
15 Search

Once you’ve gathered your data, selected a representation to work with, chosen a frame-
work for function approximation, specified an error metric, and expressed your prior
beliefs about the model, then comes the essential step of choosing the best parameters. If
they enter linearly, the best global values can be found in one step with a singular value
decomposition, but as we saw in the last chapter coping with the curse of dimensionality
requires parameters to be inside nonlinearities. This entails an iterative search starting
from an initial guess. Such exploration is similar to the challenge faced by a mountaineer
in picking a route up a demanding peak, but with two essential complications: the search
might be in a 200-dimensional space instead of just 2D, and because of the cost of func-
tion evaluation you must do the equivalent of climbing while looking down at your feet,
using only information available in a local neighborhood.

The need to search for parameters to make a function extremal occurs in many kinds
of optimization. We already saw one nice way to do nonlinear search, the Levenberg–
Marquardt method (Section 12.4.1). But this is far from the end of the story. Levenberg–
Marquardt assumes that it is possible to calculate both the first and second derivatives
of the function to be minimized, that the starting parameter values are near the desired
extremum of the cost function, and that the function is reasonably smooth. In practice
these assumptions often do not apply, and so in this chapter we will look at ways to
relax them. This chapter will cover the unconstrained optimization of a cost function;
Chapter 17 will add restrictions to the search space for constrained optimization.

Perhaps because nature must solve these kinds of optimization problems so frequently,
algorithms in this chapter can have a kind of natural familiarity missing in most numerical
methods. We’ll see blobs (for the downhill simplex search), mass (momentum for avoiding
local minima), temperature (via simulated annealing), and reproduction (with evolution-
ary algorithms). The cost of this kind of intuition is rigor. While there is some supporting
theory, their real justification lies in their empirical performance. Consequently it’s im-
portant to view them not as fixed received wisdom, but rather as a framework to guide
further exploration.

DRAFT 15.1 Multidimensional Search 177

15.1 MULTIDIMENSIONAL SEARCH

15.1.1 Downhill Simplex

As features are added to a model it quickly becomes inconvenient, if not impossible, to
analytically calculate the partial derivatives with respect to the parameters (impossible
because the function being searched might itself be the result of a numerical simulation
or experimental measurement). A simple-minded solution is to evaluate the function at
a constellation of points around the current location and use a finite difference approxi-
mation to find the partials, but the number of function evaluations required at each step
rapidly becomes prohibitive in a high-dimensional space. After each function evaluation
there should be some kind of update of the search to make sure that the next func-
tion evaluation is as useful as possible. Each function evaluation requires choosing not
only the most promising direction but also the length scale to be checked. In Levenberg–
Marquardt we used the Hessian to set the scale, but doing that numerically would require
still more function evaluations. The Downhill Simplex method, also called the Nelder–
Mead method after its original authors [Nelder & Mead, 1965], is a delightful (although
far from optimal) solution to these problems. Of all algorithms it arguably provides the
most functionality for the least amount of code, along with the most entertainment.

A simplex is a geometrical figure that has one more vertex than dimension: a triangle
in 2D, a tetrahedtron in 3D, and so forth. Nelder–Mead starts by choosing an initial
simplex, for example by picking a random location and taking unit vectors for the edges,
and evaluating the function being searched at the D+ 1 vertices of the simplex. Then an
iterative procedure attempts to improve the vertex with the highest value of the function
at each step (assuming that the goal is minimization; for maximization the vertex with
the smallest value is updated).

r e f l e c t

r e f l e c t a n d g r o w

s h r i n k t o w a r d s m i n i m u m

r e f l e c t a n d s h r i n k

m e a n

h i g h e s t p o i n t

s h r i n k

s i m p l e x

Figure 15.1. Downhill simplex update moves.

