
14 Functions

This chapter looks at some of the ways that functions can be connected to interpolate
among and extrapolate beyond observations. There is a recurring tension between de-
scribing too little (using a function that does not have enough flexibility to follow the
data) and too much (using a function that is so flexible that it fits noise, or produces
artifacts absent in the original data). Along with matching the data, supporting concerns
will be how easy a family of functions is to use and to understand. Most anyone who
has done any kind of mathematical modeling has made such choices, often without being
aware of the problems of old standbys and the power of less well-known alternatives.

In this chapter we’ll look at some important classes of functions for fitting data along
with broadly applicable princples for their use; Chapter 16 will continue this discussion
with ways to represent probability distributions, and Chapter 18 will conclude with how
function fitting is generalized in machine learning.

14.1 POLYNOMIALS

14.1.1 Padé Approximants

As we’ve already seen many times, a polynomial expansion has the form (in 1D)

y(x) =
N∑
n=0

anx
n . (14.1)

One failing of polynomials is that they have a hard time matching a function that has a
pole. Since (1−x)−1 = 1+x+x2 +x3 +. . ., a simple pole is equivalent to an infinite-order
power series. This is more serious than you might think because even if a function is
evaluated only along the real axis, a nearby complex pole can slow down the convergence
of a polynomial expansion. An obvious improvement is to use a ratio of polynomials,

y(x) =
∑N

n=0 anx
n

1 +
∑M

m=1 bmx
m

. (14.2)

This is called a Padé approximant [Baker & Graves-Morris, 1996]. By convention the
constant term in the denominator is taken to be 1 since it’s always possible to rescale the
coefficients by multiplying the numerator and denominator by a constant. The order of
the approximation is written [N/M].

DRAFT 14.1 Polynomials 163

One application of Padé approximants is for functional approximation. If a function
has a known Taylor expansion

f (x) =
∞∑
l=0

clx
l , (14.3)

we can ask that it be matched up to some order by a Padé approximant∑N
n=0 anx

n

1 +
∑M

m=1 bmx
m

=
L∑
l=0

clx
l . (14.4)

The coefficients can be found by multiplying both sides by the denominator of the left
hand side,

N∑
n=0

anx
n =

L∑
l=0

clx
l +

M∑
m=1

L∑
l=0

bmclx
l+m , (14.5)

and equating powers of x. For powers n ≤ N this gives

an = cn +
N∑

m=1

bmcn−m (n = 0, . . . , N) (14.6)

and for higher powers

0 = cl +
M∑
m=1

bmcl−m (l = N + 1, . . . , N +M) . (14.7)

The latter relationship gives us M equations that can be solved to find the M bm’s in
terms of the c’s, which can then be plugged into the former equation to find the a’s.

Alternatively, given a data set {yi, xi} we can look for the best agreement by a Padé
approximant. Relabeling the coefficients, this can be written as∑N

n=1 anx
n
i

1 +
∑M+N

n=N+1 anx
n−N
i

= yi . (14.8)

Once again multiplying both sides by the denominator of the left hand side and rear-
ranging terms gives

N∑
n=0

xni an −
N+M∑
n=N+1

xn−N
i yian = yi , (14.9)

or M · a⃗ = y⃗, where the ith row of M is (x0
i , . . . , x

N
i ,−x1

iyi, . . . ,−xNi yi), a⃗ =
(a0, . . . , aN+M), and y⃗ is the vector of observations. This can now be solved by SVD
to find a⃗ = M−1 · y⃗, the set of coefficients that minimize the sum of the squares of the
errors.

When Padé approximants are appropriate they work very well. They can converge
remarkably quickly (Problem 13.1), and can have an almost mystical ability to find an-
alytical structure in a function that lets the approximation be useful far beyond where
there are any small parameters in an expansion. However, their use requires care. After
all they’re guaranteed to have poles whether or not the function being approximated does;
the domain and rate of convergence can be difficult to anticipate.

