
DRAFT Numerical Models 79

By now it should be evident that the fraction of differential equations that can be solved
exactly with a sane amount of effort is quite small, and that once we stray too far from
linearity special techniques are needed for there to be any hope of writing down a closed-
form solution. In this second part of the book we will turn to the appealing alternative:
numerical solutions. Although the widespread access to fast computers has perhaps led
to an over-reliance on numerical answers when there are other possibilities, and a cor-
responding false sense of security about the possibility of serious numerical problems or
errors, it is now possible without too much trouble to find solutions to most equations
that are routinely encountered.

An essential issue is when the result of a numerical calculation can be trusted. It’s
(almost) always possible to produce some kind of number, but it’s much harder to produce
a meaningful number. One good rule of thumb is that the result should not depend on the
algorithm parameters (for example, decreasing a step size should give the same answer),
otherwise the result provides information about the algorithm rather than the underlying
problem. Another crucial sanity test is to check the algorithm on a problem with a known
exact solution to make sure that it agrees. Even so, there’s still a chance that a subtle
difference between the algorithm and the underlying problem can lead to fundamentally
different results.

In the commonly-used IEEE floating point standard [IEEE, 1985], a 32-bit single
precision floating-point number has a 24 bit mantissa (fractional part), corresponding to
about 7 decimal digits, and a 64-bit double precision number has 53 bits or about 16 digits.
It is common to assume that roundoff errors beyond this act like a random noise term,
but it is possible that the errors are strongly correlated rather than random [Sauer et al.,
1997]. Interval arithmetic is an alternative approach that recognizes that a floating-point
number actually represents a range of real numbers rather than a single value [Hickey
et al., 2001]. Mathematical functions are redefined to operate on these intervals, returning
the limits of possible values. This doesn’t cure errors from limited-precision calculations,
but it does help identify them and guide the development of algorithms to reduce them.

A principle that is so important for numerical methods that it doesn’t even have a
name (and is frequently ignored) is that if you know your system has some conservation
laws then you should choose variables that automatically conserve them. Otherwise, your
conservation laws will be ignored by the solution, or will need to be explicitly enforced.
Not only does this make your solution more accurate and reduce the computational effort,
it can help tame numerical instabilities that might otherwise occur.

More generally, remember that numerical and analytical solutions should not be viewed
as exclusive alternatives, but rather as complementary approaches. Many important ideas
have come at this interface, such as solitons. These nonlinear nondispersive waves first
appeared as unusual stable structures in numerical simulations of plasmas; this observation
motivated and then guided the successful search for corresponding analytical solutions
[Miles, 1981; Zabusky, 1981].

There is a continuum between numerical and analytical solutions, and a trade-off
between the need for computer power and mathematical insight. The more that an algo-
rithm takes advantage of knowledge about an equation, the less work that the computer
need do. However, given a fast computer and a hard problem a less clever algorithm may
be preferable. In the early days of numerical mathematics, algorithms were implemented
by people called calculators (sometimes large rooms full of them) using slide rules, ta-

80 Numerical Models DRAFT

bles, or arithmetic machines. This put a large premium on reducing the number of steps
needed, and hence on developing algorithms that maximize step sizes and minimize the
number of needed function evaluations. As desktop workstations now begin to exceed the
speed of recent supercomputers, less efficient algorithms that have other desirable prop-
erties (such as simplicity or reliability) can be used. We will cover the most important
algorithms that are straightforward to understand and implement; for these as well as
everything else related to numerical methods [Press et al., 2007] is a great starting point
for more information. Another interesting reference is [Acton, 1990], a revised edition
of a beautiful book (with a sneaky cover) that has had a large impact on many people
working in the field of numerical analysis.

Some caution is needed in delving more deeply into the literature on numerical analysis.
Often the algorithms that are most useful in practice are the ones that are least amenable
to proving rigorous results about their error and convergence properties, and hence are
less well represented. It’s necessary to condition what is known against a usually unstated
prior of what kinds of problems are likely to be encountered.

