
𝜕𝑡 𝑄 =

𝐼
𝐴 

When we integrate over area A we then get 𝐼. 
 
c. 
 
The energy density is given as 

𝑈 =
1
2 (𝐸 ∙ 𝐷 + 𝐵 ∙ 𝐻) 

(Excluding vector symbols for my typing convenience.) 



We have no magnetic field contributions here so: 

𝑈 =
1
2
(𝐸 ∙ 𝐷) =

1
2I
𝜌&

𝜖 J 

In the volume between the plates the energy is then: 
 

𝑈) =
1
2I
𝜌&

𝜖 J𝐴𝑑 

We are to rearrange this in terms of the capacitance, 𝐶 = (*
-

 
We can fully expand out the energy to better see how to substitute it: 

=
1
2I
𝜌&

𝜖 J𝐴𝑑 =
1
2𝜌 ∗ 𝜌 ∗

1
𝜖 ∗ 𝐴 ∗ 𝑑 

We will substitute in 𝐴 = .-
*

. Writing it out in a slightly unnatural way: 

=
1
2
𝜌
𝜖 𝑑

𝜌
𝜖 𝑑	𝐶 

Or  

𝑈) =
1
2𝐶𝑉

& 

d. 
 
We have 10[𝑉] ∗ 10[𝐴] = 100[𝑊] 
At 1 hour = 3600 seconds, this is = 3.6 ∗ 10/𝐽 
So we have: 
 

3.6 ∗ 10/ =
1
2𝐶(10)

& 

𝐶 = 7.2 ∗ 100[𝐹] 
Substituting in to 𝐴 = .-

*
, we have 

𝐴 = 7.2 ∗ 100 ∗
1012

8.85 ∗ 1013& = 0.81 ∗ 104 = 8 ∗ 105[𝑚&] 
If we are stacking these out of little plates of 10cm side length or 𝐴6789:; = 0.01[𝑚&],  
We would require 8 ∗ 103< of these stacked. At our given d, this corresponds to a height of 8 ∗
10=[𝑚]. 
 
6.3 
 
a. 
 
Now we play this game for the infinite solenoid with current I and n turns per meter. For the 
infinite solenoid, the magnetic field will be uniform inside the solenoid, running parallel along 
its length (directionality determined by direction of current flow). We can reason out that as 
this solenoid is infinite, the field outside should be zero.  
 



We are given: 

X𝐻𝑑𝑙 = YB𝐽 +
𝜕𝐷
𝜕𝑡 C 𝑑𝐴	 

Parsing this into laymen’s terms gives us that the line integral of the magnetic intensity is 
proportional to the current it encloses (magnetic intensity summed around a closed loop is 
proportional to the current inside of the loop). We have no +>

+,
 in this case, as we have no 

electric fields.  
 
For some length l of the solenoid, we draw a little box of length l around one side of the 
solenoid. We will get: 
 

𝐻𝑙 = 𝐼𝑛𝑙 
Or: 

𝐻 = 𝑛𝐼 
𝐵 = 𝜇𝑛𝐼 

b. 
 
We have 	

𝑈 =
1
2 (𝐸 ∙ 𝐷 + 𝐵 ∙ 𝐻) 

This time, with no electric field contributions. So: 

𝑈 =
1
2
(𝐵 ∙ 𝐻) =

1
2𝜇𝑛

&𝐼& 

In a cylindrical volume with radius r and length l this becomes: 

𝑈6?$ =
1
2𝜇
(𝑛𝐼)&𝜋𝑟&𝑙 

c. 
 
We have a big boi magnet of 10T with bore diameter 1m and length 2m. We are told to 
remember that force is the gradient of potential for a conservative force. Thanks! 
 
We have from the previous question: 

𝑈6?$ =
1
2𝜇
(𝑛𝐼)&𝜋𝑟&𝑙 

So: 
𝜕𝑈
𝜕𝑟 = 𝜇(𝑛𝐼)&𝜋𝑟𝑙 

We are given the value 10T for B, so we need to re-write this in terms of B: 

=
𝐵&

𝜇 𝜋𝑟𝑙 

Plugging in our values with 𝜇 = 4𝜋 ∗ 101@, we get 
= 25 ∗ 10@[𝑁] 

 
 



 
 
6.4 
a. 
 