178 Search DRAFT

The moves are shown in Figure 15.1. Let x⃗i by the location of the ith vertex, ordered
so that f (x⃗1) > f (x⃗2) > . . . > f (x⃗D+1). The first step is to calculate the center of the face
of the simplex defined by all of the vertices other than the one we’re trying to improve:

x⃗mean =
1
D

D+1∑
i=2

x⃗i . (15.1)

Since all of the other vertices have a better function value it’s a reasonable guess that they
give a good direction to move in. Therefore the next step is to reflect the point across
the face:

x⃗1 → x⃗new1 = x⃗mean + (x⃗mean − x⃗1)

= 2x⃗mean − x⃗1 . (15.2)

If f (x⃗new1) < f (xD+1) the new point is now the best vertex in the simplex and the move
is clearly a good one. Therefore it’s worth checking to see if it’s even better to double
the size of the step:

x⃗1 → x⃗new1 = x⃗mean + 2(x⃗mean − x⃗1)

= 3x⃗mean − 2x⃗1 . (15.3)

If growing like this gives a better function value than just reflecting we keep the move,
otherwise we go back to the point found by reflecting alone. If growing does succeed it’s
possible to try moving the point further still in the same direction, but this isn’t done
because it would result in a long skinny simplex. For the simplex to be most effective
its size in each direction should be appropriate for the scale of variation of the function,
therefore after growing it’s better to go back and improve the new worse point (the one
that had been x⃗2).

If after reflecting x⃗new1 is neither best nor worst, we keep it and move on to the new
worst point. If it is still worst, it means that we overshot the minimum of the function.
Therefore instead of reflecting and growing we can try reflecting and shrinking:

x⃗1 → x⃗new1 = x⃗mean +
1
2

(x⃗mean − x⃗1)

=
3
2
x⃗mean −

1
2
x⃗1 . (15.4)

If f (x⃗new1) < f (x⃗2) we accept the move and try to improve f (x⃗2); if after reflecting and
shrinking f (x⃗new1) is still worse we can try just shrinking:

x⃗1 → x⃗new1 = x⃗mean −
1
2

(x⃗mean − x⃗1)

=
1
2

(x⃗mean + x⃗1) . (15.5)

If after shrinking f (x⃗new1) is still worse the conclusion is that the moves we’re making
are too big to find the minimum, so we give up and shrink all of the vertices towards the
best one:

x⃗i → x⃗newi = x⃗i −
1
2

(x⃗i − x⃗D+1) (i = 1, . . . , D)

=
1
2

(x⃗i + x⃗D+1) . (15.6)

DRAFT 15.1 Multidimensional Search 179

Taken together these moves result in a surprisingly adept simplex. As it tumbles down-
hill it grows and shrinks to find the most advantageous length scale for searching in
each direction, squeezing through narrow valleys where needed and racing down smooth
regions where possible. When it reaches a minimum it will give up and shrink down
around it, triggering a stopping decision when the values are no longer improving. The
beauty of this algorithm is that other than the stopping criterion there are no adjustable
algorithm parameters to set. Figure 15.2 shows what a simplex looks like searching for
the minimum of a function.

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 15.2. Downhill simplex function minimization. Above is the evolution of the
simplex shown on the surface; below the 2D projection on a contour map.

Each vertex in the simplex requires storage for D points, and there are D+ 1 of them,
for a storage requirement of D(D + 1).

15.1.2 Line Minimization

Instead of maintaining multiple sets of points, an alternative approach is to maintain
multiple search directions. Line minimizations can then be sequentially performed to
minimize the function in these directions. To see how that’s done, start with a triple of
points (taken here to be scalar distances in the search direction) x0, x1 and x2, where
x0 and x2 are known to bracket the minimum and x1 is between them (we’ll see below
where these come from).

A new function evaluation will be needed to determine which side of x1 the minimum
is on. Let a = |x1 − x0| and b = |x2 − x1| (Figure 15.3). To keep the search balanced,
we can ask for the ratio a/b to remain the same for the new points whichever side it is
on. If c = |x3 − x1|, then we want

a

b
=
b

c
(15.7)

180 Search DRAFT

and
a

b
=
a− c
c

. (15.8)

Eliminating c between them, (a
b

)2
− a

b
− 1 = 0 (15.9)

or
a

b
=

1 +
√

5
2

(15.10)

i.e., the golden ratio (taking the positive root). That’s why this is called golden section
bisection search. Starting with a bracketing triple, a new point is tested at the golden
ratio distance into the larger of the two intervals, then based on the function evaluation
there it becomes either the central or end point of a new bracketing triple.

