
10 Discrete Elements, Particles, and Automata

molecular dynamics (MD)
start from fundamental physics
femtosecond time steps
can take days per microseconds
Molecular dynamics simulations: advances and applications, [Hospital et al., 2015]
Picosecond to millisecond structural dynamics in human ubiquitin, [Lindorff-Larsen

et al., 2016]
Molecular dynamics simulation for all, [Hollingsworth & Dror, 2018]
satisfy spirit but not letter
redefine molecule
macromolecular dynamics
mesh-free, computation happens where particles are
handle complexity where PDE approximations can break down
massively parallel
trillions of particles [Tchipev et al., 2019]

10.1 PARTICLE SYSTEMS

10.1.1 Smoothed Particle Hydrodynamics

Smoothed Particle Hydrodynamics (SPH)
function f (~r)
expand integral as sum ∫

f (~r) dr =
∑
i

Vifi (10.1)

interpolate with weighting function

f (~r) =
∑
i

VifiW (~r − ~ri) (10.2)

preserve normalization ∫
W (~r) d~r = 1 (10.3)

108 Discrete Elements, Particles, and Automata DRAFT

kernel function approximation, Chapter 14
relate volume element to a density and mass, introducing particles
Vi = mi/ρi

f (~r) =
∑
i

mi

ρi
fiW (~r − ~ri) (10.4)

derivatives go into the sum

∇f (~r) =
∑
i

mi

ρi
fi∇W (~r − ~ri) (10.5)

Navier-Stokes

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= −∇p + ρ~g + µ∇2~v (10.6)

quantities relative to particles in Lagrangian (moving frame) vs Eulerian (fixed frame)
Lagrangian derivatives

Df

Dt
=
f (~x + ~vdt, t + dt)− f (~x, t)

dt

≈
f (~x, t) + ∂f

∂t
dt + ~v · ∇fdt− f (~x, t)

dt

=
∂f

∂t
+ ~v · ∇f (10.7)

ρ
D~v

dt
= −∇p + ρ~g + µ∇2~v (10.8)

pressure

∇p(~rj) =
∑
i

mi

ρi
pi∇W (~ri − ~rj) (10.9)

density

ρ(~rj) =
∑
i

mi

ρi
ρiW (~ri − ~rj)

=
∑
i

miW (~ri − ~rj) (10.10)

viscosity, depends on relative velocity

µ∇2~v(~rj) = µ
∑
i

mi

ρi
(~vi − ~vj)∇2W (~r − veri) (10.11)

equation of state relates pressure to density
converted PDE to ODEs for particle motion
interpolate for fields

DRAFT 10.2 Discrete Element Methods 109

computation happens where the particles are, not over a grid
Smoothed particle hydrodynamics: theory and application to non-spherical stars, [Gin-

gold & Monaghan, 1977]
Smoothed particle hydrodynamics: A review. In numerical modeling of nonlinear stel-

lar pulsation: Problems and prospects, [Benz, 1990]
Smoothed particle hydrodynamics, [Monaghan, 1992]
Particle-based fluid simulation for interactive applications, [Müller et al., 2003]
Astrophysical smooth particle hydrodynamics, [Rosswog, 2009]
Smoothed Particle Hydrodynamics, [Fraga Filho et al., 2019]

10.1.2 Other Acronyms

Material Point Method (MPM)
used for solid mechanics
hybrid particle-grid method
Lagrangian particles represent material properties with internal state variables
Eulerian grid used for computing spatial derivatives in governing equations
alternate Lagrangian and Eulerian steps
used for a range of governing equations
Application of a particle-in-cell method to solid mechanics, [Sulsky et al., 1995]
Issues with the Material Point Method for geotechnical modelling, and how to address

them, [Augarde et al., 2018]
The Material Point Method for Simulating Continuum Materials, [Jiang et al., 2016]
Material point method: Overview and challenges ahead, [So lowski et al., 2021]
A material point method for viscoelastic fluids, foams and sponges, [Ram et al., 2015]
Peridynamics (PD)
start from integral form of solid mechanics governing equations
use particle expansion to replace integral with sum
particles interact through bonds within a horizon
fracture represented by breaking bonds
Peridynamic theory of solid mechanics, [Silling & Lehoucq, 2010]
Convergence of peridynamics to classical elasticity theory, [Silling & Lehoucq, 2008]
A comparative review of peridynamics and phase-field models for engineering fracture

mechanics, [Diehl et al., 2022]
Recent progress in mathematical and computational aspects of peridynamics, [D’Elia

et al., 2018]
A review on the developments of peridynamics for reinforced concrete structures,