To a computational complexity theorist, the most important distinction in deciding
if a problem is tractable is the difference between those that can be solved in a number
of steps that is polynomial in the size of the problem, such as sorting, and those that
cannot (or at least are believed to grow faster than polynomial, such as factoring) [Lewis
& Papadimitriou, 1981]. For example, the number field sieve [Lenstra & Lenstra, Jr.,
1993] for finding the prime factors of a number N requires O(e1.9(lnN)1/3(ln lnN)2/3

) steps;
using it, a 768-bit number was factored using hundreds of computers over two years
[Kleinjung et al., 2010]. But if you’re fortunate enough to own a quantum computer the
problem could be done in O

(
(lnN)2

)
steps [Shor, 1997], which for a 768-bit number is

just O(105) instructions. It can also be possible to relax an exponential problem to find
a related one that can be solved in polynomial time (Chapter 16).

However, to a working numerical analyst, the relevant distinction is really between
O(N 2) algorithms and faster ones, which in practice is the distinction between what
is feasible and what is not for nontrivial problems. Naively, a Fourier transform re-
quires O(N 2) steps because it needs a matrix multiplication, but by taking advantage
of the structure in the calculation the Fast Fourier Transform algorithm reduces it to
O(N logN) (Section 14.2). While this difference might not seem as remakable as the dif-
ference between exponential and polynomial time, in practice it is profound. For example,
for N = 10, an N 2 algorithm requires 100 steps, and an N logN algorithm requires 33
steps, not much difference. But for N = 109, an N 2 algorithm requires 1018 steps (104

days at 1 GHz), while N logN requires 3 × 1010 steps (30 seconds), quite a difference
indeed! This issue of the scaling of an algorithm with problem size will recur throughout
the coming chapters, and is one of the most important lessons in all of numerical analy-
sis. There are endless of examples of promising new algorithms that do not survive the
scaling up to nontrivial problems.

8 Finite Differences: Ordinary Differential Equations

8.1 NUMERICAL APPROXIMATIONS

This chapter will consider the problem of finding the numerical solution to the first-order
(usually nonlinear) differential equation

dy

dx
= f (x, y) . (8.1)

Because of the presence of y on the right hand side we can’t simply integrate f (x) dx; we’ll
need some kind of iterative procedure to calculate a new value of y and use it to evaluate
f . Fortunately there are techniques for solving ODEs that are relatively straightforward
to implement and use, and that are broadly applicable. If ẏ = dy/dx also appears on the
right hand side, f (x, y, ẏ) = 0, this becomes a differential-algebraic equation (DAE),
a still harder problem that usually requires more complex algorithms matched to the
problem [Brenan et al., 1996].

The restriction to first-order equations actually isn’t much of a restriction at all. The
algorithms for solving a single first-order equation will immediately generalize to systems
of equations

dy1

dx
= f1(x, y1, . . . , yN)

dy2

dx
= f2(x, y1, . . . , yN)

...
dyN
dx

= fN (x, y1, . . . , yN) . (8.2)

And, since a higher-order differential equation of the form

dNy

dxN
= f

(
x, y,

dy

dx
, . . . ,

dN−1y

dxN−1

)
(8.3)

can be written as a system of first-order equations (equation 4.20)

y(1) ≡ dy

dx
· · · y(N−1) ≡ dN−1y

dxN−1

dy(1)

dx
= y(2)

...

82 Finite Differences: Ordinary Differential Equations DRAFT

dy(N−1)

dx
= y(N)

dy(N)

dx
= f (x, y(1), . . . , y(N−1)) , (8.4)

we will also be able to solve higher-order equations.
We would like to find an approximate formula to relate y(x+h) to y(x) for some small

step h. An obvious way to do this is through the Taylor expansion of y with respect to
h:

y(x + h) = y(x) + h
dy

dx

∣∣∣∣
x

+
h2

2
d2y

dx2

∣∣∣∣
x

+O(h3)

= y(x) + hf (x, y(x)) +
h2

2
d

dx
f (x, y(x)) +O(h3)

= y(x) + hf (x, y(x)) +
h2

2

[
∂f

∂x
+
∂f

∂y

∂y

∂x

]
+O(h3)

= y(x) + hf (x, y(x)) +
h2

2

[
∂f

∂x
+ f

∂f

∂y

]
+O(h3) . (8.5)

An approximation scheme must match these terms to agree with the Taylor expansion
up to the desired order.

y

x x + h

y (x)

y (x) + h f (x , y (x))

y (x + h)

Figure 8.1. An Euler method.

