
Scott Kirkpatrick

Simulating Percolation
Thresholds

MIT, NMM 2023.864

Objectives of the project

• What does the Pythonic environment offer to simulation?

• For which problems do GPUs eliminate performance limitations?

• Try these tools on a simple phase transition/disordered system which never
got properly resolved when the problem was hot.

• Use current visualization at scale tools to get a feeling for current flow in
composites.

• Published studies did their best with M68000, Intel 386, Vax or IBM 168, so
now…?

To learn stuff, not change the world

Physics questions to address

• What makes conduction vanish at a percolation threshold?

• is it restriction to a smaller volume or torturous paths or both? (There is a

literature of adding together exponents for each .)

• The problem is easy to model (punch holes in conducting sheet) but computer

simulation of a network of conductors is best.

• 2D bond percolation is the easiest. Threshold at 50% missing bonds, symmetry

about this point.

• How much of the ~10 orders of magnitude performance since 1990 can we use/do

we need to use.

Where can the current flow?
• P = largest connected component

• But 1-d strings don’t help. Cut them off (green line)

• B = largest bi-connected component

• In a sufficiently large system, B is where the current
flows. But corrections due to edges, contacts, etc.
are large.

• NetworkX has good compiled code for identifying P
and B. It’s very space inefficient, and SLOW for
detailed exploration of cluster, such as solving
Kirchhoff ’s Law.

• Networks returns its discoveries as a set, in some
random order, so you need to np.fromiter to get back
into nparrays.

• Thresholds are very noisy close to a critical point,
and searches do not parallelize well.

Percolation thresholds are noisy

Biggest Sample on a laptop = 10^8 nodes

• P (above), B(below)
both extend below
the limiting threshold.

• What do these paths
or grids actually look
like?

• Are they channels or
fractal?

What’s next —calculating conductances

• Gauss-Jacobi, with over-relaxation

• easy to parallelize, very slow convergence

• Exact solution with LU factors. (will it work on 10^8 or more
scale?)

• Real-space renormalization — reduce the whole network to two
conductances, one x one y. Has been done on samples with open
boundary conditions, and N <= 10^6. Should be parallelizable.

• Averages still needed, since results are anisotropic as well as
varying.

Python vs Good Old days

• Just searching a graph — BFS, DFS, DFS with backtracking,
Python and NumPy don’t seem to offer much. NetworkX code is
good, but building a graph takes a long time. Solving equations
on a random graph is where CUDA and TaiChi offer advantages.

