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9.1 
 
We want to derive Snell’s law: 

𝑛!
𝑛"
=
sin 𝜃"
sin 𝜃!

 

From Fermat’s principles, which states that light will take the least-time path.  
 
We can consider one point in a material with index 𝑛! at a distance 𝑎! along the x-axis and 
distance 𝑏! on the y-axis, sweeping angle  𝜃! from the x-axis. Similarly, our second point will be 
in material with index 𝑛" at a distance 𝑎" along the x-axis and distance 𝑏" on the y-axis, 
sweeping angle  𝜃" from the x-axis.  
 
The total time for a light ray to travel from point 1 to point 2 is: 

𝑡 =
𝑑!
𝑣!
+
𝑑"
𝑣"
=
𝑛!𝑑!
𝑐 +

𝑛"𝑑"
𝑐 =

1
𝑐 (𝑛!𝑑! + 𝑛"𝑑") 

Where 𝑑!, 𝑑" is the distance of each point. Re-writing in terms of a and b: 

𝑡 =
1
𝑐 2𝑛!

3𝑎!" + 𝑏!" + 𝑛"3𝑎"" + 𝑏""4 

We can define 𝑎! = 𝑎" for convenience, and we will re-write 𝑏" in terms of 𝑏! so that we can 
take the derivate with respect to some variable. 𝑏" = ℎ − 𝑏! where h is the total y-axis 
difference between point 1 and point 2. I will also drop the subscripts.  

𝑡 =
1
𝑐 7𝑛!

8𝑎" + 𝑏" + 𝑛"8𝑎" + (ℎ − 𝑏)"9 
𝜕𝑡
𝜕𝑏 =

1
𝑐 ;𝑛!𝑏

(𝑎" + 𝑏")#
!
" − 𝑛"(ℎ − 𝑏)(𝑎" + (ℎ − 𝑏)")

#!"	= 

We set this to zero: 

0 = 𝑛!𝑏(𝑎" + 𝑏")
#!" − 𝑛"(ℎ − 𝑏)(𝑎" + (ℎ − 𝑏)")

#!" 
Note that the terms: 

𝑏(𝑎" + 𝑏")#
!
" 

Look like the definition for sine, which is great! So we’ll substitute those in: 
𝑛! sin 𝜃! = 𝑛" sin 	𝜃" 

Which gets us to Snell’s law: 
𝑛!
𝑛"
=
sin 𝜃"
sin 𝜃!

 

 
 
9.2 
 



a. 
 
Fresnel’s equations in the plane of incidence are: 

𝐸! =
tan(𝜃$ − 𝜃")
tan(𝜃$ + 𝜃")

𝐸$ 

𝐸" =
2 cos 𝜃$ sin 𝜃"

sin(𝜃$ + 𝜃") cos(𝜃$ − 𝜃")
𝐸$ 

And perpendicular to the plane of incidence: 

𝐸! =
sin(𝜃" − 𝜃$)
sin(𝜃" + 𝜃$)

𝐸$ 

𝐸" =
2 sin 𝜃" cos 𝜃$
sin(𝜃" + 𝜃$)

𝐸$ 

The Poynting vector is: 
𝑃F⃗ = 𝐸F⃗ × 𝐻FF⃗  

We do the classic move from the last few psets and re-write the Poynting vector in terms of 
only E.  

𝐻FF⃗ = J
𝜖
𝜇 𝑘
N × 𝐸F⃗  

Because 𝜇% ≈ 1 in most dielectric materials, we can make the substitution: 

𝐻FF⃗ ≈
1
𝜔𝜇$

𝑘N × 𝐸F⃗  

𝑃F⃗ =
𝑛
𝜇𝑐 𝐸

"𝑘N  

So, like in our past psets: 

Q𝑃F⃗ Q =
1
2
𝑛
𝜇𝑐 |𝐸|

" 

Which gives that our power ratios are… 
 
For reflected vs incoming: 

𝑅 =
|𝐸!|"

|𝐸$|"
 

And transmitted vs incoming: 

𝑇 =
𝑛"|𝐸"|"

𝑛$|𝐸$|"
 

We then plug Fresnel’s equations in for the parallel and perpendicular cases, which is quite long 
and not compelling to type! 
 
b. 
 
In the perpendicular case, we have: 
 



𝑅 = 2
sin(𝜃" − 𝜃$)
sin(𝜃" + 𝜃$)

4
"

 

 
But then it’s like, what’s going on, this is poorly defined at theta=0? Seems rude, doesn’t it? 
 