[Hattori et al., 2021]
A review of benchmark experiments for the validation of peridynamics models, [Diehl

et al., 2019]

10.2 DISCRETE ELEMENT METHODS

SPH starts from PDE and expands in particles
Section 4.1 found PDE from masses and springs

110 Discrete Elements, Particles, and Automata DRAFT

Problem 8.1 found masses and springs from FEA
can start from masses and springs
Discrete Element Method (DEM)
originally for granular media, contact interactions
become generic term
generalize to coarse-grained particles

10.2.1 Forces

particle sphere, shape, orientation
generalize to other force laws
memoryless, bonds, internal DOF
linear, nonlinear springs

Figure 10.1. Force law.

Newton’s equation of motion ~F = m~a

add up forces on particle

10.2.2 Integration

Euler

~a(t + h) = ~F (~x(t)) /m

~v(t + h) = ~v(t) + h~a(t)

~x(t + h) = ~x(t) + h~v(t) (10.12)

second order error
semi-implicit

DRAFT 10.2 Discrete Element Methods 111

Figure 10.2. Force laws.

~a(t + h) = ~F (~x(t)) /m

~v(t + h) = ~v(t) + h~a(t)

~x(t + h) = ~x(t) + h~v(t + h) (10.13)

112 Discrete Elements, Particles, and Automata DRAFT

same order
symplectic, conserve phase space volume
position Verlet
expand position forwards

~x(t + h) = ~x(t) + h~v(t) + h2~a(t)/2 + . . . (10.14)

backwards

~x(t− h) = ~x(t)− h~v(t) + h2~a(t)/2 + . . . (10.15)

add

~x(t + h) = 2~x(t)− ~x(t− h) + h2~a(t) (10.16)

fourth order error
need to keep old position
can derive from semi-implicit

~x(t + h) = ~x(t) + h (~v(t) + h~a(t))

≈ ~x(t) + h((~x(t)− ~x(t− h))/h + h~a(t))

= 2~x(t)− ~x(t− h) + h2~a(t) (10.17)

velocity Verlet

~x(t + h) = ~x(t) + h~v(t) +
h2

2
~a(t)

~v(t + h) = ~v(t) + h~a(t) +
h2

2
d~a

dt
d~a

dt
≈ (~a(t + h)− ~a(t))/h

~v(t + h) = ~v(t) +
h

2
(~a(t + h) + ~a(t)) (10.18)

need to keep old ~a

~v(t + h/2) = ~v(t) + h~a(t)/2

~x(t + h) = ~x(t) + h~v(t + h/2)

~x(t + h)⇒ ~a(t + h)

~v(t + h) = ~v(t + h/2) + h~a(t + h)/2 (10.19)

substitution gives same algorithm
saves memory
dissipation proportional to ~v
internal, inertial, numerical

DRAFT 10.3 Cellular Automata 113

10.2.3 Stability

literally stiff problem
numerical stability must not propagate faster than the speed of sound
linear array of masses and springs speed equal to square root of the elastic force divided

by the mass
convert to a time step by dividing lattice pitch by sound velocity
ms - µs range

10.2.4 Geometry

Maxwell criterion DOF vs constraints
rectangular lattice shear, cross-brace bookcase
sphere packing
2D triangular
3D HCP FCC
cannon ball stack
elastic constants not isotropic
pour in particles
sample with noise distribution
metamaterial vary force law

10.2.5 Sorting

O(N 2) particle interactions, O(N) sort
lexicographic sort into bins
fixed size, empty space
cumulative sum sort to find bin pointers
Problem 9.1
A discrete numerical model for granular assemblies, [Cundall & Strack, 1979]
Large-scale discrete element modeling in a fluidized bed, [Sakai et al., 2010]
Discrete element method for modelling solid and particulate materials, [Tavarez &

Plesha, 2007]
Discrete element method to simulate continuous material by using the cohesive beam

model, [André et al., 2012]
Computer” experiments” on classical fluids. I. Thermodynamical properties of Lennard-

Jones molecules, [Verlet, 1967]
Geometric numerical integration illustrated by the Störmer–Verlet method, [Hairer

et al., 2003]
XLV. On reciprocal figures and diagrams of forces, [Maxwell, 1864]
Particulate discrete element modelling: a geomechanics perspective, [O’Sullivan, 2011]