Figure 15.3. Golden section line search.

The bracketing triple can be found by doing the opposite procedure. Three starting
points are chosen with the golden mean spacing, then new points are added in the downhill
direction, maintaining the golden mean ratio, until one ends up on the far side of the
minimum.

Each successive evaluation improves the location of the minimum by a constant frac-
tion, for a linear convergence rate. If the function being searched is well-behaved,
quadratic interpolation can be used for superlinear convergence. If the function being
searched is a polynomial

f = ax2 + bx + c (15.11)

and we have three values for it {(x1, f1), (x2, f2), (x3, f3)}, then with those three equations
we can solve for the three unknowns in the polynomial. Asking for df/dx = 0 then gives

x =
(x2

2 − x2
3)f1 + (x2

3 − x2
1)f2 + (x2

1 − x2
2)f3

2[(x2 − x3)f1 + (x3 − x1)f2 + (x1 − x2)f3]
(15.12)

This converges in a single step for the polynomial, and otherwise ends up near it based
on how good the polynomial approximation is. Brent’s method is like the Levenberg-
Marquardt method for line search, starting with bisection away from the minimum, and
switching to root-finding near it [Press et al., 2007].

15.1.3 Direction Set

Equipped with a line minimization routine, a naive way to do multidimensional search is
to cycle through the axes of the space, minimizing along each direction in turn. This does

DRAFT 15.1 Multidimensional Search 181

not work well, because each succeeding minimization can influence the optimizations that
came before it, leading to a large number of zigs and zags to follow the function along
directions that might not be lined up with the axes of the space.
Powell’s method or the direction set method improves on this idea by updating the

directions that are searched to try to find a set of directions that don’t interfere with each
other [Acton, 1990]. Starting from an initial guess x⃗0,D line minimizations are performed,
initially along each of the D axes of the space. The resulting point x⃗1 defines a change
vector, ∆x⃗ = x⃗1 − x⃗0. This is a good direction to keep for future minimizations. Since
we need to keep a set of D directions to span the D-dimensional space, the new direction
should replace the one most similar to it. This could be determined by computing all the
dot products among the vectors, or more simply estimated by throwing out the direction
in which there was the largest change in f (and hence the direction which most likely
made the most important contribution to ∆x⃗). An example is shown in Figure 15.4.

−1

−0.5

0

0.5

1

−2
−1.5

−1
−0.5

0
0.5

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 15.4. Minimization by Powell’s method in 2D, illustrated by starting with random
search directions. After each pair of line minimizations the net change is taken as a new
search direction, replacing the most similar previous direction.

Powell’s method requires storage for D directions, each with D points, for a total of
D2.

15.1.4 Conjugate Gradient

Simplex and Powell’s method assume that only the function can be evaluated. Naturally,
it’s possible to do better if the gradient of the function is known. A second-order expansion
of the function around a point (or exact expression for a quadratic form) is

f ≈ f (x⃗0) +
∑
i

∂f

∂xi

∣∣∣∣
x⃗0

xi +
1
2

∑
i,j

∂2f

∂xi∂xj

∣∣∣∣
x⃗0

xixj

182 Search DRAFT

≡ c− b⃗ · x⃗ +
1
2
x⃗ · A · x⃗ . (15.13)

Taking partials,

∂f

∂xi
≈ ∂f

∂xi

∣∣∣∣
x⃗0

+
1
2

∑
j

∂2f

∂xi∂xj

∣∣∣∣
x⃗0

xj +
1
2

∑
j

∂2f

∂xj∂xi

∣∣∣∣
x⃗0

xj (15.14)

and so the gradient g⃗ up to this second-order approximation is

g⃗ = ∇f ≈ A · x⃗− b⃗ . (15.15)

(if AT = A, which will hold for a Hessian). Finding where the gradient vanishes thus
solves A · x⃗ = b⃗ for a quadratic form, which is a useful approach to solve sparse matrix
equations [Golub & Loan, 1989].