164 Functions DRAFT

14.1.2 Splines

Another problem with global polynomials is that they have a hard time following local
behavior, resulting in undesirable artifacts such as overshooting and ringing (Problem
13.2). In Chapter 9 we saw one solution to this problem: define polynomials in finite
elements, and then patch these local functions together with appropriate matching con-
ditions. Splines use cubic polynomials to match their value and first and second deriva-
tives at the boundaries (although the term is sometimes used even if just slopes are being
matched). There are almost as many types of splines as there are applications, differing
in how the constraints are imposed. Splines are not commonly used for data fitting or
functional approximation, because they require finding and keeping track of the bound-
aries as well as the coefficients, but they are the workhorse of computer graphics, where
they are used to represent curves and surfaces.
Natural splines pass through a given set of points, matching the derivatives as they

cross the points. This is the most obvious way to define a spline, but it has the liability
that moving one point affects all of the others. To be useful for an interactive application
such as computer graphics it must be possible to make a local change and not have
to recompute the entire curve. Nonuniform B-splines provide a clever solution to this
problem [Foley et al., 1990]. The “B” part refers to the bases the polynomials provide,
and the “nonuniform” part refers to the flexibility in defining how they join together.

A nonuniform B-spline curve is defined by

x⃗i(t) = c⃗i−3φi−3(t) + c⃗i−2φi−2(t) (14.10)

+c⃗i−1φi−1(t) + c⃗iφi(t) (ti ≤ t < ti+1) .

t parameterizes the position along the curve. The c⃗i’s are control points, defined at given
values of t called knots, ti. The φi’s are the basis (or blending) functions that weight the
control points. The basis functions are found recursively:

φ(1)
i (t) =

{
1 (ti ≤ t < ti+1)
0 otherwise

φ(2)
i (t) =

t− ti
ti+1 − ti

φ(1)
i (t) +

ti+2 − t
ti+2 − ti+1

φ(1)
i+1(t)

φ(3)
i (t) =

t− ti
ti+2 − ti

φ(2)
i (t) +

ti+3 − t
ti+3 − ti+1

φ(2)
i+1(t)

φi(t) ≡ φ(4)
i (t) =

t− ti
ti+3 − ti

φ(3)
i (t) +

ti+4 − t
ti+4 − ti+1

φ(3)
i+1(t) . (14.11)

The first line sets the basis function to zero except in intervals where the knots are
increasing. The second linearly interpolates between these constants, the third does a
linear interpolation between these linear functions to give quadratic polynomials, and
the last line does one more round of linear interpolation to provide the final cubics.
This hierarchy of linear interpolation preserves the original normalization, so that in
each interval the basis functions sum to 1. This means that the curve is bounded by the
polygon that has the control points as vertices, with the basis functions controlling how
close it comes to them.

Figure 14.1 shows the construction of the basis functions for the knot sequence
[1 2 3 4 5 6 7 8]. The curve will approach each control point in turn, but not quite

DRAFT 14.2 Orthogonal Functions 165

reach it because the maximum of the basis functions is less than 1. Figure 14.2 repeats
the construction for the knot sequence [0 0 0 0 1 1 1 1]. The repetitions force the curve
to go through the first and last control points, and the two intermediate control points set
the slopes at the boundaries. In the context of computer graphics the B-spline is called
a Bézier curve, and the basis functions are called Bernstein polynomials.

1 2 3 4 5 6 7 8
0

0.5

1

1
s
t

o
rd

e
r

t

0

0.5

1

2
n

d
 o

rd
e
r

0

0.5

1

3
rd

 o
rd

e
r

0

0.5

1

4
th

 o
rd

e
r

Figure 14.1. Construction of non-uniform B-spline basis functions for the
knot sequence [1 2 3 4 5 6 7 8].