10.3 CELLULAR AUTOMATA

SPH and DEM use discrete representations, still require algorithms for solution

114 Discrete Elements, Particles, and Automata DRAFT

what about using computation as representation?
lattice gases
cellular automata
CA
The idea was developed by Ulam [Finkel & Edelman, 1985], von Neumann [von

Neumann, 1966], and colleagues [Shannon & McCarthy, 1956] in the 1950s. A classic
example of a CA is Conway’s Game of Life [Gardner, 1970], in which occupied sites on a
grid get born, survive, or die in succeeding generations based on the number of occupied
neighboring sites. Any CA has the same elements: a set of connected sites, a discrete
set of states that are allowed on the sites, and a rule for how they are updated. We will
start by studying a slighly more complicated system that recovers the Navier-Stokes fluid
equations, and then will consider the more general question of how cellular automata
relate to computation.

10.3.1 Lattice Gas Automata

Hydrodynamics was one of the earliest and best-developed application areas of cellular
automata. A cellular automata model of a fluid (traditionally called a lattice gas) is specified
by the geometry of a lattice, by the discrete states permitted at each site, and by an update
rule for how the states change based on their neighbors. Both partial differential equations
and molecular dynamics models use real numbers (for the values of the fields, or for the
particle positions and velocities). A lattice gas discretizes everything so that just a few bits
describe the state of each site on a lattice, and the dynamics reduce to a simple look-up
table based on the values of the neighboring sites. Each site can be considered to be a
parcel of fluid. The rules for the sites implement a “cartoon” version of the underlying
microscopic dynamics, but should be viewed as operating on a longer length scale than
individual particles. We will see that the conservation laws that the rules satisfy determine
the form of the equivalent partial differential equations for a large lattice, and that the
details of the rules set the parameter values.

a = 1a = 4

a = 5 a = 6

a = 2a = 3y

x

Figure 10.3. Direction indices for a triangular lattice.

A historically important example of a lattice gas is the FHP rule (named after its
inventors, Frisch, Hasslacher, and Pomeau [Frisch et al., 1986]). This operates in 2D on
a triangular lattice, and the state of each site is specified by six bits (Figure 10.3). Each

DRAFT 10.3 Cellular Automata 115

bit represents a particle on one of the six links around the site, given by the unit vectors
α̂. On each link a particle can either be present or absent, and all particles have the
same unit velocity: in the absence of collisions, they travel one lattice step ahead in one
time step. The simple update rule proceeds in two stages, chosen to conserve particle
number and momentum (Figure 10.4). First, collisions are handled. At the beginning
of the step a particle on a link is considered to be approaching the site, and after the
collision step a particle on a link is taken to be leaving the site. If a site has two particles
approaching head-on, they scatter. A random choice is made between the two possible
outgoing directions that conserve momentum (always choosing one of them would break
the symmetry of the lattice). Because of the large number of sites in a lattice gas it is
usually adequate to approximate the random decision by simply switching between the
two outgoing choices on alternate site updates. If three particles approach symmetrically,
they scatter. In all other configurations not shown the particles pass through the collision
unchanged. After the collision step there is a transport step, in which each particle moves
by one unit in the direction that it is pointing and arrives at the site at the far end of the
link. While these rules might appear to be somewhat arbitrary, it will turn out that the
details will not matter for the form of the governing equations, just the symmetries and
conservation laws.

o r
t w o - b o d y

t h r e e - b o d y

t r a n s p o r t

c o l l i s i o n

c o l l i s i o n

Figure 10.4. Update rules for an FHP lattice gas.

A simpler rule related to FHP is HPP (named after Hardy, de Pazzis, and Pomeau
[Hardy et al., 1976]), which operates on a square lattice. Each site is specified by four
bits, and direction-changing collisions are allowed only when two particles meet head-on

116 Discrete Elements, Particles, and Automata DRAFT

(unlike FHP, here there is only one possible choice for the exit directions after scattering).
We will see that HPP and FHP, although apparently quite similar, behave very differently.

Let’s label time by an integer T , the lattice sites by a vector ~X , and the lattice directions
by a unit vector α̂. If we start an ensemble of equivalent lattices off with the same update
rule but different random initial conditions, we can define fα(~X, T) to be the fraction of
sites ~X at time T with a particle on link α̂. In the limit of a large ensemble, this fraction
becomes the probability to find a particle on that link. Defining this probability will let
us make a connection between the lattice gas and partial differential equations.

