

Introduction to CAD (Computer-Aided Design)

&

Parametric Design - Design for Manufacturing

A Tool for Engineering and Design

How To Make (Almost) Anything Miana Smith & Diana Mykhaylychenko diana mk@mit.edu miana@mit.edu

What is CAD?

What is CAD?

Definition: CAD, or Computer-Aided Design, is software used to create detailed 2D or 3D models of physical objects or systems.

Applications: Architecture, mechanical engineering, product design.

What is CAD?

What is Parametric Design?

What is Parametric Design?

Definition: Parametric design is a design process where relationships between elements are governed by parameters, allowing for dynamic updates and flexibility when changes are made.

- Dynamic relationships: Changes to one parameter automatically adjust related components, maintaining design integrity.
- Efficient design process: Allows rapid iteration and updates, improving flexibility and speed.
- Complex geometries: Ideal for designing complex shapes and structures that would be difficult or time-consuming to modify manually.
- Optimization: Facilitates exploring multiple design variations and optimizing for factors like material usage, aesthetics, or performance.
- Used in various fields: Commonly applied in architecture, product design, and engineering.

From Concept to 3D Modeling

From Concept to 3D Modeling: Tips for Beginners

- Start with a clear idea: Visualize the object in your head, considering its purpose, shape, and functionality.
- Sketch on paper: Begin by drawing rough 2D sketches from different angles to help define the proportions and key features.
- Break the design into basic shapes: Simplify the concept into geometric forms like cubes, spheres, cylinders, etc., to make it easier to model.
- Choose the right CAD software:
 Start with beginner-friendly tools like
 Fusion 360 or Tinkercad, which have intuitive interfaces.

- Use parametric modeling: Define dimensions and constraints early, so you can easily modify the design later.
- Start with 2D sketches in CAD: Create basic 2D sketches on different planes (front, side, top) to form the base for 3D features.
- Extrude or revolve the sketches: Use the extrude or revolve tools to turn your 2D shapes into 3D objects.
- Add details gradually: Incorporate smaller design features like holes, chamfers, fillets, and curves once the basic shape is ready.
- Constantly check proportions and dimensions:
 Regularly review your model to ensure it aligns
 with the original concept and practical
 measurements.

Keep your material in mind!

DO NOT SET THE LASER CUTTER ON FIRE!

Getting Started with Fusion 360

Why Fusion 360

- Its free for students
- Its a friendly first CAD experience
- Available literature
- Cloud storage, share files
- Nice CAE, render, drawing interaction

Tree Structure and Timeline

- General Spatial Sense of the Canvas
 - 2d zones
 - 3d environment
- Timeline
 - Record of the actions done
 - Can go back in time!
- Tree
 - Personal organisation of the elements generated

Parametrize almost anything!

- What do we call a parameter
- Learning curve of designing
- Flexibility
- Iteration
- Do not waste your time later

Sketches, Solids, and Surfaces

- Space allocation model. 3D perception
- Everything starts with a sketch
- When to use solids. Solids 101
- When to use surfaces. Surfaces 101
- Transform surfaces into volumes?
- Splitting Solids with surfaces

Drawings

- Technical Documentation
- Any View in your active part

Importing and exporting stuff

- Internal importing. So convenient. Can be tricky
- External importing. STEP, DXF and STL.
- Make your design to take away. Exporting STL, STEP and DXF.
- McMaster

Some recommended resources:

Fusion 360 tutorial:

https://www.youtube.com/watch?v=WKb3mRkgTwg&list=PLrZ2zKOtC_-C4rWfapgngoe9o2-ng8ZBr

Alfonso's 2023 page (includes instructions for activating Autodesk Student account): https://alfonso.pages.cba.mit.edu/recitations/parametric_design.html

And 2023 zoom recording:

https://mit.zoom.us/rec/share/naNtj0jNP_LRUCg4DdoYADzZCT97NhLnjEqwzm4mxlRJI7psBYL8o50hOjlrEumm.3crQ9w0PDVe1ONPG

FYI, since we're not recording recitations this year, you can find prior year's recitation videos under "Prior years": https://fab.cba.mit.edu/classes/863.24/file/prior.html, 2023 has all recitation videos recorded, 2020 has both lectures and recitations recorded.