The first two terms of the expansion

y(x + h) = y(x) + hf (x, y(x)) (8.6)

can be used to find y(x + h) given y(x), and this step can then be repeated to find
y(x+ 2h) = y(x+ h) + hf (x+ h, y(x+ h)), and so forth. This is the simplest algorithm
for solving differential equations, called Euler’s method (shown in Figure 8.1). It is
simple to understand and simple to program; its clarity is matched only by its dreadful
performance. At each step the error is O(h2) (the lowest-order term where the Euler
method differs from the Taylor expansion of y(x) is the h2 term), and so a very small step
size is needed for a reasonably accurate solution. Even worse, the errors can accumulate
so rapidly that the numerical solution actually becomes unstable and blows up. Consider

DRAFT 8.1 Numerical Approximations 83

the simple differential equation

dy

dx
= Ay . (8.7)

The exact solution is y(x) = eAx; if A < 0 then limx→∞ y(x) = 0. The Euler approxi-
mation for this equation is

y(x + h) = y(x) + hAy(x)

= (1 + hA)y(x) . (8.8)

This is a first-order difference equation, with a solution equal to y(x) = (1 +hA)x/hy(0).
If A > 0 this solution diverges, as it should. If 0 > hA > −1, then the solution
properly decays to zero. But look what happens as hA becomes even more negative.
If −1 > hA > −2, the magnitude of the solution still decays, but it has picked up
an oscillation that is not in the original equation. Even worse, if −2 > hA, then the
magnitude of the solution will diverge! We’ve solved an equation, but it now has nothing
to do with our original differential equation. This is an example of von Neumann stability
analysis, developed in the next chapter.

y

x

Figure 8.2. Origin of oscillation in the Euler method. The gray lines show the family of
solutions of dy/dx = Ay, and the dotted lines show the numerical solution for various step
sizes. Figure 8.2 shows why the Euler method is such a poor approximation.

Since the derivative is evaluated only at the beginning of the interval, if an overly
ambitious step size is chosen the extrapolation can overshoot so far that the solution
changes sign. A natural improvement is to use an Euler step in order to estimate the
slope in the middle of the interval, and then use this slope to update y:

y(x + h) = y(x) + hf

[
x +

h

2
, y(x) +

h

2
f (x, y(x))

]
. (8.9)

84 Finite Differences: Ordinary Differential Equations DRAFT

The error made by this approximation can be found by doing a Taylor expansion as a
function of h:

f

[
x +

h

2
, y(x) +

h

2
f (x, y(x))

]
= f (x, y(x)) + h

d

dh
f

[
x +

h

2
, y(x) +

h

2
f (x, y(x))

]
h=0

+O(h2)

= f (x, y(x)) + h

[
1
2
∂f

∂x
+

1
2
f (x, y(x))

∂f

∂y

]
+O(h2) (8.10)

and so equation (8.9) becomes

y(x + h) = y(x) + hf (x, y(x)) +
h2

2

[
∂f

∂x
+ f

∂f

∂y

]
+O(h3) . (8.11)

Comparing this with equation (8.5), we see that this is exactly the expansion of the solution
of the differential equation up to second order. This is called the second-order Runge–
Kutta or the midpoint method. We have found a way to evaluate the function that gives
us an answer that is correct to second order, but that does not require explicitly working
out the Taylor expansion. Problem 6.2 shows the benefit of improving the approximation
order.