At each time step, in the absence of collisions, the fraction of particles at site ~X at
time T pointing in direction α̂ will move one step in that direction:

fα(~X + α̂, T + 1) = fα(~X, T) . (10.20)

Let’s introduce new rescaled variables ~x = δx ~X and t = δtT in terms of the (small) space
step δx and time step δt. Substituting in these variables, collision-free transport becomes

fα(~x + δxα̂, t + δt)− fα(~x, t) = 0 . (10.21)

If the probability fα varies slowly compared to δx and δt, we can expand equation (10.21)
in δx and δt:

∂fα(~x, t)
∂t

δt + α̂ · ∇fα(~x, t) δx +O(δ2) = 0 . (10.22)

Choosing to scale the variables so that δx = δt, to first order this becomes

∂fα(~x, t)
∂t

+ α̂ · ∇fα(~x, t) = 0 . (10.23)

This equation says that the time rate of change of the fraction of particles at a point is
equal to the difference in the rate at which they arrive and leave the point by straight
transport (remember equation (8.6)). If collisions are allowed, the time rate of change of
fα will depend on both the spatial gradient and on a collision term Ωα scattering particles
in or out from other directions

∂fα(~x, t)
∂t

+ α̂ · ∇fα(~x, t) = Ωα(~x, t) . (10.24)

fα is the distribution function to find a particle. The collision term Ωα will in general
depend on the distribution function for pairs of particles as well as the one-particle
distribution function, and these in turn will depend on the three-particle distribution
functions, and so forth. This is called the BBGKY hierarchy of equations (Bogolyubov,
Born, Green, Kirkwood, Yvon [Boer & Uhlenbeck, 1961]). The Boltzmann equation
approximates this by assuming that Ωα depends only on the single-particle distribution
functions fα.

We derived equation (10.24) by making use of the fact that particles travel one lattice
site in each time step, and then assuming that fα varies slowly. Now let’s add the
conservation laws that have been built into the update rules. The total density of particles
ρ at a site ~x is just the sum over the probability to find one in each direction∑

α

fα(~x) = ρ(~x) , (10.25)

DRAFT 10.3 Cellular Automata 117

and the momentum density is the sum of the probabilities times their (unit) velocities∑
α

α̂fα = ρ~v . (10.26)

Since our scattering rules conserve particle number (the particles just get reoriented), the
number of particles scattering into and out of a site must balance∑

α

Ωα(~x) = 0 . (10.27)

And since the rules conserve momentum, the net momentum change from scattering
must vanish ∑

α

α̂Ωα = 0 . (10.28)

Therefore, summing equation (10.24) over directions,∑
α

[
∂fα(~x, t)

∂t
+ α̂ · ∇fα(~x, t)

]
=
∑
α

Ωα (10.29)

∂

∂t

∑
α

fα +
∑
α

α̂ · ∇fα = 0

∂ρ

∂t
+∇ · (ρ~v) = 0 . (10.30)

This is the familiar equation for the continuity of a fluid, and has arisen here because we’ve
chosen scattering rules that conserve mass. A second equation comes from momentum
conservation, multiplying equation (10.24) by α̂ and summing over directions

∂

∂t

∑
α

α̂fα +
∑
α

α̂(α̂ · ∇fα) = 0 . (10.31)

The ith component of this vector equation is

∂

∂t

∑
α

α̂ifα +
∑
α

∑
j

α̂iα̂j
∂fα
∂xj

= 0 . (10.32)

Defining the momentum flux density tensor by

Πij ≡
∑
α

α̂iα̂jfα , (10.33)

this becomes
∂ρvi
∂t

+
∑
j

∂Πij

∂xj
= 0 . (10.34)

We now have two equations, (10.30) and (10.34), in three unknowns, ρ, ~v, and Π. To
eliminate Π we can find the continuum form of the momentum flux density tensor by
using a Chapman–Enskog expansion [Huang, 1987], a standard technique for finding
approximate solutions to the Boltzmann equation. We will assume that fα depends only
on ~v and ρ and their spatial derivatives (and not on time explicitly), and so will do an

118 Discrete Elements, Particles, and Automata DRAFT

expansion in all possible scalars that can be formed from them. The lowest-order terms
of the deviation from the equilibrium uniform configuration are

fα =
ρ

6

(
1 + 2α̂ · ~v +A

[
(α̂ · ~v)2 − 1

2
|~v|2
]

+ B

[
(α̂ · ∇)(α̂ · ~v)− 1

2
∇ · ~v

]
+ · · ·

)
. (10.35)

The terms have been grouped this way to guarantee that the solution satisfies the density
and momentum equations (10.25) and (10.26) (this can be verified by writing out the
components of each term). In this derivation the only features of the FHP rule that
we’ve used are the conservation laws for mass and momentum, and so all rules with these
features will have the same form of the momentum flux density tensor (to this order),
differing only in the value of the coefficients A and B.