B-splines can be generalized to higher dimensions, parameterized by more than one
degree of freedom. Another important extension is to divide the polynomials for each co-
ordinate by a scale-setting polynomial. These are called nonuniform rational B-splines,
or NURBS. Along with the other benefits of ratios of polynomials described in the last
section, this is convenient for implementing transformations such as a change of perspec-
tive. Nonuniform nonrational B-splines are a special case with the divisor polynomial
equal to 1.

14.2 ORTHOGONAL FUNCTIONS

In a polynomial fit the coefficients at each order are intimately connected. Dropping a
high-order term gives a completely different function; it’s necessary to re-fit to find a
lower-order approximation. For many applications it’s convenient to have a functional
representation that lets successive terms be added to improve the agreement without
changing the coefficients that have already been found. For example, if an image is

166 Functions DRAFT

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1
s
t

o
rd

e
r

t

0

0.5

1

2
n

d
 o

rd
e
r

0

0.5

1

3
rd

 o
rd

e
r

0

0.5

1

4
th

 o
rd

e
r

Figure 14.2. Construction of nonuniform B-spline basis functions for the
knot sequence [0 0 0 0 1 1 1 1].

stored this way then the fidelity with which it is retrieved can be varied by changing the
number of terms used based on the available display, bandwidth, and processor.

Expansions that let successive corrections be added without changing lower-order ap-
proximations are done with orthogonal functions, the functional analog to the orthogonal
transformations that we saw in the last chapter. We have been writing an expansion of a
function as a sum of scaled basis terms

y(x⃗) =
M∑
i=1

aifi(x⃗) (14.12)

without worrying about how the fi’s relate to each other. However, if we choose them
to be orthonormal ∫ ∞

−∞
fi(x⃗)fj(x⃗) dx⃗ = δij , (14.13)

then the expansion coefficients can be found by projection:∫ ∞

−∞
fi(x⃗)y(x⃗) dx⃗ =

∫ ∞

−∞
fi(x⃗)

M∑
j=1

ajfj(x⃗) dx⃗

=
M∑
j=1

ajδij

= ai . (14.14)

DRAFT 14.2 Orthogonal Functions 167

Such an expansion is useful if we can analytically or numerically do the integral on the
left hand side of equation (14.14).

Assume that we’re given an arbitrary complete set of basis functions φi(x⃗) that can
represent any function of interest, for example polynomials up to a specified order. An
orthonormal set fi can be constructed by Gram–Schmidt orthogonalization. This is
exactly the same procedure used to construct orthogonal vectors, with the dot product
between vectors replaced by an integral over the product of functions. The first orthonor-
mal function is found by scaling the first basis function

f1(x⃗) =
φ1(x⃗)

[
∫∞
−∞ φ1(x⃗)φ1(x⃗) dx⃗]1/2

(14.15)

so that it is normalized:∫ ∞

−∞
f1(x⃗)f1(x⃗) dx⃗ =

∫∞
−∞ φ1(x⃗)φ1(x⃗) dx⃗∫∞
−∞ φ1(x⃗)φ1(x⃗) dx⃗

= 1 . (14.16)

The next member of the set is found by subtracting off the f1 component of φ2

f ′
2(x⃗) = φ2(x⃗)− f1(x⃗)

∫ ∞

−∞
f1(x⃗)φ2(x⃗) dx⃗ (14.17)

to produce a function that is orthogonal to f1∫ ∞

−∞
f1(x⃗)f ′

2(x⃗) dx⃗ =
∫ ∞

−∞
f1(x⃗)φ2(x⃗) dx⃗

−
∫ ∞

−∞
f1(x⃗)f1(x⃗) dx⃗︸ ︷︷ ︸

1

∫ ∞

−∞
f1(x⃗)φ2(x⃗) dx⃗

= 0 , (14.18)

and then normalizing it

f2(x⃗) =
f ′

2(x⃗)
[
∫∞
−∞ f ′

2(x⃗)f ′
2(x⃗) dx⃗]1/2

. (14.19)