We’ve got two parallel conductors of infinite length, at 1 meter apart, producing 2 ∗ 101@N per 
meter length force between them. We want to show that 1A is the current that does this. This 
is terrible sentence structure! 
 
We are given (via Biot-Savart): 

𝐻 =
𝐼
2𝜋𝑟 

For the optimal straight conductor.  
 
For a single charge: 

𝐹 = 𝑞𝑣 × 𝐵 
We extend this to a line of charge of length L: 

𝐹 = 𝐼𝐿 × 𝐵 
Constitutive equation: 

𝐵 = 𝜇𝐻 
Putting it all together, (recall the conductors are parallel): 

𝐹 =
𝐼&𝜇
2𝜋𝑟 𝐿 

 
𝐹
𝐿 =

𝐼&𝜇
2𝜋𝑟 

 
We plug in our values: 

𝐹
𝐿 =

1 ∗ 4 ∗ 𝜋 ∗ 101@

2 ∗ 𝜋 ∗ 1 = 2 ∗ 101@ c
𝑁
𝑚d 

 
b. 
 
I assume the problem comes from these “infinite length”, “negligible cross-section”, and 
“vacuum” approximations being too approximate. I also think that’s a fairly sensitive force 
measurement and life would be easier if it didn’t have to be so precise… 
 
 
6.5 
 
Well, NIST has published a DIY Lego version of the Kibble balance. Here is the methodology: 
https://aapt.scitation.org/doi/full/10.1119/1.4929898 
 
a. 



Neil’s hints are to use the definition of force on an infinitesimal current element: 
𝑑�⃗� = 𝐼𝑑𝑙 × 𝐵&⃗  

Green’s theorem: 

YI
𝜕𝐸A
𝜕𝑥 −

𝜕𝐸B
𝜕𝑦 J𝑑𝑥𝑑𝑦 = X(𝐸B𝑑𝑥 + 𝐸A𝑑𝑦) 

Let’s re-write this more or less how Wikipedia gives it to us, so that it looks less like a law about 
E fields: 

X(𝐿𝑑𝑥 +𝑀𝑑𝑦) = hB
𝜕𝑀
𝜕𝑥 −

𝜕𝐿
𝜕𝑦C𝑑𝑥𝑑𝑦 

And the formula for the divergence of a magnetic field: 
∇ ∙ 𝐵&⃗ = 0 

No monopoles! 
 
We are asked to consider the vertical component of this (we’re going to relate it to mg), so let’s 
call this axis z. So our differential z component of the force is: 

𝑑𝐹C = 𝐼(𝑑𝑙B𝐵A − 𝑑𝑙A𝐵B) 
We integrate over the path of the coil: 

𝐹C = 𝐼Y (𝑑𝑙B𝐵A$ − 𝑑𝑙A𝐵B$)
D
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Where a and b are the end points of the coil, and the superscript l indicates that it’s B 
expressed in the reference coordinates of the coil. Knowing that we want to go to a line 
integral, we will change our reference frame and take the line integral over the path of the coil: 

𝐹C = 𝐼X(𝐵A𝑑𝑥 − 𝐵B𝑑𝑦) 

 
By Green’s theorem: 
 

𝐼 X(𝑑𝑥𝐵A − 𝑑𝑦𝐵B) = 𝐼hI
𝜕𝐵B
𝜕𝑥 +

𝜕𝐵A
𝜕𝑦 J𝑑𝑥𝑑𝑦 

We will use the divergence now: 

∇ ∙ 𝐵&⃗ =
𝜕𝐵B
𝜕𝑥 +

𝜕𝐵A
𝜕𝑦 +

𝜕𝐵C
𝜕𝑧 = 0 

 

𝐼hI
𝜕𝐵B
𝜕𝑥 +

𝜕𝐵A
𝜕𝑦 J 𝑑𝑥𝑑𝑦 = 𝐼hB

𝜕𝐵C
𝜕𝑧 C 𝑑𝑥𝑑𝑦 

We let 𝐴 be the cross-sectional area of the coil. 