Given a starting point x⃗n and direction d⃗n, a line minimization will find a new point
x⃗n+1 = x⃗n +αnd⃗n at a distance αn. The gradient at this new point will be perpendicular
to the line minimization direction:

0 = d⃗n · g⃗n+1

≈ d⃗n ·
(
A · x⃗n+1 − b⃗

)
(15.16)

because otherwise there would still be a decreasing component in the minimization di-
rection. Going in the direction of the new gradient is called steepest descent, and is a bad
idea because after the new minimization the old one would no longer hold, potentially
requiring many right-angle turns to follow a function. If instead the new search direction
is chosen so that

d⃗n ·
[
A ·
(
x⃗n+1 + αd⃗n+1

)
− b⃗
]

= 0 (15.17)

is still true then they won’t conflict. This will be the case if

d⃗n · A · d⃗n+1 = 0 (15.18)

in which case the vectors are said to be conjugate with respect to A
To find this new direction, we can try constructing it from a combination of the new

gradient and the old direction:

d⃗n+1 = g⃗n+1 + γnd⃗n (15.19)

where γn is a constant to be found. Plugging that into the conjugacy condition gives

0 = d⃗n+1 · A · d⃗n
= g⃗n+1 · A · d⃗n + γnd⃗n · A · d⃗n

⇒ γn = − g⃗n+1 · A · d⃗n
d⃗n · A · d⃗n

(15.20)

Evaluating this requires knowing A, the Hessian, which we don’t know, but observe that

g⃗n+1 = A · x⃗n+1 − b⃗
= A ·

(
x⃗n + αnd⃗n

)
− b⃗

= g⃗n + αnA · d⃗n
g⃗n+1 − g⃗n = αnA · d⃗n . (15.21)

DRAFT 15.2 Local Minima 183

Since we’re assuming that we do know the gradients we can use that expression to
eliminate A:

γn = − g⃗n+1 · (g⃗n+1 − g⃗n) /αn

d⃗n · (g⃗n+1 − g⃗n) /αn

= − g⃗n+1 · (g⃗n+1 − g⃗n)

d⃗n · g⃗n+1 − d⃗n · g⃗n

=
g⃗n+1 · (g⃗n+1 − g⃗n)

d⃗n · g⃗n

=
g⃗n+1 · (g⃗n+1 − g⃗n)(
g⃗n + γn−1d⃗n−1

)
· g⃗n

=
g⃗n+1 · (g⃗n+1 − g⃗n)

g⃗n · g⃗n + γn−1d⃗n−1 · g⃗n

=
g⃗n+1 · (g⃗n+1 − g⃗n)

g⃗n · g⃗n
(15.22)

This is the Polak-Ribiere conjugate gradient algorithm [Polak & Ribiere, 1969]. If the
function is exactly a quadratic form then this will converge after D line minimizations in
a D-dimensional space, otherwise the iteration can be continued. The earlier Fletcher-
Reeves algorithm leaves off the evaluation of g⃗n+1 · g⃗n, which vanishes for a quadratic
form [Fletcher & Reeves, 1964].

The conjugate gradient algorithm requires keeping track of the old and new search
directions, and evaluating the old and new gradients, for a storage proportional to D.
For a large problem that’s quite a difference from the D2 required by the simplex or
direction set methods.

15.1.5 Stochastic Search

filtered noisy evaluation [Kirk et al., 1993] (analog logic)
stochastic gradient descent

15.2 LOCAL MINIMA

In functional optimization, like life, sometimes taking short-term gains does not lead
to the best long-term return. Most nontrivial functions have local minima that will
trap an unwary algorithm that always accepts a step that improves the function. Con-
sider Figure 15.5, which shows the behavior of downhill simplex search on a func-
tion with two minima. Since by definition it always makes moves that improve the
local value of the function it necessarily gets caught in the basin around the starting
point.