The third one is found by subtracting off these first two components and normalizing:

f ′
3(x⃗) = φ3 − f1

∫ ∞

−∞
f1φ3 dx⃗− f2

∫ ∞

−∞
f2φ3 dx⃗

f3(x⃗) =
f ′

3(x⃗)
[
∫∞
−∞ f ′

3(x⃗)f ′
3(x⃗) dx⃗]1/2

, (14.20)

and so forth until the basis is constructed.
If a set of experimental observations {yn, x⃗n}Nn=1 is available instead of a function form

y(x⃗) then it is not possible to directly evaluate the projection integrals in equation (14.14).
We can still use orthonormal functions in this case, but they must now be constructed to
be orthonormal with respect to the unknown probability density p(x⃗) of the measurements
(assuming that the system is stationary so that the density exists). If we use the same
expansion (equation 14.12) and now choose the fi’s so that

⟨fi(x⃗)fj(x⃗)⟩ =
∫ ∞

−∞
fi(x⃗)fj(x⃗)p(x⃗) dx⃗ = δij , (14.21)

168 Functions DRAFT

then the coefficients are found by the expectation

⟨y(x⃗)fi(x⃗)⟩ =
∫ ∞

−∞
y(x⃗)fi(x⃗)p(x⃗) dx⃗ (14.22)

= ai .

By definition an integral over a distribution can be approximated by an average over
variables drawn from the distribution, providing an experimental means to find the co-
efficients

ai =
∫ ∞

−∞
y(x⃗)fi(x⃗)p(x⃗) dx⃗

≈ 1
N

N∑
n=1

ynfi(x⃗n) . (14.23)

But where do these magical fi’s come from? The previous functions that we constructed
were orthogonal with respect to a flat distribution. To orthogonalize with respect to the
experimental distribution all we need to do is replace the integrals with sums over the
data,

f1(x⃗) =
φ1(x⃗)

[
∫∞
−∞ φ1(x⃗)φ1(x⃗)p(x⃗)]1/2 dx⃗

≈ φ1(x⃗)

[1
N

∑N
n=1 φ1(x⃗n)φ1(x⃗n)]1/2

f ′
2(x⃗) = φ2(x⃗)− f1(x⃗)

∫ ∞

−∞
f1(x⃗)φ2(x⃗)p(x⃗) dx⃗

≈ φ2(x⃗)− f1(x⃗)
1
N

N∑
n=1

f1(x⃗n)φ2(x⃗n) (14.24)

and so forth. This construction lets functions be fit to data by evaluating experimental
expectations rather than doing an explicit search for the fit coefficients. Further work
can be saved if the starting functions are chosen to satisfy known constraints in the
problem, such as using sin functions to force the expansion to vanish at the boundaries
of a rectangular region.

Basis functions can of course be orthogonalized with respect to known distributions.
For polynomials, many of these families have been named because of their value in
mathematical methods, including the Hermite polynomials (orthogonal to with respect
to e−x2

), Laguerre polynomials (orthogonal with respect to e−x), and the Chebyshev
polynomials (orthogonal with respect to (1− x2)−1/2) [Arfken & Weber, 1995].

14.3 RADIAL BASIS FUNCTIONS

Even dressed up as a family of orthogonal functions, there is a serious problem inherent
in the use of any kind of polynomial expansion: the only way to improve a fit is to add
higher-order terms that diverge ever more quickly. Matching data that isn’t similarly
diverging requires a delicate balancing of the coefficients, resulting in a function that
is increasingly “wiggly.” Even if it passes near the training data it will be useless for

DRAFT 14.3 Radial Basis Functions 169

interpolation or extrapolation. This is particularly true for functions that have isolated
features, such as discontinuities or sharp peaks (Problem 13.2).
Radial basis functions (RBFs) offer a sensible alternative to the hopeless practice of

fighting divergences with still faster divergences. The idea is to use as the basis a set
of identical functions that depend only on the radius from the data point to a set of
“representative” locations c⃗i:

y(x⃗) =
M∑
i=1

f (|x⃗− c⃗i|; a⃗i) . (14.25)

The a⃗i are coefficients associated with the ith center c⃗i. Now extra terms can be added
without changing how quickly the model diverges, and the centers can be placed where
they’re needed to improve the fit in particular areas. And unlike splines the basis functions
are defined everywhere, eliminating the need to keep track of element boundaries.