8.2 R U N G E–KUTTA METHODS

This procedure can be carried out to use more function evaluations to match higher-order
terms in the Taylor expansion. The derivation rapidly becomes very tedious, and there
is no unique solution for a given order, but by far the most common approximation is
the fourth-order Runge–Kutta approximation

k1 = hf (x, y(x))

k2 = hf

(
x +

h

2
, y(x) +

k1

2

)
k3 = hf

(
x +

h

2
, y(x) +

k2

2

)
k4 = hf (x + h, y(x) + k3)

y(x + h) = y(x) +
k1

6
+
k2

3
+
k3

3
+
k4

6
+O(h5) . (8.12)

In the midpoint method we improved the accuracy by evaluating the function in the
middle of the interval. The fourth-order Runge–Kutta formula improves on that by
using two evaluations in the middle of the interval, and one at the end of the interval, in
order to make the solution correct out to the fourth-order term in the Taylor series. For
a system of equations, this becomes

k1,i = hfi(x, y1, . . . , yN)

k2,i = hfi

(
x +

h

2
, y1 +

k1,1

2
, . . . , yN +

k1,N

2

)
k3,i = hfi

(
x +

h

2
, y1 +

k2,1

2
, . . . , yN +

k2,N

2

)

DRAFT 8.2 Runge–Kutta Methods 85

k4,i = hfi(x + h, y1 + k3,1, . . . , yN + k3,N)

yi(x + h) = yi(x) +
k1,i

6
+
k2,i

3
+
k3,i

3
+
k4,i

6
+O(h5) . (8.13)

The compactness of this fourth-order formula provides a nice compromise between im-
plementation and execution effort. Although still higher-order approximations are pos-
sible, the next section will look at smarter ways to improve the approximation error.

For a given problem, how is the step size h chosen? Obviously, it must reflect the
desired accuracy of the final answer. But, how can we estimate the accuracy if we don’t
know the answer? The simplest solution is to keep reducing the step size until the solution
does not change within the desired tolerance. We can be more clever than that, but this
is always a good sanity check: the result of a numerical calculation should not depend on
the algorithm parameters.

A more intelligent approach is to consider how the approximation error depends on
the step size. In a fourth-order method, the deviation between the approximate value
found in a single full step y(x + h) and the correct value ytrue(x + h),

y(x + h)− ytrue(x + h) = h5ϕ(x) +O(h6) , (8.14)

consists of h5 times a quantity ϕ which is approximately constant over the interval (to
order h5; this is the definition of the order of the error). If, instead of a single step h,
two smaller steps of h/2 are made, the error after the first half-step is

y(x + h/2)− ytrue(x + h/2) =
(
h

2

)5

ϕ(x) +O(h6) (8.15)

and then after the second half-step it is approximately

y(x + h/2 + h/2)− ytrue(x + h) = 2
(
h

2

)5

ϕ(x) +O(h6) (8.16)

(it is conventional to assume that the errors at each step add, although in fact this is the
worst case and the combined errors for some problems might conspire to be better than
that). Therefore, the difference between y(x+h) calculated in a full step of h and in two
half-steps of h/2 is

y(x + h)− y(x + h/2 + h/2) = h5ϕ(x)− 2
(
h

2

)5

ϕ(x) +O(h6)

≈ h5ϕ . (8.17)

The difference between a single step and two half-steps provides an estimate of the local
error in the step. Such an error estimate can be used to guide an automatic stepper
routine: after making a full step and comparing the result to that from two half-steps,
if the error is larger than an upper threshold then the step size is decreased, and if the
error is smaller than a lower threshold then it is increased. This allows the program to
move to large steps if the function is smooth and featureless, and then to drop down to
small steps in regions where the function is complicated.

Note that the local error estimates cannot trivially be added up to get a global error
estimate at the end of the calculation. Although it is common to assume that the local
errors can be combined as uncorrelated random variables, there are many cases where

86 Finite Differences: Ordinary Differential Equations DRAFT

they are very correlated and lead the solution away from the correct answer (for example,
in the context of solving chaotic equations see [Dawson et al., 1994]). And remember that
there’s a hardware limit to the error that can be achieved; single-precision floating-point
numbers typically have about six significant digits, and double-precision numbers have
twelve digits.

