## PSET 5

## 7.1

There are basically two types of noise we're trying to shield with the twisted pair + grounded shield: inductive and capacitive coupling. If we visualize the twisted pair (one line takes signal out, the other back in), and move it in a B-field, we expect that the induced currents will cancel each other out. The grounded shield, uh, shields out E-fields (any induced potentials will exist in the shield, by grounding it, we're able to cancel those out).

## 7.2

We are given:

$$
\delta=\frac{1}{\sqrt{\pi v \mu \sigma}}
$$

For the problem, we have: $\sigma=4\left[\frac{s}{m}\right], v=10^{4}[\mathrm{~Hz}], \mu \approx 1.25 * 10^{-6}$
So:

$$
\delta=\frac{1}{\sqrt{3.14 * 10^{4} * 1.25 * 10^{-6} * 4}}=2.5[\mathrm{~m}]
$$

## 7.3

The Poynting vector is:

$$
\vec{P}=\vec{E} \times \vec{H}
$$

We are to integrate this over a coaxial cable to find the power flowing through a cross-sectional slice of it:

$$
\int_{0}^{2 \pi} \int_{r_{0}}^{r_{1}}(\vec{E} \times \vec{H}) r d r d \theta
$$

We are given that $|\vec{H}|=\frac{I}{2 \pi r}$ and $|\vec{E}|=\frac{Q}{2 \pi \epsilon r}$ for this geometry. $\vec{H}$ will point in the $\hat{\theta}$ direction and $\vec{E}$ will point in the $\hat{r}$ direction, so we can surmise that that $\vec{P}$ points in the let's call it $\hat{z}$ direction (or out of the coax).

$$
\begin{aligned}
& \int_{0}^{2 \pi} \int_{r_{0}}^{r_{1}} \frac{I}{2 \pi r} \frac{Q}{2 \pi \epsilon r} r d r d \theta \\
& =\left.\frac{Q I}{4 \pi^{2} \epsilon} \theta \int_{r_{0}}^{r_{1}} \frac{1}{r} d r\right|_{0} ^{2 \pi}
\end{aligned}
$$

$$
=\frac{Q I}{2 \pi \epsilon} \ln \left(\frac{r_{1}}{r_{0}}\right)
$$

We are given that

$$
V=\frac{Q}{2 \pi \epsilon} \ln \left(\frac{r_{1}}{r_{0}}\right)
$$

For this geometry, so the power flowing through this cross sectional region is

$$
=I V
$$

Which we could expect.

## 7.4

We find the characteristic impedance of two parallel strips with width $w$ and distance $d$.

$$
Z=\sqrt{\frac{L}{C}}
$$

Let's find C first. This geometry is a parallel plate capacitor, so:

$$
C=\frac{\epsilon w l}{d}
$$

For some sub-length I.
Switching to Farads per meter:

$$
C=\frac{\epsilon W}{d}
$$

Inductance is given by:

$$
L=\frac{\Phi}{I}=\frac{1}{I} \int \vec{B} * d \vec{A}
$$

Let's find the $B$ field from this flat sheet. Our constitutive equation:

$$
\vec{B}=\mu \vec{H}
$$

Via Stokes':

$$
\oint \vec{H} d \vec{l}=\iint\left(\vec{J}+\frac{\partial D}{\partial t}\right) d \vec{A}
$$

In our case, we can draw a little loop around one of our sheets (looking at it in cross section).
(This is not unlike the solenoid question from last week's homework).

$$
\vec{H} w=I
$$

So:

$$
\vec{B}=\frac{\mu I}{w}
$$

The field is going to be running like through the plates, orthogonal to their length.
This gives us:

$$
L=\frac{\mu}{w} d * l
$$

Switch to per length:

$$
L=\frac{\mu}{w} d
$$

Then:

$$
Z=\sqrt{\frac{\frac{\mu}{w} d}{\frac{\epsilon W}{d}}}=\frac{d}{w} \sqrt{\frac{\mu}{\epsilon}}
$$

And

$$
v=\frac{1}{\sqrt{L C}}
$$

So:

$$
v=\frac{1}{\sqrt{\mu \epsilon}}
$$

## 7.5

a.

The inductance per length is:

$$
L=\frac{\mu_{0}}{2 \pi} \ln \left(\frac{r_{0}}{r_{1}}\right)
$$

The capacitance per length is:

$$
\begin{gathered}
C=\frac{2 \pi \epsilon}{\ln \left(\frac{r_{0}}{r_{1}}\right)} \\
Z=\sqrt{\frac{L}{C}}=\ln \left(\frac{r_{0}}{r_{1}}\right) \sqrt{\frac{\mu_{0}}{4 * \pi^{2} * \epsilon}}
\end{gathered}
$$

With the parameters:

$$
\begin{gathered}
r_{1}=0.406 \mathrm{~mm}, r_{0}=1.48 \mathrm{~mm}, \epsilon=2.26 \\
Z=1.29 * \sqrt{\frac{10^{-7}}{\pi * \epsilon * \epsilon_{0}}} \approx 0.59 * 10^{2}
\end{gathered}
$$

We know that this should be about $50 \Omega$, so I will just round in the other direction :p
b.

$$
v=\frac{v=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\mu \epsilon}}}{\sqrt{4 \pi * 10^{-7} * 2.26 * 8.85 * 10^{-12}}} \approx 2 * 10^{8}\left[\frac{m}{s}\right]
$$

c.

We will do this as $v * t_{\text {clock }}=d_{\text {max }}$

$$
2 * 10^{8} * 10^{-9}=0.2[\mathrm{~m}]
$$

d.

30 mils is 0.000762 m .

$$
\begin{aligned}
50 & =\ln \left(\frac{762}{r_{i}}\right) \sqrt{\frac{\mu_{0}}{\epsilon \epsilon_{0}}} \\
1.25 & =\ln \left(\frac{762}{r_{i}}\right) \\
3.5 & \approx \frac{0.762[\mathrm{~mm}]}{r_{i}} \\
r_{i} & =0.22[\mathrm{~mm}]
\end{aligned}
$$

e.

$$
\begin{gathered}
v=\lambda * f \\
2 * 10^{8}=3 * 10^{-3} * f \\
f=6.6 * 10^{10}=66[\mathrm{GHz}]
\end{gathered}
$$

## 7.6

a.

Propagation delay: $4.6 \mathrm{~ns} / \mathrm{m}$
Impedance: 100 ohms
Physical length of minimum size 64 byte frame. In bits, this is 512 bits.
Our speed is $1 /$ propagation delay, i.e., $0.22^{*} 10^{\wedge} 9 \mathrm{~m} / \mathrm{s}$.
We'll say our ethernet is Gigabit/s, because that is the top speed the internet says Cat6 can handle.

$$
2.2 * 10^{8}\left[\frac{m}{s}\right] * \frac{1}{10^{9}}\left[\frac{s}{b i t}\right] * 512 \approx 112[\mathrm{~m}]
$$

For the 64 byte frame.
b.

Resistors connected in parallel do the 1/over adding; impedances do the same.
So:

$$
\begin{gathered}
\frac{1}{Z_{T}}=\frac{1}{Z_{\text {cat } 6}}+\frac{1}{Z_{\text {cat } 6}}=\frac{1}{50} \\
Z_{T}=50 \Omega
\end{gathered}
$$

The reflection coefficient is:

$$
R=\frac{Z_{L}-Z_{0}}{Z_{L}+Z_{0}}=\frac{50}{150}=\frac{1}{3}
$$