If the centers are fixed and the coefficients enter linearly then fitting an RBF becomes
a linear problem

y =
M∑
i=1

aif (|x⃗− c⃗i|) . (14.26)

Common choices for these f include linear (f (r) = r), cubic (f (r) = r3), and fixed-width
Gaussian (f (r) = exp(−r2)). f (r) = r2 is not included in this list because it is equivalent
to a single global second-order polynomial (|x⃗− c⃗|2 =

∑
j[xj−cj]2). For example, fitting

f (r) = r3 requires a singular value decomposition to invert

|x⃗1 − c⃗1|3 |x⃗1 − c⃗2|3 · · · |x⃗1 − c⃗M |3
|x⃗2 − c⃗1|3 |x⃗2 − c⃗2|3 · · · |x⃗2 − c⃗M |3
|x⃗3 − c⃗1|3 |x⃗3 − c⃗2|3 · · · |x⃗3 − c⃗M |3

...
... · · ·

...
|x⃗N−1 − c⃗1|3 |x⃗N−1 − c⃗2|3 · · · |x⃗N−1 − c⃗M |3
|x⃗N − c⃗1|3 |x⃗N − c⃗2|3 · · · |x⃗N − c⃗M |3

a1

a2
...
aM

 =

y1

y2

y3
...

yN−1

yN

to find the solution with the least squares error.

Linear and cubic basis functions appear to violate the spirit of locality of RBFs because
they try to expand the unknown function in a set of globally diverging functions, which
might seem to require the same kind of delicate cancellation that dooms a high-order
polynomial expansion. This intuition misses the fact that all of the terms have the same
order and so this can be a sensible thing to do. In fact, a possibly counter-intuitive result
is that these diverging basis functions can have better error convergence properties than
local ones [Powell, 1992]. They share the crucial attribute that if the data are rescaled
so that r → αr, then r3 → (αr)3 = α3r3, simply changing the amplitude of the term,
which we are going to fit anyway. But for a Gaussian exp(−r2)→ exp(−α2r2), changing
the variance of the Gaussian which cannot be modified by the amplitude of the term.

There are many strategies for choosing the c⃗i: randomly, uniformly, drawn from the
data, uniformly on the support of the data (regions where the probability to see a point is
nonzero). If the basis coefficients enter nonlinearly (for example, changing the variance
of a Gaussian) then an iterative nonlinear search is needed and RBFs are closely related
to the network architectures to be discussed in Section 18.1. If the centers are allowed to

170 Functions DRAFT

move (for example, by varying the mean of a Gaussian), RBFs become a particular case
of the general theory of approximation by clustering (Chapter 16). The last decision in
using an RBF is the number of centers M , to be discussed in the next section.

14.4 OVERFITTING

Overfitting is a simple idea with deep implications. Any reasonable model with N free
parameters should be able to exactly fit N data points, but that is almost always a bad
idea. The goal of fitting usually is to be able to interpolate or extrapolate. If the data are
at all noisy, a model that passes through every point is carefully fitting idiosyncracies of
the noise that do not generalize. On the other hand, if too few parameters are used, the
model may be forced to not only ignore the noise but also miss the meaningful behavior
of the data. Successful function fitting requires balancing underfitting, where there are
model mistmatch errors because the model can not describe the data, with overfitting,
where there are model estimation errors from poor parameter choices in a flexible model.
This is another example of a bias–variance tradeoff: you must choose between a reliable
estimate of a biased model, or a poor estimate of a model that is capable of a better fit.

m o d e l c o m p l e x i t y

e r r o r

o u t - o f - s a m p l e

i n - s a m p l e

m o d e l c o m p l e x i t y m a t c h e s
s y s t e m c o m p l e x i t y

u n d e r f i t t i n g o v e r f i t t i n g

Figure 14.3. Cross-validation.