Having done the extra work needed to make the local error estimate, we can also
improve our approximation by combining the results. Equations (8.14) and (8.16) are
two equations in the two unknowns ytrue and ϕ

(
ignoring terms of O(h6)

)
, which can

easily be solved to find

ytrue(x + h) = y(x + h/2 + h/2) +
y(x + h/2 + h/2)− y(x + h)

15
+O(h6) . (8.18)

After checking the error on the fourth-order method by making a full step and two half-
steps, this lets the error be reduced by making use of the two estimates for y(x + h)
(although to this order we cannot estimate the error in the improved approximation).

A refinement on this step-doubling method due to Fehlberg [Press et al., 2007] uses
six function evaluations to give a fifth-order Runge–Kutta approximation, and a differ-
ent combination of the same six values for a fourth-order approximation. Although the
functional form is more complex than the standard fourth-order method, this permits
an error estimate to be made without needing any extra function evaluations, a desirable
trade-off if the function evaluations are computationally costly.

The details of implementing an adaptive interval updating scheme depend on the
nature of the equation being integrated. If there are rough regions expected it is crucial
to throw away a step with a large error and try again with a smaller step; if the answer
is expected to be smooth and execution time is a problem, the point can be saved and
the reduced step applied to the following interval. Similarly, small changes in the step
size help the routine fine-tune its step, but large changes are needed if the solution varies
enormously. If the factors used to increase and decrease the step are incommensurate
then it is possible to reach any step size, otherwise the step size will be limited to a
rational subset (such as powers of 2). Most generally, adjusting the step size to meet a
target local error can be viewed as a control theory problem (Chapter 22).

8.3 BEYOND RUNGE–K U T T A

The combination of a fourth-order Runge–Kutta solver with an adaptive interval step-
per is easy to program, easy to use, and can handle most any reasonably well-behaved
problem. For this reason it is a workhorse for solving differential equations. This section
introduces two important alternatives. At best, they can find more accurate solutions
with larger steps and fewer function evaluations, but they are also fussier and can fail
catastrophically. Runge–Kutta is always a good starting point; these fancier algorithms
should be considered if the execution time or accuracy need to be improved.

The first, predictor-corrector methods, start by recognizing that a step in solving the
first-order differential equation

dy

dx
= f (x, y(x)) (8.19)

DRAFT 8.3 Beyond Runge–Kutta 87

can formally be written as an intergral over an interval h

y(x + h) = y(x) +
∫ x+h

x

f (x, y(x)) dx . (8.20)

The problem with this integral is that to evaluate it we need to know y(x), but that is
what we’re trying to solve for in the first place. All is not lost, however: we do know
the history of f (x, y(x)) before the interval that we are trying to step over. We ignored
this history in the Runge–Kutta methods and just used values in the interval, but if the
function is not varying too wildly we can do better and extrapolate over the interval. A
common way to do the extrapolation is to assume a polynomial form for f (Chapter 15
will look in detail at other ways to approximate functions). For example, for a third-order
method, we assume that locally

f (x, y(x)) = a + bx + cx2 . (8.21)

This can easily be integrated:∫ x+h

x

f (x, y(x)) dx = ah + bxh +
1
2
bh2 + cx2h + cxh2 +

1
3
ch3 . (8.22)

Although it’s possible to fit a polynomial at each step to determine the coefficients (a, b,
and c here), we can get the same answer by judicious function evaluations. If we cleverly
guess that we can write the integral as a sum of past values of the function, weighted by
unknown coefficients (α, β, γ),∫ x+h

x

f (x, y(x)) dx
?
= h{αf [x, y(x)] + βf [x− h, y(x− h)]

+γf [x− 2h, y(x− 2h)]} , (8.23)

then plugging in equation (8.21) on the right hand side shows that∫ x+h

x

f (x, y(x)) dx = ah(α + β + γ) + bxh(α + β + γ) +

bh2(−β − 2γ) + cx2h(α + β + γ) + cxh2(−2β − 4γ) + ch3(β + 4γ) . (8.24)

