Miana Smith
PIT 2022

PSET 6

8.1

The electric field is given by:

$$
\vec{E}=\frac{1}{i \omega \mu_{0} \epsilon_{0}} \nabla(\nabla \cdot \vec{A})-i \omega \vec{A}
$$

The vector potential is given by:

$$
\begin{gathered}
\vec{A}(r)=\frac{\mu_{0} I_{0} d e^{-i k r}}{4 \pi r} \hat{z} \\
A_{r}=\frac{\mu_{0} I_{0} d e^{-i k r}}{4 \pi r} \cos (\theta) \\
A_{\theta}=\frac{\mu_{0} I_{0} d e^{-i k r}}{4 \pi r} \sin (\theta)
\end{gathered}
$$

For spherical coordinates:

$$
\nabla \cdot A=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r A_{r}\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}+\frac{1}{r \sin \theta} \frac{\partial A_{\phi}}{\partial \phi}
$$

So, this (quite painfully) works out as so (skipping algebra steps because it's quite long):

$$
\nabla \cdot \vec{A}=-\frac{\mu_{0} I_{0} d}{4 \pi r^{2}} e^{-i k r} \cos \theta(i k r+1)
$$

For spherical coordinates:

$$
\begin{gathered}
(\nabla f)_{r}=\frac{\partial f}{\partial r} \\
(\nabla f)_{\theta}=\frac{1}{r} \frac{\partial f}{\partial \theta}
\end{gathered}
$$

We get:

$$
\begin{gathered}
(\nabla f)_{r}=-\frac{\mu_{0} I_{0}}{4 \pi} d \cos \theta\left(\frac{e^{-i k r}\left(-i k r^{2}-(1+k i) r-k\right)}{r^{3}}\right) \\
(\nabla f)_{\theta}=-\frac{\mu_{0} I_{0}}{4 \pi r^{3}} e^{-i k r}(i k r+1) \sin \theta
\end{gathered}
$$

We want to eventually get to:

$$
\begin{gathered}
E_{\theta}=\frac{I_{0} d}{4 \pi} e^{-i k r}\left(\frac{i \omega \mu_{0}}{r}+\frac{1}{r^{2}} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}+\frac{1}{i \omega \epsilon_{0} r^{3}}\right) \sin \theta \\
E_{r}=\frac{I_{0} d}{4 \pi} e^{-i k r}\left(\frac{2}{r^{2}} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}+\frac{2}{i \omega \epsilon_{0} r^{3}}\right) \cos \theta
\end{gathered}
$$

We can make a substitution:

$$
\begin{gathered}
k^{2}=\omega^{2} / c^{2} \\
c=\frac{1}{\sqrt{\epsilon_{0} \mu_{0}}}
\end{gathered}
$$

And hypothetically, the algebra is going to work out at this point.

8.2

The Poynting vector describes power flow through a surface. So we draw a sphere at our given distance and calculate the power per area for this geometry. This gives us:

$$
\langle P\rangle=\frac{10^{3}[\mathrm{~W}]}{4 * \pi * 10^{6}}=0.08 * 10^{-3}\left[\frac{\mathrm{~W}}{\mathrm{~m}^{2}}\right]
$$

If we flashback to pset 4 , we have:

$$
\langle | \vec{P}\left\rangle=\frac{1}{2} E_{0}^{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}}\right.
$$

Which is still valid in this scenario because the wavelength is much, much shorter than the distance we're at.

So we have (for vacuum):

$$
0.08 * 10^{-3}=\frac{1}{2} E_{0}^{2} \sqrt{\frac{8.85 \times 10^{-12}}{4 \pi \times 10^{-7}}}
$$

Solving for E_{0}^{2} :

$$
E_{0}=0.0077
$$

8.3

We are given that the maximum will occur at $R_{r}=R_{l}$

$$
W=I V=I^{2} R_{l}
$$

We can relate this to R_{r} with the diagram from 8.3:

$$
I=\frac{V}{R}=\frac{V}{R_{l}+R_{r}}
$$

Plugging this back in:

$$
W=\left(\frac{V}{R_{l}+R_{r}}\right)^{2} R_{l}
$$

If we plug in $R_{r}=R_{l}$, we will get the relationship from the book. Or, we can take the derivative with respect to one of the Rs.

$$
\begin{gathered}
\frac{d W}{d R_{l}}=V^{2}\left(\left(R_{l}+R_{r}\right)^{-2}-2 R_{l}\left(R_{l}+R_{r}\right)^{-3}\right) \\
0=\left(R_{l}+R_{r}\right)^{-2}-2 R_{l}\left(R_{l}+R_{r}\right)^{-3}
\end{gathered}
$$

$$
\begin{gathered}
0=R_{l}+R_{r}-2 R_{l} \\
R_{l}=R_{r}
\end{gathered}
$$

8.4

We are given:

$$
\langle P\rangle=\frac{\hat{r} I_{0}^{2} k^{2} d^{2}}{32 \pi^{2} r^{2}} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}(\sin \theta)^{2}
$$

The gain is given by:

$$
G \equiv \max _{\theta, \varphi} \frac{P(r=1, \theta, \varphi)}{W / 4 \pi}
$$

Our maximum P is:

$$
P_{m}=\frac{I_{0}^{2} k^{2} d^{2}}{32 \pi^{2}} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}
$$

So the gain is:

$$
G=\frac{I_{0}^{2} k^{2} d^{2}}{8 \pi W} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}}
$$

We are given:

$$
W=\frac{I_{0}^{2} \pi}{3} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{d^{2}}{\lambda^{2}}
$$

Simplifying G:

$$
G=\frac{3 k^{2} \lambda^{2}}{8 \pi^{2}}
$$

Further simplifying G (recall $k^{2}=\frac{\omega^{2}}{c^{2}}=\frac{4 \pi^{2}}{\lambda^{2}}$):

$$
G=\frac{3}{2}
$$

Next, we will find A. Again, we must recall from pset 4:

$$
\langle | \vec{P}\left\rangle=\frac{1}{2} E_{0}^{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}}\right.
$$

This times the area will give us the power, which we can also write as:

$$
W=\frac{|V|^{2}}{8 R_{\text {load }}}
$$

Per the text. This means:

$$
\frac{|V|^{2}}{8 R_{\text {load }}}=\frac{1}{2} E_{0}^{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} A
$$

Or:

$$
\frac{\left|E_{0} d\right|^{2}}{8 R_{\text {load }}}=\frac{1}{2} E_{0}^{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} A
$$

Great, so we can drop the E_{0}. Now we need to yeet the resistance.
$2 W=I_{0}^{2} R_{\text {rad }}$ implies that:

$$
R=\frac{2 \pi}{3} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{d^{2}}{\lambda^{2}}
$$

So:

$$
\frac{d^{2}}{8 \frac{2 \pi}{3} \sqrt{\frac{\mu_{0}}{\epsilon_{0}}} \frac{d^{2}}{\lambda^{2}}}=\frac{1}{2} \sqrt{\frac{\epsilon_{0}}{\mu_{0}}} A
$$

Terrible presentation, but everything but lambda cancels.:

$$
A=\frac{3}{8 \pi} \lambda^{2}
$$

Our gain:

$$
\frac{A}{G}=\frac{\lambda^{2}}{4 \pi}
$$