Unlike the parameters of a model that are determined by fitting, the hyper-parameters
that control the architecture of a model must be determined by some kind of procedure
outside the fitting. Bootstrap sampling (Section 12.5) provides a way to estimate the
reliability of a model’s parameters, but by mixing up the data used for training and
evaluating the model it can easily lead to overconfidence in a model’s ability to generalize
on entirely new measurements. Cross-validation separates these functions. The idea is
to fit your model on part of the data set, but evaluate the fit on another part of the data
set that you have withheld (for example, by randomly choosing a subset of the data).
Now repeat this procedure as you vary the complexity of the model, such as the number
of RBF centers. The in-sample error will continue to decrease if the model is any good,
but the out-of-sample error will initially decrease but then stop improving and possibly
start increasing once the model begins to overfit (Figure A3.30). The best model is the
one at the minimum of this curve (although the curve usually won’t be this nice). Once

DRAFT 14.5 Regularization 171

this set of hyper-parameters has been found the model can be retrained on the full data
set to make predictions for completely new values. The essential observation is that the
only way to distinguish between a signal and noise, without any extra information, is by
testing the model’s generalization ability. Cross-validation is a sensible, useful way to do
that, albeit with a great deal of associated debate about when and how to use it properly,
e.g., [Goutte, 1997].

A strict Bayesian views (correctly) cross-validation as an ad hoc solution to finding
hyperparameters. Better to use equation (12.1) and integrate over all possible models
[Buntine & Weigend, 1991; Besag et al., 1995]. This is an enormous amount of work, and
requires specifying priors on all the variables in the problem. There are some problems
where this effort is justified, but for the common case of there being many equally
acceptable models cross-validation is a quick and easy way to find one of them.

Finally, just as the Fisher information (Section 12.6) can be used to bound the per-
formance of an estimator, it can be possible to relate the descriptive power of a model
architecture to the amount of data needed to use it, in advance of making any measure-
ments. The Vapnik–Chervonenkis (VC) dimension is equal to the size of the largest set
of points that can be classified in all possible ways by a model, and for various architec-
tures it can be used to find the worst-case scaling of the number of points required to
learn a model to a given uncertainty [Vapnik & Chervonenkis, 1971, Kearns & Vazirani,
1994]. Unfortunately, as with so many other grand unifying principles in learning theory,
the real-world problems where such guidance is most needed is where it is most difficult
to apply.

14.5 REGULARIZATION

So far we’ve handled the trade-off between underfitting and overfitting by varying the
model size. A more general framework for constraining flexible models is provided by
the powerful concept of regularization [Weigend et al., 1990; Girosi et al., 1995]. This
is the name for the knob that any good algorithm should have that controls a trade-off
between matching the data and enforcing your prior beliefs. As we saw in Section 12.1,
maximum a posteriori estimation requires finding

max
model

p(model|data) = max
model

p(data|model) p(model)
p(data)

, (14.27)

or taking logarithms

max
model

log p(model|data) = log p(data|model)

+ log p(model)− log p(data) . (14.28)

The first term on the right hand side measures how well the model matches the data. This
could be a Gaussian error model, or it might be defined to be the profit in a stock trading
model. The second term, called a prior, expresses advance beliefs about what kind of
model is reasonable. The final term comes in only if training is done over multiple data
sets. Taken together, these components define a cost function or penalty function to be
searched to find the best model (using methods to be covered in the next chapter).

