Miana Smith
PIT 2022

PSET 8

11.1

a.

We are to derive:

$$
\frac{\hbar^{2}}{2 m} i q\left(A-B-A e^{i(q-k) \Delta}+B e^{-i(q+k) \Delta}\right)=V_{0}(A+B)
$$

From:

$$
\begin{gathered}
{\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V\right] \psi=E \psi} \\
{\left[E+\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}\right] \psi(x)=\sum_{n=-\infty}^{\infty} V_{0} \delta(x-n \Delta) \psi(x)}
\end{gathered}
$$

Which is honestly very yikes! The problem statement is so short, and yet. And yet.
We integrate from $x=\epsilon$ to $-\epsilon$.
[] to do!
b.

11.2

This question is asking about the expected occupancy of a state at the conduction band edge for 3 materials. This means we're asking what's the expected amount of electrons we'll see in the conduction band, which is a jump of $E_{\text {gap }}$ from the valence band. Since electrons are fermions, we have:

$$
\begin{gathered}
\left\langle N_{S}\right\rangle=\frac{1}{e^{\beta\left(E_{s}-\mu\right)}+1} \\
\mu=\frac{\partial F}{\partial N}=E_{F} \\
\beta=\frac{1}{k T}
\end{gathered}
$$

$k T=0.026[e \mathrm{~V}]$ at room temperature.
The gap energies $E_{\text {gap }}$ are:
$\mathrm{Ge} \rightarrow 0.67 \mathrm{eV}$
$\mathrm{Si} \rightarrow 1.11 \mathrm{eV}$
Diamond $\rightarrow 5 \mathrm{eV}$

We're given that for intrinsic semi-conductors, which these all are, that $E_{F}=$ $\frac{1}{2} E_{\text {gap }}$. So:

$$
\left\langle N_{S}\right\rangle=\frac{1}{e^{\frac{1}{k T}\left(\frac{1}{2} E_{g a p}\right)}+1}
$$

Plug and chugging, thnx Python:
Ge: 2.5367725832536544e-06
Si: 5.363930900489389e-10
Diamond: 1.741466809206832e-42

11.3

Skipping lololololololol
11.4

I do not know what a tri-state CMOS inverter is: I barely know what CMOS is. Don't tell anyone.

This is a plain inverter, the text says to add a control input to it that can force the output to a disconnected state. So I guess this is a two inputs to three outputs kind of thing, where our outputs are HIGH, LOW, and DISCONNECT. Lol.

I think this works. If we have HIGH on A and HIGH on B then we should have LOW on Q right. And vice-versa. But if we do LOW on A and HIGH on B we have a disconnect; same goes for the reverse. I don't know???

11.5

a.

Energy in a capacitor is given by:

$$
U=\frac{1}{2} C V^{2}
$$

For $C=1 \mathrm{fF}$ and $\mathrm{V}=1.8 \mathrm{~V}$,

$$
U=1.62[f f]
$$

b.

The wire has resistance R. The current flowing to the capacitor at a time t is given by:

$$
I=\frac{V}{R} e^{-\frac{t}{R C}}
$$

The power is given by:

$$
\begin{gathered}
P=I^{2} R \\
P=\frac{V^{2}}{R} e^{-\frac{2 t}{R C}}
\end{gathered}
$$

The energy is given by the integral over time:

$$
\begin{gathered}
E=\int_{0}^{\infty} \frac{V^{2}}{R} e^{-\frac{2 t}{R C}} d t \\
=-\frac{1}{2} V^{2} C\left(e^{-\frac{\infty}{R C}}-e^{-\frac{0}{R C}}\right)
\end{gathered}
$$

$$
\begin{gathered}
=\frac{1}{2} C V^{2} \\
=1.62[\mathrm{fJ}]
\end{gathered}
$$

C.

For total charge Q moved in time tau, the average current is given by:

$$
I=\frac{Q}{\tau}=\frac{C V}{\tau}
$$

From Ohm's law:

$$
V_{R}=\frac{C V R}{\tau}
$$

So we can get average power:

$$
\frac{V^{2}}{R}=\frac{C^{2} V^{2} R}{\tau^{2}}
$$

If we integrate the average power we get:

$$
E=\int_{0}^{\tau} \frac{C^{2} V^{2} R}{\tau^{2}} d t=\frac{C^{2} V^{2} R}{\tau}
$$

d.

Each charge-discharge cycle results in a $C V^{2}$ loss, or 3.25 fJ .

$$
\begin{aligned}
& \text { freq } * 3.25 * 10^{-15}=1[W] \\
& \quad \text { freq } \approx 3 * 10^{14}[\mathrm{~Hz}]
\end{aligned}
$$

e.

So we dissipate 3.25^10^-15 Joules per transistor, or 3.25^10^-6 Joules total for our Giga-transistor. For GHz clock, this comes out to:

$$
3.26 * 10^{3}[W]
$$

f.

$$
\begin{gathered}
C=\frac{Q}{V} \\
10^{-15}=\frac{Q}{1.8} \\
Q=5.5 * 10^{-16}[\text { Coulombs }]
\end{gathered}
$$

Electron charge: $1.6^{*} 10^{\wedge}-19 \mathrm{C}$ $=3.4 * 10^{3}$ electrons.