All techniques for coping with local minima must in some way force the search to
sometimes make moves that are not locally desirable, a numerical analog of learning
from mistakes. A crude but eminently usable way to do this is by adding momentum
to the search. Just as momentum causes a particle to keep moving in an old direc-
tion as a new force is applied, a fraction of whatever update was last done in a search

184 Search DRAFT

−1

−0.5

0

0.5

1

−2

−1.5

−1

−0.5

0

0.5

1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 15.5. Downhill simplex function minimization getting caught in a local mininum.

can be added to whatever new update the algorithm deems best. This is usually done
by loose analogy rather than by formally mapping the problem onto classical mechan-
ics.

For downhill simplex, let ∆x⃗(n) be the total change in the nth move to the worst point
in the simplex, x⃗new1 (n) = x⃗old1 (n) + ∆x⃗(n). Momentum adds to this some of the change
from the previous move

x⃗new1 (n) = x⃗old1 (n) + ∆x⃗(n) + α[x⃗new1 (n− 1)− x⃗old1 (n− 1)] . (15.23)

As Figure 15.6 shows, this lets the simplex “roll” out of a local minima and find a better
one. As α is increased the simplex is able to climb out of deeper minima, but takes longer
to converge around the final minimum.

The attraction of using momentum is that it is a trivial addition to almost any other
algorithm. Of course including momentum does not guarantee that local minima will
be avoided; that depends on the details of how much is used, what the configuration of
the search space is, and where the initial condition is located. As more momentum is
included it is possible to climb out of deeper minima, and the reasonable hope is that the
resulting directions in which the search proceeds will be sufficiently randomized to have
a good chance of finding better minima. This is making an implicit statistical assumption
about the dynamics of the search, in effect asking that there be enough redirection of
the search for it to appear ergodic and hence be able to reach the whole search space.
In the rest of this chapter we will turn to explicit statistical assumptions to randomize
searches.

DRAFT 15.3 Simulated Annealing 185

−1

−0.5

0

0.5

1

−2−1.5−1−0.500.51

−1

−0.5

0

0.5

Figure 15.6. Downhill simplex function minimization with momenum added, avoiding a local
minimum. At the bottom the updates are shown displaced vertically as a function of the
iteration for clarity.

15.3 S IMULATED ANNEALING

The growth of a crystal from a liquid solves a difficult optimization problem. If the liquid
was instantaneously frozen, the atoms would be trapped in the configuration they had in
the liquid state. This arrangement has a higher energy than the crystalline ordering, but
there is an energy barrier to be surmounted to reach the crystalline state from a glassy
one. If instead the liquid was slowly cooled, the atoms would start at a high temperature
exploring many local rearrangements, and then at a lower temperature become trapped in
the lowest energy configuration that was reached. The slower the cooling rate, the more
likely it is that they will find the ordering that has the lowest global energy. This process
of slowly cooling a system to eliminate defects is called annealing.

Annealing was introduced to numerical methods in the 1950s by Metropolis and
coworkers [Metropolis et al., 1953]. They were studying statistical mechanical sys-
tems and wanted to include thermodynamic fluctuations. In thermodynamics, the relative
probability of seeing a system in a state with an energy E is proportional to an expo-
nential of the energy divided by the temperature times Boltzmann’s constant k [Balian,
1991]:

p(E) ∝ e−E/kT ≡ e−βE . (15.24)

This is called a Boltzmann factor. At T = 0 this means that the system will be in the
lowest energy state, but at T > 0 there is some chance to see it in any of the states.
Metropolis proposed that to update a simulation, a new state reachable from the current
state be randomly selected and have its energy evaluated. If the energy is lower, the
state should always be accepted. But if the energy is higher, it is accepted based on the

186 Search DRAFT

probability to see a fluctuation of that size, which is proportional to the exponential of
the change in energy exp(−β∆E). This is easily implemented by accepting the move
if a random number drawn from a uniform distribution between 0 and 1 is less than a
threshold value equal to the desired probability.

In the 1980s Scott Kirkpatrick realized that the same idea could be used to search
for solutions to other hard problems, such as finding a good routing of the wires on a
printed circuit board [Kirkpatrick et al., 1983; Kirkpatrick, 1984]. This idea is called by
analogy simulated annealing. Now the energy is replaced by a cost function, such as
the total length of wire on the circuit board, or a MAP likelihood estimate. Trial moves
that update the state are evaluated. Moves that improve the search are always accepted,
and moves that make it worse are taken with a probability given by a Boltzmann factor
in the change in the cost function. At a high temperature this means that the search
indiscriminately accepts any move offered, and hence pays little attention to the function
being searched and tumbles around the space. As the temperature is lowered the function
becomes more and more significant, until as T → 0 the search becomes trapped in the
lowest minima that it has reached. Figure 15.7 shows simulated annealing working on a
function with multiple minima.