The Navier–Stokes governing equation for a d-dimensional fluid with bulk as well
shear viscosity (ignoring gravitational forces) is

∂ρ~v

∂t
+ ρ(~v · ∇)~v = −∇p + η∇2~v + (ζ +

η

d
)∇(∇ · ~v) , (10.36)

where p is the pressure, η is the shear viscosity, ζ is the bulk viscosity [Batchelor, 1967].
Using the Chapman-Enskog expansion to evaluate the momentum flux density tensor in
equation (10.34) and comparing it with the Navier–Stokes equation shows that they agree
if ζ = 0, η = ρν = −ρB/8 (ν is the kinematic viscosity), µ = A/4, and p = ρ/2. Further,
in the Boltzmann approximation it is possible (with a rather involved calculation) to find
the values of A and B for a given CA rule [Wolfram, 1986].

The simple conservation laws built into our lattice gas have led to the full Navier–
Stokes equation; the particular rule determines the effective viscosity of the fluid. While
the details of this calculation are complicated, there are some simple and important
conclusions. The viscosity for the square lattice (HPP model) turns out to depend on
direction and hence is not appropriate for most fluids, but the viscosity of the triangular
lattice (FHP model) is isotropic. This profound implication of the lattice symmetry was
not appreciated in the early days of lattice gas models, and helped point the way towards
the realization that a simple lattice gas model could in fact be very general. In 3D the
situation is more difficult because there is not a 3D lattice that gives an isotropic viscosity.
However, it can still be achieved by using a quasiperidoic tiling that is not translationally
periodic [Boghosian, 1999], or a cut through a higher-dimensional lattice such as the
4D Face-Centered Hyper-Cubic (FCHC) rule [Frisch et al., 1987]. It is not possible to
reduce the viscosity in a simple model like FHP (an attribute that is needed for modeling
a problem such as air flow), but this can be done by adding more than one particle type
or by increasing the size of the neighborhood used for the rule [Dubrulle et al., 1991].

10.3.2 Lattice Boltzmann Method

LGA issues
statistical, must average
difficult to tune parameters
Lattice Boltzmann Method (LBM)

DRAFT 10.3 Cellular Automata 119

a particle in LGA represented by bit string, in LBM replaced by a real number for
the single-particle distribution function

combine equations 10.21 and 10.24, take as a numerical method for fα

fα(~x + δx~α, t + δt) = fα(~x, t) + Ωα(~x, t) (10.37)

generalized ~α from a single lattice step to vector for multiple velocities
equivalent to a finite-difference form of the Boltzmann equation
again density

∑
α

fα(~x) = ρ(~x) (10.38)

momentum density

∑
α

~αfα = ρ~v (10.39)

conservation mass

∑
α

Ωα(~x) = 0 (10.40)

conservation momentum

∑
α

~α Ωα = 0 (10.41)

BGK approximation to collision term

Ωα =
fα − feqα

τ
(10.42)

for feqα can take Maxwell-Boltzmann distribution, power series expansion
LBM can be more accurate and faster than SPH, but can also be less robust and

versatile
Lattice Boltzmann method for fluid flows, [Chen & Doolen, 1998]
Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice

Boltzmann equation, [He & Luo, 1997]
Lattice-gas cellular automata and lattice Boltzmann models: an introduction, [Wolf-

Gladrow, 2004]
Comparison of multiphase SPH and LBM approaches for the simulation of intermit-

tent flows, [Douillet-Grellier et al., 2019]
A model for collision processes in gases. I. Small amplitude processes in charged and

neutral one-component systems, [Bhatnagar et al., 1954]
Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, [Chen

et al., 1992]
Lattice BGK models for Navier-Stokes equation, [Qian et al., 1992]
The lattice Boltzmann method: principles and practice, [Timm et al., 2016]

120 Discrete Elements, Particles, and Automata DRAFT

10.3.3 Computing Automata

Simulating a cellular automata is an particularly simple type of computation. Rather than
the many kinds of memory, instructions, and processors in a conventional computer,
it requires just storage for the bits on the lattice, and an implementation of the local
update rule. This is an extreme form of a SIMD (Single Instruction Multiple Data)
parallel computer. The update can be performed by using the bits at each site as an index
into a look-up table, so the architecture reduces to memory cycling through a look-up
table (where the sequence of the memory retrieval determines the lattice geometry). This
means that relatively modest hardware can exceed the performance of general-purpose
computers for CA problems [Toffoli & Margolus, 1991].

