12.1

a.

We must know the luminous efficacy (Im / W) of the projector. Which so far as I can tell, we do not. Wikipedia says the luminous efficacy of a 5-16W LED screw base lamp is between 75-210 Im / W, so let's say it's 200.

Then: $\frac{1000[\mathrm{~lm}]}{200\left[\frac{[\mathrm{~m}}{\mathrm{W}}\right]}=5 \mathrm{~W}$
b.

The text says that the eye can resolve a spatial frequency of 60 cycles per degree or 0.00029 radians. For a very large distance, we can say that the arc length swept by the angle is approximately equal to the height swept by this angle; i.e. a small sine approximation. Then,

$$
\operatorname{dot}_{1 m}=1 * 2.9 * 10^{-4} \mathrm{~m}
$$

Is the minimum resolvable dot size at 1 m . Converting to dpi at 1 meter:

$$
\frac{d o t_{1 m}}{2.9 * 10^{-4} m * 39.37}=0.0087 * 10^{4}=87[d p i]
$$

What about closer?

$$
\operatorname{dot}_{24 "}=0.0069^{"}
$$

Or,

$$
\approx 145 d p i
$$

Seems low, tbh.

12.2

a.

$$
U=\frac{8 \pi h v^{3}}{c^{3}\left(e^{\frac{h v}{k T}}-1\right)}
$$

We are $\sim 310 \mathrm{~K}$.

$$
\frac{\partial U}{\partial v}=-\frac{\left(8 h v^{2} \pi\left(3 T k-3 T c^{3} k e^{\frac{h v}{T k}}+c^{3} h v e^{\frac{h v}{T k}}\right)\right)}{T k\left(c^{3} e^{\left(\frac{h v}{T k}\right)}-1\right)^{2}}
$$

Thanks, Matlab!

$$
\begin{gathered}
0=-\frac{\left(8 h v^{2} \pi\left(3 T k-3 T c^{3} k e^{\frac{h v}{T k}}+c^{3} h v e^{\frac{h v}{T k}}\right)\right)}{T k\left(c^{3} e^{\left(\frac{h v}{T k}\right)}-1\right)^{2}} \\
0=3 T k-3 T k c^{3} e^{\frac{h v}{T k}}+c^{3} h v e^{\frac{h v}{T k}} \\
0=3 T k+e^{\frac{h v}{T k}}\left(-3 T k c^{3}+c^{3} h v\right) \\
\frac{3 T k}{c^{3}(3 T k-h v)}=e^{\frac{h v}{T k}}
\end{gathered}
$$

This is a mess whose solution requires the Lambert W, per Matlab, so I'm evaluating there. We get:

$$
v_{\max }=1.9357 E+13
$$

So:

$$
\lambda_{\text {peak }}=1.5446 E-05[m]
$$

And for $\mathrm{T}=2.74$:

$$
\lambda_{\text {peak }}=0.0017
$$

b.

What's red?

$$
\begin{gathered}
\lambda=650 \\
v=4.62 * 10^{14}
\end{gathered}
$$

This comes out to:

$$
T \approx 7400[K]
$$

c.

Let's say body surface area is $1.6 \mathrm{~m}^{\wedge} 2$.
Stefan-Boltzmann gives us:

$$
\begin{gathered}
R=\sigma T^{4} \\
R=5.67 * 10^{-8} *(310)^{\wedge} 4=523 \\
P=R * 1.6=837[W]
\end{gathered}
$$

Let's try another estimator to ballpark this.

$$
\begin{gathered}
2000[\text { kcal per day }]=8368000[J \text { per day }] \\
P=96.8519\left[\begin{array}{l}
\frac{J}{s}
\end{array}\right]
\end{gathered}
$$

There's an order of magnitude difference, which is very suspect! I think the emissivity based approach is more wrong!

12.3

a.

For Calcite: $n_{\text {slow }}=1.658$ and $n_{\text {fast }}=1.486$
Dropping the phase term, 90° rotation means:

$$
\binom{E_{x}}{E_{y}}^{\prime}=\binom{-E_{y}}{E_{x}}
$$

So:

$$
\begin{gathered}
\binom{-E_{y}}{E_{x}}=\left(\begin{array}{cc}
e^{-i \delta} & 0 \\
0 & e^{i \delta}
\end{array}\right)\binom{E_{x}}{E_{y}} \\
-E_{y}=e^{-i \delta} E_{x} \\
E_{x}=e^{i \delta} E_{y} \\
\delta=\left(n_{\text {slow }}-n_{\text {fast }}\right) \frac{\omega d}{2 c}
\end{gathered}
$$

We want to flip-flop the wave, but not alter it, so the condition for that is:

$$
e^{i \delta}=1
$$

Which implies:

$$
\begin{gathered}
\delta=\frac{\pi}{2} \\
\frac{2 c \delta}{2 \pi f\left(n_{\text {slow }}-n_{\text {fast }}\right)}=d \\
\frac{2\left(600 * 10^{-9}\right) \pi / 2}{2 \pi(0.172)}=d \\
d=1.7 * 10^{-6}
\end{gathered}
$$

b.

Circular polarization means that we're constantly rotating but the magnitude isn't changing. Or at least that's what I'm getting from Wikipedia :p i.e. the Jones vector is:

The text says:

$$
\frac{E_{y}}{E_{x}}=i
$$

So:

$$
\frac{E_{y} e^{-i \delta}}{E_{x} e^{i \delta}}=i
$$

Purely rotational so $E y=E x$.

$$
\begin{aligned}
e^{-2 i \delta} & =i \\
-2 \delta & =\pi / 2 \\
\delta & =\frac{\pi}{4}
\end{aligned}
$$

So:

$$
d=8.5 * 10^{-7}
$$

c.

No more energy.

12.4

For KPV:

$$
\begin{gathered}
\rho_{x}-\rho_{y}=\frac{1}{c} \omega n_{0}^{3} r_{63} E_{z} l=\frac{1}{c} \omega n_{0}^{3} r_{63} V \\
r_{63}=10.6 * 10^{-12} \\
n_{0}=1.51 \\
\pi=\frac{1}{700 * 10^{-9}} * 1.51^{3} * 10.6 * 10^{-12} * V \\
V=\frac{\pi}{\frac{1}{700 * 10^{-9}} * 1.51^{3} * 10.6 * 10^{-12}} \\
V \approx 60[\mathrm{kV}]
\end{gathered}
$$

That seems big? Dropped a 2 pi in there from the angular frequency, not sure that'll fix it, but fyi.
12.5

I no longer have the energy for this! Though did I ever?
a.
b.
C.