𝐹C = 𝐼
𝜕𝐵C
𝜕𝑧 𝐴 

We then have: 

𝑚 =
𝐼𝐴
𝑔
𝜕𝐵C
𝜕𝑧  

b. 
 



We are given: 

𝑉(�⃗�, �⃗�) = −Y 𝐸&⃗ ∙ 𝑑𝑙
AE⃗

B⃗
 

We revisit the non-two dimensional version of Green’s theorem, aka Stokes’: 

h∇× 𝐸&⃗ ∙ 𝑑𝐴 = X𝐸&⃗ ∙ 𝑑𝑙 

This in combination with Maxwell’s third law: 

∇ × 𝐸&⃗ =
𝜕𝐵&⃗
𝜕𝑡  

Gives us: 

𝑉(𝑥, �⃗�) = −h
𝜕𝐵&⃗
𝜕𝑡 ∙ 𝑑𝐴 

= −
𝜕𝐵C
𝜕𝑡 𝐴 

c. 
 
From a we have:  
 

𝑚 =
𝐼𝐴
𝑔
𝜕𝐵C
𝜕𝑧  

And from b we have: 
 

𝑉 = −
𝜕𝐵C
𝜕𝑡 𝐴 

The Kibble balance exists in part to eliminate the need for making precise measurements of B, 
so that’s the term we want to yeet. We can make good measurement of speed, so we’ll 
substitute that in: 

𝑉 = −
𝜕𝐵C
𝜕𝑡 𝐴 = −𝐴

𝜕𝐵C
𝜕𝑧

𝜕𝑧
𝜕𝑡 = −𝐴𝑣

𝜕𝐵C
𝜕𝑧  

Now we combine: 

𝑚 =
𝐼𝑉
𝑣𝑔 

d. 
 
The Lego paper says that by doing a “virtual” power measurement, it eliminates the effects of 
frictional forces (e.g. literal friction, resistance). 
 
6.6 
 
a. 
 
Sunlight has power density 1kW/m^2. Estimate electric field strength associated with this 
radiation.  
We are given: 



𝑃 = 𝐸 × 𝐻 
 This is the Poynting vector and integrating it over an area gives us the energy being carried by 
an electromagnetic wave, i.e.: 

100 = Y𝑃 ∗ 𝑑𝐴 

We want to re-write the Poynting vector in terms of E.  
 
We are given: 
 

m
𝜖<
𝜇<
𝑘o × 𝐸&⃗ = 𝐻&&⃗  

(Gonna use the arrows for a bit for clarity). So: 

𝑃&⃗ = 𝐸&⃗ × m
𝜖<
𝜇<
𝑘o × 𝐸&⃗  

The field equation for E is: 
𝐸&⃗ = 𝐸<&&&&⃗ 𝑒!G#

E⃗ 	B⃗1I,J 
So we have: 

𝑃&⃗ = 𝐸<&&&&⃗ 𝑒!G#
E⃗ 	B⃗1I,J × m

𝜖<
𝜇<
𝑘o × 𝐸<&&&&⃗ 𝑒!G#

E⃗ 	B⃗1I,J 

What we want is the expected value of the magnitude of P. Since the exponential term is a 
squared sinusoid, its expected value is ½.  

〈|𝑃&⃗ |〉 =
1
2𝐸<

&m
𝜖<
𝜇<

 

We will do the integral over a 1m^2 area: 

100 = Y
1
2𝐸<

&m
𝜖<
𝜇<
∗ 𝑑𝐴 

100 =
1
2
m8.85 ∗ 10

13&

4 ∗ 𝜋 ∗ 101@ 𝐸<
& 

This gives us 𝐸< ≈ 868	 uK
%
v 

 
b. 
 
We will do the same thing but for 1W at 1mm square and 1um square. 

𝐸< = wm
𝜇<
𝜖<
2𝑊/𝐴 

1 square mm: 



𝐸< = y377 ∗ 2 ∗ 1 ∗ 1 ∗ 102 = 27 ∗ 100 
1 square um: 
 

𝐸< = y377 ∗ 2 ∗ 1 ∗ 1 ∗ 103& = 27 ∗ 102 
 
 
 