We’ve seen that a cellular automata computer can simulate fluids. A wide range of
other physical systems also can be modeled by cellular automata rules; an important
example is the rendering of 3D graphics [Toffoli & Quick, 1997]. Conversely, instead
of using a computer to simulate a CA, a CA can be used to simulate a computer. One
way to do this is by implementing Boolean logic in CA rules; this was used to first prove
their computational universality [Banks, 1971]. This approach is attractive for hardware
scaling because it builds in physical constraints; any technology that can perform the local
cell updates can execute the same global programs [Gershenfeld et al., 2010].

Alternatively, since CAs can model physical systems, and physical systems can com-
pute, CAs can model physical systems that compute [Margolus, 1984]. Consider the
billiard-ball CA in Figure 10.5 (the underlying lattice is not shown). This is similar to
a lattice gas: billiard balls move on a lattice with unit velocity, and scatter off of each
other and from walls. Two balls colliding generates the AND function, and if one of the
streams of balls is continuous it generates the NOT function of the other input. These
two elements are sufficent to build up all of logic [Hill & Peterson, 1993]. Memory can
be implemented by delays, and wiring by various walls to guide the balls. The balls can
be represented by four bits per site (one for each direction), with one extra bit per site
needed to represent the walls.

This kind of computing has many interesting features [Fredkin & Toffoli, 1982]. No
information is ever destroyed, which means that it is reversible (it can be run backwards
to produce inputs from outputs) [Bennett, 1988], and which in turn means that it can
be performed (in theory) with arbitrarily little dissipation [Landauer, 1961]. Reversibility
is also essential for designing quantum cellular automata, since quantum evolution is
reversible. A quantum CA is much like a classical CA, but it permits the sites to be in
a superposition of their possible states [Lloyd, 1993]. This is a promising architecture
for building quantum computers based on short-range interactions [Nielsen & Chuang,
2000].

For some, cellular automata are much more than just an amusing alternative to tra-
ditional models of computation [Fredkin, 1990]. Most physical theories are based on
real numbers. This means that a finite volume of space contains an infinite amount of
information, since its state must be specified with real numbers. But if there is an en-
ergetic cost to creating information (as there is in most theories), then this implies an
infinite amount of energy in a finite space. This is obviously unacceptable; something
must bound the information content of space. While such a notion can arise in quantum
field theories, CAs start as discrete theories that do not have this problem, and so in many

DRAFT 10.4 Selected References 121

A

B

A A N D B

(N O T A) A N D B

A A N D (N O T B)

A A N D B
t r a n s p o r t

s c a t t e r i n g (l o g i c)

r e f l e c t i o n

d e l a y (m e m o r y)

s h i f t

c r o s s o v e r

Figure 10.5. Billiard ball logic.

ways they are more satisfying than differential equations as a way to specify governing
equations. There is nothing less basic about them than differential equations; which is
more “fundamental” depends on whether you are solving a problem with a pencil or a
computer.

10.4 SELECTED REFERENCES

[Doolen et al., 1990] Doolen, Gary D. Frisch, Uriel, Hasslacher, Brosl, Orszag, Steven, &
Wolfram, Stephen (eds) (1990). Lattice Gas Methods for Partial Differential
Equations. Santa Fe Institute Studies in the Sciences of Complexity. Reading,
MA: Addison-Wesley.

This collection includes many of the important articles, including [Wolfram,
1986] and [Frisch et al., 1987], which work out the connection between lattice
gases and hydrodynamics.

[Rothman & Zaleski, 2004] Rothman, Daniel H., & Zaleski, Stephane. (2004). Lattice-Gas
Cellular Automata: Simple Models of Complex Hydrodynamics. Cambridge:
Cambridge University Press.

Reviews the basic theory and extends it to porous media and fluids with multiple
components.

122 Discrete Elements, Particles, and Automata DRAFT

10.5 P R O B L E M S

(9.1) Redo the finite element beam-bending problem (8.2) with a discrete element method,
and compare the results. Use a triangular lattice in 2D, with a linear elastic nearest-
neighbor force law.

(9.2) Using a discrete element method, vary the force law to simulate dropping onto a
surface bodies that are:

(a) rigid
(b) deformable
(c) viscous
(d) fluid