If there truly is no prior knowledge at all, then setting p(model) = 1 reduces to

172 Functions DRAFT

maximum likelihood estimation. But that’s rarely the case, and even simple priors have
great value. Although priors can be formally expressed as a probability distribution,
they’re usually just added to the cost function with a Lagrange multiplier. A common
prior is the belief that the model should be locally linear unless the data forces it to do
otherwise; this is measured by the integral of the square of the curvature of the model.
If a least squares (Gaussian) error model is used then the quantity to be minimzed for a
1D problem is

I =
N∑
n=1

[yn − f (xn, a⃗)]2 + λ

∫ [
d2f

dx2

]2

dx , (14.29)

where a⃗ is the set of coefficients to be determined and the bounds of integration are over
the interval being fit. The left hand term gives the agreement between the data and the
model, and the term on the right depends on the model alone. Making the sum of both
terms extremal by solving ∂I/a⃗ = 0 (Chapter 5) for a particular value of λ gives a set
of equations to be solved to find the corresponding a⃗. The best value for λ can then be
found iteratively by a procedure such as cross-validation. Problem 13.2 gives an example
of the use of this regularizer.

Other common regularizers include the entropy of a distribution, expressing the belief
that the distribution should be flat, and the total magnitude of a model’s coefficients,
seeking the most parsimonious model. Regularization plays a central role in the theory of
inverse problems [Parker, 1977; Engl et al., 1996], the essential task that arises throughout
science and engineering of deducing the state of a system from a set of measurements
that underdetermine it.

Flexible models can have an impressive ability to find a useful model from a huge
space of possibilities, but they aren’t magic, and they don’t replace the need to think
[Weigend & Gershenfeld, 1993]. Clever training alone is not a cure for bad data. In
practical applications much of the progress comes from collecting good training data
sets, finding appropriate features to use for the model inputs and outputs, and imposing
domain-specific constraints on the model to improve its ability to generalize from limited
observations. Salvation lies in these details. Given unlimited data and unlimited resolution
almost any reasonable model should work with data in whatever form you present it, but
in the real world of imperfect measurements, insight into model architectures must be
enhaced by a combination of advance analysis of a system and experimentation with the
data.

14.6 CURSE OF DIMENSIONALITY

We’ve seen two broad classes of basis functions: those with linear coefficients

y(x⃗) =
M∑
i=1

aifi(x⃗) , (14.30)

and those with coefficients that enter nonlinearly

y(x⃗) =
M∑
i=1

fi(x⃗; a⃗i) . (14.31)

DRAFT 14.6 Curse of Dimensionality 173

The former has a single global least-squares minimum that can be found by singular
value decomposition; in general the latter requires an iterative search with the attendant
problems of avoiding local minima and deciding when to stop. It’s impossible to find an
algorithm that can solve an arbitrary nonlinear search problem in a single step because the
function f could be chosen to implement the mapping performed by a general-purpose
computer from an input program x⃗ to an output y; if such an omniscient search algorithm
existed it would be able to solve computationally intractable problems [Garey & Johnson,
1979].

For a nonparametric fit where we have no idea what the functional form should be,
why would we ever want to use nonlinear coefficients? The answer is the curse of dimen-
sionality. This ominous sounding problem is invoked by a few different incantations, all
relating to serious difficulties that occur as the dimensionality of a problem is increased.
Let’s say that we wanted to do a second-order polynomial fit. In 1D this is simply

y = a0 + a1x + a2x
2 . (14.32)

In 2D, we have

y = a0 + a1x1 + a2x2 + a3x1x2 + a4x
2
1 + a5x

2
2 . (14.33)

We’ve gone from three to six terms. In 3D we need ten terms:

y = a0 + a1x1 + a2x2 + a3x3 + a4x1x2 + a5x1x3 + a6x2x3

+a7x
2
1 + a8x

2
2 + a9x

2
3 , (14.34)

and in d dimensions we need 1+2d+d(d−1)/2 terms. As d is increased the quadratic d2

part quickly dominates. If we try to get around this by leaving off some of the polynomial
terms then we do not let those particular variables interact at that order. As we increase
the order of the polynomial, the exponent of the number of terms required increases
accordingly. A 10th-order fit in 10D will require on the order of 1010 terms, clearly
prohibitive. This rapid increase in the number of terms required is an example of the
curse of dimensionality. Because of this many algorithms that give impressive results for
a low-dimensional test problem fail miserably for a realistic high-dimensional problem.