Equation (8.24) will agree with equation (8.22) if

α + β + γ = 1

−β − 2γ =
1
2

β + 4γ =
1
3

. (8.25)

These equations are easily solved to find α = 23/12, β = −4/3, and γ = 5/12, or

yp(x + h) = y(x) +
h

12
{23f [x, y(x)]− 16f [x− h, y(x− h)] + 5f [x− 2h, y(x− 2h)]} . (8.26)

This gives an estimate of y(x+h) based on extrapolating the history of f ; for this reason
it is called a predictor step. Doing an integral with function evaluations like this is an
example of numerical quadrature.

88 Finite Differences: Ordinary Differential Equations DRAFT

y

xx - 3 h x - 2 h x - h x + h

y p

y c

Figure 8.3. A predictor-corrector method.

Although we could use the predicted y(x+h) as the input to a new predictor step, that
would try to solve the differential equation by repeated polynomial extrapolations (a bad
idea). But we can reapply the differential equation to find an improved estimate based
on the prediction; this is called a corrector step (Figure 8.3). Since we have an estimate
of y at the end of the interval, for the corrector we can look for an implicit numerical
quadrature formula that uses it. For the third-order example, we want∫ x+h

x

f (x, y(x)) dx
?
= h{α′f [x + h, y(x + h)] + β′f [x, y(x)]

+γ′f [x− h, y(x− h)]} . (8.27)

Repeating the preceeding calculation gives α′ = 5/12, β′ = 2/3, and γ′ = −1/12, or

yc(x + h) = y(x) +
h

12
{5f [x + h, y(x + h)] + 8f [x, y(x)]− f [x− h, y(x− h)]} . (8.28)

The result from the corrector step can be used in a new predictor step, which is then
corrected, and so forth. Getting this iteration going will require a set of starting values,
which can be provided by a self-starting method such as Runge–Kutta. And the difference
between the predictor and corrector steps provides a local error estimate. This is an
example of an Adams–Bashforth–Moulton method; it’s common to use the fourth-order
form,

yp(x + h) = y(x) +
h

24
{55f [x, y(x)]− 59f [x− h, y(x− h)]

+ 37f [x− 2h, y(x− 2h)]− 9f [x− 3h, y(x− 3h)]} (8.29)

and

yc(x + h) = y(x) +
h

24
{9f [x + h, yp(x + h)] + 19f [x, y(x)]

− 5f [x− h, y(x− h)] + f [x− 2h, y(x− 2h)]} . (8.30)

DRAFT 8.3 Beyond Runge–Kutta 89

When polynomial extrapolation is justified, a predictor-corrector routine can make sig-
nificantly longer steps than a Runge–Kutta routine because it doesn’t ignore points that
have already been calculated, but it will fail around singularities or discontinuities that
are poorly fit by a polynomial.

The idea of extrapolation, plus the step-doubling routine that we used for Runge–Kutta
error control, hints at the final numerical method: Richardson extrapolation. We saw
that two steps of h/2 give a smaller final error than one step of h. Four steps of h/4 give
a smaller error still, and∞ steps of h/∞ would be even better (exact, in fact). Although
it’s not very practical to plan on taking infinitely many steps, the sequence leading up to it
can give us insight into the infinite limit. The idea is to calculate the value at the end of the
interval many times with successively finer steps, and then fit a function to extrapolate to
the magical limit of an infinitely small step size (Figure 8.4). The Bulirsch–Stoer method
uses polynomials or ratios of polynomials to do the extrapolation. Setting this up requires
a more complex algorithm with many more internal parameters than Runge–Kutta uses,
but in return a much larger step size can be used if the solution is not too complex.
Predictor-corrector methods are older and better studied than Richardson extrapolation
methods, but it is reasonable to believe that it is easier to predict the convergence of a
sequence rather than the extrapolation of a complicated function and so extrapolation
methods are becoming more common.

y

x x + h

y
1

y

x + h / 2x + h / 4 x + 3 h / 4

y
2

y
4

y

hh / 2h / 4h /

y
1

y
2

y
4

y

Figure 8.4. Richardson extrapolation.