−1

−0.5

0

0.5

1

−2−1.5−1−0.500.51

−1

−0.5

0

0.5

Figure 15.7. Optimization by simulated annealing. As the temperature is decreased, the ran-
dom walker gets caught in the mininum. In the lower trace the iterations are displaced
vertically.

There are two key elements in implementing simulated annealing. The first is the
selection of the trial moves to be evaluated. This could be done randomly, but that makes
little sense since in a high-dimensional space the chance of guessing a good direction is
very small. Better is to use an algorithm such as downhill simplex or conjugate gradient
that makes intelligent choices for the updates, but include the Boltzmann factor to allow
it to make mistakes. The second part of implementing simulated annealing is choosing
the cooling schedule. Cool too fast and you freeze the system in a bad solution; cool too

DRAFT 15.4 Evolutionary Algorithms 187

slowly and you waste computer time. There is a large literature on techniques motivated
by thermodynamics that analyze the fluctuations to determine if the system is being kept
near equilibrium. A more modest empirical approach is to try runs at successively slower
cooling rates until the answer stops improving.

Simulated annealing requires repeatedly making a probabilistic decision to accept a
move proportional to its Boltzmann factor. If α ∈ [0, 1] is the probability with which we
want to accept a move, this can be done simply by drawing a random number uniformly
distributed between 0 and 1. If the number is less than α we accept the move, and if the
number is greater than α we reject it. By definition, this gives a probability of success of
α, and for failure of 1− α.

15.4 EVOLUTIONARY ALGORITHMS

There is a natural system that solves even harder problems than crystal growth: evolution.
Atoms in a crystal have a very limited repertoire of possible moves compared to the options
of, say, a bird in choosing how to fly. The bird must determine the size and shape of the
wings, their structural and aerodynamic properties, the control strategy for flight, as well
as all of the other aspects of its life-cycle that support its ability to fly.

15.4.1 Genetic Algorithms

Evolution works by using a large population to explore many options in parallel, rather
than concentrating on trying many changes around a single design. The same can be true
of numerical methods. Simulated annealing keeps one set of search parameters that are
repeatedly updated. An alternative is to keep an ensemble of sets of parameters, spending
less time on any one member of the ensemble. Techniques that do this have come to
be called genetic algorithms, or GAs, by analogy with the evolutionary update of the
genome [Forrest, 1993].

The state of a GA is given by a population, with each member of the population being
a complete set of parameters for the function being searched. The whole population is
updated in generations. There are four steps to the update:

• Fitness
The fitness step evaluates the function being searched for the set of parameters for
each member of the population.

• Reproduction
The members of the new population are selected based on their fitness. The total size
of the population is fixed, and the probability for a member of the previous generation
to appear in the new one is proportional to its fitness. A set of parameters with a
low fitness might disappear, and one with a high fitness can be duplicated many times.
The weighting of how strongly the fitness determines the relative rates of reproduction
is analogous to the temperature of simulated annealing. Low selectivity accepts any
solution; high selectivity forces one solution to dominate.

• Crossover
In crossover, members of the ensemble can share parameters. After two parents are

188 Search DRAFT

randomly chosen based on their fitness, the offspring gets its parameter values based on
some kind of random selection from the parents. The usefulness of crossover depends
on the nature of the function being searched. If it naturally decouples into subproblems,
then one parent may be good at one part of the problem and the other at another, so
taking a block of parameters from each can be advantageous. If on the other hand the
parameter values are all intimately linked then crossover has little value and can be
skipped. Crossover introduces to the search process a notion of collaboration among
members of the ensemble, making it possible to jump to solutions in new parts of the
space without having to make a series of discrete moves to get there.