The reason to use nonlinear coefficients is to avoid the curse. Given some mild as-
sumptions, a nonlinear function of the form of equation (14.30) will have a typical ap-
proximation error of O(1/M 2/d) when fitting an arbitrary but reasonable function (one
with a bound on the first moment of the Fourier transform), where M is the number of
terms and d is the dimension of the space, while a linear function of the form of equation
(14.31) will have an error of order O(1/M) [Barron, 1993]. In low dimensions the differ-
ence is small, but in high dimensions it is essential: exponentially more terms are needed
if linear coefficients are used. The nonlinear coefficients are much more powerful, able to
steer the basis functions where they are needed in a high-dimensional space. Therefore,
in low dimensions it’s crazy not to use linear coefficients, while in high dimensions it is
crazy to use them.

There is another sense of the curse of dimensionality to be mindful of. In a high-
dimensional space, everything is surface. To understand this consider the volume of a

174 Functions DRAFT

hyper-sphere of radius r in a d-dimensional space:

V (r) =
πd/2rd

(d/2)!
(14.35)

(noninteger factorials are defined by the gamma function Γ(n + 1) = n!). Now let’s look
at the fraction of volume in a shell of thickness ϵ, compared to the total volume of the
sphere, in the limit that d→∞:

V (r)− V (r − ϵ)
V (r)

=
rd − (r − ϵ)d

rd

= 1−
(

1− ϵ

r

)d
︸ ︷︷ ︸
lim
d→∞

= 0

= 1 . (14.36)

As d → ∞ all of the volume is in a thin shell near the surface. This is because as d
is increased there is more surface available. Now think about what this implies for data
collection. “Typical” points come from the interior of a distribution, not near the edges,
but in a high-dimensional space distributions are essentially all edges. This means that in
a huge data set there might not be a single point in the interior of the distribution, and
so any analysis will be dominated by edge effects. Most obviously, the data will appear to
be drawn from a lower-dimensional distribution [Gershenfeld, 1992]. Even if your basis
functions work in high dimensions you may not be able to collect enough data to use
them.

All is not lost, however; in the next chapter we’ll see that lurking behind these ideas
is also what could be called a blessing of dimensionality.

14.7 SELECTED REFERENCES

[Press et al., 2007] Press, William H., Teukolsky, Saul A., Vetterling, William T., &
Flannery, Brian P. (2007). Numerical Recipes in C: The Art of Scientific
Computing. 3nd edn. Cambridge: Cambridge University Press.

Numerical Recipes implements a zoo of functions useful in data analysis.

14.8 PROBLEMS

(13.1) Find the first five diagonal Padé approximants [1/1], . . . , [5/5] to ex around the
origin. Remember that the numerator and denominator can be multiplied by a
constant to make the numbers as convenient as possible. Evaluate the approxima-
tions at x = 1 and compare with the correct value of e = 2.718281828459045. How
is the error improving with the order? How does that compare to the polynomial
error?

(13.2) Take as a data set x = {−10,−9, . . . , 9, 10}, and y(x) = 0 if x ≤ 0 and y(x) = 1
if x > 0.

DRAFT 14.8 Problems 175

(a) Fit the data with a polynomial with 5, 10, and 15 terms, using a pseudo-inverse
of the Vandermonde matrix.

(b) Fit the data with 5, 10, and 15 r3 RBFs uniformly distributed between x = −10
and x = 10.

(c) Using the coefficients found for these six fits, evaluate the total out-of-sample
error at x = {−10.5,−9.5, . . . , 9.5, 10.5}.

(d) Using a 15th-order polynomial, fit the data with the curvature regularizer
in equation (14.29), plot the fits, and compare the out-of-sample errors for
λ = 0, 0.01, 0.1, 1 (this part is harder than the others).