We have so far assumed that the differential equation being solved is reasonably well
behaved. A particularly nasty source of problems is stiff differential equations, which
typically arise when a problem has vastly different time or length scales. Consider the
following example:

d2y

dx2
− 106y = 0 . (8.31)

This is easily solved to find the general solution

y = Ae1000t +Be−1000t . (8.32)

Consider what will happen if you give this equation to an unsuspecting differential equa-
tion solver with the initial conditions on y and ẏ chosen so that A = 0. It will start
stepping along, making its usually harmless small errors at each step. However, a small

90 Finite Differences: Ordinary Differential Equations DRAFT

error in y (and therefore ẏ) means that a tiny bit of the other solution will creep in, and
as soon as A 6= 0 then exp(1000t) will annihilate exp(−1000t) and the solution will blow
up. The first thing to check when you run into a stiff differential equation is whether the
variables can be rescaled so that their orders are comparable. Beyond that there is a range
of special techniques for stiff differential equations that contain the different solutions;
see [Gear, 1971].

This chapter has exclusively considered initial value problems. Sometimes boundary-
value problems arise, in which values are known in the middle or the end of the interval.
A classic example that was an important application for early computers was gunnery
problems that seek initial conditions to launch a shell to land on a target. This is a
harder task, and there are no simple solutions. One class of techniques, fittingly called
shooting methods, sends multiple solutions across the interval and then tries to iteratively
update its guess for the initial conditions that satisfy the boundary conditions. The other
common approach is to use finite elements to discretize the entire interval to be solved
and calculate it in parallel (Chapter 10).

8.4 SELECTED REFERENCES

[Press et al., 2007] Press, William H., Teukolsky, Saul A., Vetterling, William T., &
Flannery, Brian P. (2007). Numerical Recipes in C: The Art of Scientific
Computing. 3rd edn. New York, NY: Cambridge University Press.

As in so many other areas, the best first place to turn for numerical methods.

[Gear, 1971] Gear, C. William (1971). Numerical Initial Value Problems in Ordinary
Differential Equations. Englewood Cliffs, NJ: Prentice-Hall.

[Stoer & Bulirsch, 2010] Stoer, J., & Bulirsch, R. (20). Introduction to Numerical
Analysis. 3rd edn. New York, NY: Springer-Verlag. Translated by R. Bartels,
W. Gautschi, and C. Witzgall.

These two are classic texts for differential equations.

[Young & Gregory, 1988] Young, David M., & Gregory, Robert Todd (1988). A Survey
of Numerical Mathematics. New York, NY: Dover Publications. 2 volumes.

This is almost as broad in scope as [Press et al., 2007], but has more
mathematical analysis of the algorithms in return for less practical guidance.

8.5 P R O B L E M S

(6.1) What is the second-order approximation error of the Heun method, which averages
the slope at the beginning and the end of the interval?

y(x + h) = y(x) +
h

2
{f (x, y(x)) + f [x + h, y(x) + hf (x, y(x))]} (8.33)

(6.2) For a simple harmonic oscillator ÿ+y = 0, with initial conditions y(0) = 1, ẏ(0) = 0,
find y(t) from t = 0 to 100π. Use an Euler method and a fixed-step fourth-order

DRAFT 8.5 Problems 91

Runge–Kutta method. For each method check how the average local error, and the
error in the final value and slope, depend on the step size.

(6.3) Write a fourth-order Runge–Kutta adaptive stepper for the preceding problem,
and check how the average step size that it finds depends on the desired local error.

(6.4) Numerically solve the differential equation found in Problem 4.3:

lθ̈ + (g + z̈) sin θ = 0 . (8.34)

Take the motion of the platform to be periodic, and interactively explore the dynam-
ics of the pendulum as a function of the amplitude and frequency of the excitation.