• Mutation
This step introduces changes into the parameters. Like simulated annealing it could
be done randomly, but preferably takes advantage of whatever is known about how to
generate good moves for the problem.

−1

−0.5

0

0.5

1

−2−1.5−1−0.500.51

−1

−0.5

0

0.5

Figure 15.8. Optimization by a genetic algorithm, with populations
displaced vertically at the bottom.

Figure 15.8 shows the evolution of the population in a GA searching the same function
used in the previous examples. Clearly this is a long way from downhill simplex search.
There the only choice was when to stop; for a GA there are many decisions to be made
about how to implement each of the steps. For simple problems it can be possible to do
this optimally [Prügel-Bennett & Shapiro, 1994], but the most important use of GAs is
for problems where such calculations are not possible. Even so, plausible choices for each
of the options can lead to surprisingly satisfactory performance. After all, evolution has
come a long way with many suboptimal choices.

DRAFT 15.5 The Blessing of Dimensionality 189

15.4.2 CMA-ES

simulated annealing, genetic algorithms provide no guidance on the move generator
probability of finding good low-dimensional direction randomly diverges with dimen-

sion
hypersphere volume shell vs interior exponential
Covariance Matrix Adaptation – Evolution Strategy

Hansen, Nikolaus. "The CMA evolution strategy: a comparing review." In

Towards a new evolutionary computation, pp. 75-102. Springer, Berlin,

Heidelberg, 2006.

• assume multivariate Gaussian distribution for likelihood of search solution
• sample population from distribution
• population size ∼logarithmic in dimension
• evaluate search function for each member of population
• use the search values as weights to re-estimate the distribution the population was

sampled from
• exponential filter to combine the new distribution parameters with the old ones
• repeat

example of expectation-maximization, developed in density estimation
doing gradient ascent, slows down, momentum
need to construct and invert D2 covariance matrix, can simplify by assuming separable

Ros, Raymond, and Nikolaus Hansen. "A simple modification in CMA-ES

achieving linear time and space complexity." In International

Conference on Parallel Problem Solving from Nature, pp. 296-305.

Springer, Berlin, Heidelberg, 2008.

15.5 THE BLESSING OF DIMENSIONALITY

This chapter has presented an escalating series of search algorithm enhancements to
handle successively more difficult problems. Figure 15.9 illustrates the types of functions
to which they apply. On the left is a smooth function with a broad minimum. As long
as you have reasonable confidence that you can guess starting parameter values that
put you within the basin of the desired minimum, variants of gradient descent will
get you there (Nelder–Mead or Powell’s method if only function evaluation is possible,
conjugate gradient if first derivatives are available, Levenberg–Marquardt if first and
second derivatives are available). At the opposite extreme is a function with very many
equally good local minima. Wherever you start out, a bit of randomness can get you out
of the small local minima and into one of the good ones, making this an appropriate
problem for simulated annealing. But simulated annealing is less suitable for the problem
in the middle, which has one global minimum that is much better than all the other local
ones. Here it’s very important that you find that basin, and so it’s better to spend less
time improving any one set of parameters and more time working with an ensemble to
examine more parts of the space. This is where evolutionary algorithms are best.

190 Search DRAFT

Figure 15.9. Types of search problems. Left, a global minimum that can be found by gradient
descent. Right, a function with many equally good nearby minima that can be found with a
local stochastic search. And center, a function with a large difference between typical local
minima and the global minimum, requiring a global search.

It’s not possible to decide which of these applies to a given nontrivial problem, because
only a small part of the search space can ever be glimpsed. But a good clue is provided
by the statistics of a number of local searches starting from random initial conditions. If
the same answer keeps being found the case on the left applies, if different answers are
always found but they have similar costs then the case on the right applies, and if there
is a large range in the best solutions found then it’s the one in the middle.

It should be clear that simulated annealing and evolutionary algorithms are not dis-
joint alternatives. Both start with a good generator of local moves. Simulated annealing
introduces stochasticity to cope with local minima; evolutionary algorithms introduce an
ensemble to cope with still rougher search landscapes. One idea came from observing
how thermodynamic systems solve problems, the other from biology, but divorced from
the legacy of their origins both have sensible lessons for numerical search.