By Snell: 
 

sin(𝜃") = sin(𝜃$) 𝑛!/𝑛" 
We will small-angle approximate this into: 

𝜃" = 𝜃$𝑛!/𝑛" 
 
So then we’ve got: 

𝑅 = 2
sin(𝜃$𝑛!/𝑛" − 𝜃$)
sin(𝜃$𝑛!/𝑛" + 𝜃$)

4
"

 

Which we’ll just small-angle approximate again into: 

7𝜃$𝑛!𝑛"
− 𝜃$9

"

7𝜃$𝑛!𝑛"
+ 𝜃$9

" 

Then we can bop out the thetas.  

7𝑛!𝑛"
− 19

"

7𝑛!𝑛"
+ 19

" 

Evaluating, we get 0.395, ish.  
 
c. 
 
Brewster’s angle is given by: 
 

𝜃& = tan#!
𝑛"
𝑛!

 

Evaluating w/ 1.5 and 1: 
𝜃& = 0.98 

 
d. 
 
Critical angle, per Wikipedia, is given by: 

𝜃' = sin#!
𝑛"
𝑛!

 

We have to do 1/1.5 (glass to air): 
 
Which is 𝜃' = 0.72 
 



 
9.3 
 
It is getting late and I don’t have the energy for this problem, so I will skip it :p such is life! 
 
9.4 
 
 
 
9.5 
 
Yeet, boiz, this one looks too long too so I’m skipping it for time :p 
 
9.6 
 
We are given: 
 

𝑚(𝑥̈ + 𝛾𝑥̇ + 𝜔$"𝑥) = −𝑒𝐸(𝑡) 
 
This is the damped Lorentz model, where we model an electron as connected via spring-
damper (our favorite thing!) to such a large nucleus as to say the nucleus does not move.  
 
We are told this is driven by an oscillator, switching e to q so it doesn’t look like the 
exponential: 

𝑚(𝑥̈ + 𝛾𝑥̇ + 𝜔$"𝑥) = −𝑞𝐸$𝑒((#*+) 
 
Neil’s notes cryptically say “susceptibility” and list some equations. With Wikipedia’s help, let’s 
consider: 

𝑃 = 𝜖$𝜒-𝐸 
 
Where 𝜒- = 𝜖% − 1 and P and E are both vector quantities.  
 
Since our goal to see the complex permittivity, this is how we can introduce the permittivity 
back in. Here, we refer to Neil’s cryptic notes once more, specifically: 

𝑝 = −𝑒𝑥 
𝑃 = 𝑁𝑝 

Or, in my notation: 
𝑃 = −𝑁𝑞𝑥 

 
With this relationship, we can substitute P directly into our differential equation, content in the 
knowledge that we now have a clear epsilon dependence that can weasel its way in later.  

−
1
𝑁𝑞𝑚d𝑃̈ + 𝛾𝑃̇ + 𝜔$

"𝑃e = −𝑞𝐸$𝑒((#*+) 

 



𝑃̈ + 𝛾𝑃̇ + 𝜔$"𝑃 =
𝑁𝑞"

𝑚 𝐸$𝑒#(*+ 
Now we defer to our most favorite trick in the book, which is called don’t solve the differential 
equation by hand. Look up what the form should be. Apparently, we want something like: 

𝑃(𝜔)𝑒#(*+ 
Where P is complex.  
 
Let’s pop that in.  

(𝑖𝜔)"𝑃(𝜔)𝑒#(*+ + 𝛾(−𝑖𝜔)𝑃(𝜔)𝑒#(*+ + 𝜔$"𝑃(𝜔)𝑒#(*+ =
𝑁𝑞"

𝑚 𝐸$𝑒#(*+ 

𝑃(𝜔) =
𝑁𝑞"
𝑚 𝐸$

−𝜔" + 𝜔$" − 𝛾𝑖𝜔
 

So now we have an equation for P! Woot! 
 
Let’s substitute in our susceptibility based definition in: 
 

𝜖$(𝜖% − 1	)𝐸$ =
𝑁𝑞"
𝑚 𝐸$

−𝜔" + 𝜔$" − 𝛾𝑖𝜔
 

𝜖% = 1 +

𝑁𝑞"
𝜖$𝑚

−𝜔" + 𝜔$" − 𝛾𝑖𝜔
 

Here we will recall (from what, you may ask) that the plasma frequency is defined as: 

𝜔. = J
𝑛$𝑒"

𝜖$𝑚
 

Which in slightly different notation is in here.  

𝜖% = 1 +
𝜔."

−𝜔" + 𝜔$" − 𝛾𝑖𝜔
 

 
Here’s some graphs with arbitrary values lol.  



 
wp = 5; 
w0 = 5; 
gamma = 1; 

 
wp = 20; 
w0 = 10; 
gamma = 1; 
 