Perhaps the biggest surprise of all about high-dimensional nonlinear search is just
how well it can work. Variants of simulated annealing are now used routinely for such
hard problems as routing fleets of airplanes. The explanation for this success can be
called the blessing of dimensionality. The kind of landscape shown on the right of
Figure 15.9 has come to be well understood through the study of spin glasses [Mezard,
1987]. These are physical systems in which atomic spin degrees of freedom have random
interaction strengths. For a large number of spins it is extremely difficult to find the
global minimum, but there is an enormous number of local minima that are all almost
equally good (remember that the number of configurations is exponential in the number
of spins). Almost anywhere you look you will be near a reasonably low-energy solution.

In fact, the really hard problems are not the big ones. If there are enough planes
in a fleet, there are many different routings that are comparable. Small problems by
definition are not hard; for a small fleet the routing options can be exhaustively checked.
What’s difficult is the intermediate case, where there are too many planes for a simple
search to find the global best answer, but there are too few planes for there to be many
alternative acceptable routings. Many other problems have been observed to have this
kind of behavior, shown in Figure 15.10. The effort to find an answer goes down for
small problems because there are so few possible answers to check, and it goes down for
big problems because there are so many different ways to solve a problem. In between is
a transition between these regimes that can be very difficult to handle. This crossover has
been shown to have many of the characteristics of a phase transition [Cheeseman et al.,

DRAFT 15.6 Selected References 191

1991; Kirkpatrick & Selman, 1994], which is usually where the most complex behavior
in a system occurs.

p r o b l e m s i z e

c o m p u t a t i o n a l

e f f o r t

Figure 15.10. Characteristic computational effort as a function of the problem size.

Figure 15.10 explains a great deal of the confusion about the relative claims for search
algorithms. Many different techniques work equally well on toy problems, because they
are so easy. And many techniques can work on what look like hard problems, if they are
given a big enough space to work in. But the really hard problems in between can trip up
techniques with stellar records at either extreme. This figure helps explain the success of
neural networks (Chapter 14): if a model is not going to have a small number of meaningful
parameters, then the best thing to do is to give it so many adjustable parameters that
there’s no trouble finding a good solution, and prevent overfitting by imposing priors.
And it helps explain the importance of heuristics and relaxations in problem-solving
(Chapter 19): it can be preferable to find the exact solution to an approximate problem
rather than an approximate solution to an exact problem.

15.6 SELECTED REFERENCES

[Acton, 1990] Acton, Forman S. (1990). Numerical Methods That Work. Washington,
DC: Mathematical Association of America.

This should be required reading for anyone who uses any search algorithm, to
understand why the author feels that “They are the first refuge of the
computational scoundrel, and one feels at times that the world would be a better
place if they were quietly abandoned.”

[Press et al., 2007] Press, William H., Teukolsky, Saul A., Vetterling, William T., &
Flannery, Brian P. (2007). Numerical Recipes in C: The Art of Scientific
Computing. 3nd edn. Cambridge: Cambridge University Press.

Numerical Recipes has a good collection of search algorithms.

15.7 PROBLEMS

(14.1) (a) Plot the Rosenbrock function [Rosenbrock, 1960]

f = (1− x)2 + 100(y − x2)2 . (15.25)

(b) Pick a stopping criterion and use the downhill simplex method to search for its

192 Search DRAFT

minimum starting from x = y = −1, plotting the search path, and counting
the number of algorithm iterations and function evaluations used.

(c) Now repeat the simplex search for D = 10 in the D-dimensional generaliza-
tions of the Rosenbrock function:

f =
D−1∑
i=1

(1− xi−1)
2 + 100(xi − x2

i−1)
2 (15.26)

Start all the xi at -1, plot a 2D projection of the search path, and again count
algorithm iterations and function evaluations.

(d) Repeat and compare the 2D and 10D Rosenbrock search with the gradient
descent method.

(e) Repeat and compare the 2D and 10D Rosenbrock search with the conjugate
gradient method.

(f) Repeat and compare the 2D and 10D Rosenbrock search with the CMA-ES
method.

